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ABSTRACT (361 words)

Objectives: Simple, transferable and accurate methods for patient risk stratification are needed 

to better plan and allocate resources, as highlighted by the strain on hospitals created by the 

COVID-19 pandemic. Using a novel paradigm of model development and code sharing, we 

sought to create a machine learning model from electronic health record (EHR) data that can 

accurately predict patient deterioration across institutions. 

Design, Setting, Participants: In a retrospective cohort study, hospitalized adults with 

respiratory distress at one institution from 2015-2021 were used for model training and internal 

validation. External validation was conducted on patients hospitalized with COVID-19 during 

2020-2021 at 12 additional US medical centers. 

Main Outcomes Measure: On the internal development cohort, an ensemble of linear models 

was trained to predict a composite outcome of in-hospital mortality and three events indicating 

need for ICU-level therapies: 1) mechanical ventilation, 2) heated high-flow nasal cannula and 

3) intravenous vasopressors, based on 9 clinical and demographic variables selected from 

2,686 variables available in the EHR. Internal and external validation performance was 

measured using the area under the receiver operating characteristic curve (AUROC) and the 

expected calibration error (ECE), i.e., the difference between predicted risk and actual risk. 

Potential bed-day savings were estimated by calculating how many days per patient the 

hospitals could save if low-risk patients identified by the model were discharged early. 

Results: A total of 9,291 COVID-19 hospitalizations at 13 medical centers were used for model 

validation, of which 1,510 (16.3%) experienced the primary outcome. On the internal validation 

cohort, the model achieved an AUROC of 0.80 (95% CI: 0.77, 0.84) and an ECE of 0.01 (95% 

Page 3 of 42

https://mc.manuscriptcentral.com/bmj

BMJ

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Confidential: For Review Only

3

CI: 0.00, 0.02). Performance was consistent in the 12 external medical centers (AUROC range: 

0.77-0.84), across demographic subgroups of sex, age, race, and ethnicity (AUROC range: 

0.78-0.84), and across quarters (AUROC range: 0.73-0.83). Using the model to triage low-risk 

patients could potentially save up to 7.8 bed-days per early discharge. 

Conclusion: A deterioration model developed rapidly in response to the pandemic at a single 

hospital was applied externally without sharing data and generalized across multiple medical 

centers, demographic subgroups and time periods, demonstrating its potential as a tool for use 

in optimizing healthcare resources. 
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INTRODUCTION

Risk stratification models that provide advance warning of patients at high-risk of deterioration 

during hospitalization could help clinical care teams manage resources, including interventions, 

hospital beds and staffing.[1,2] For example, knowing how many and which patients will require 

ventilators could prompt hospitals to increase ventilator supply while care teams start to allocate 

ventilators to patients most in need.[3] Beyond identifying high-risk patients, such models could 

also help identify low-risk patients as candidates for early discharge, potentially freeing up 

hospital resources.[4–7] 

Despite the potential use of risk stratification models in resource allocation, few successful 

examples exist. Most notably, strong generalization performance, i.e., how well a model will 

perform across different patient populations, is fundamental to realizing the potential benefits of 

risk models in clinical care. Yet generalization performance is often entirely overlooked when 

developing and validating predictive models in healthcare.[8–14] For example, recent work 

found that only 5% of articles on predictive modeling in PubMed mention external validation in 

either the title or the abstract.[9]  This is due, in part, to the fact that most approaches to external 

validation require data-sharing agreements.[15–18] In the small fraction of cases in which data 

sharing agreements have been successfully established, validation was either limited in 

scope[19–21] (e.g., focused on a single geographical region) or the model performed poorly 

once applied to a population that differed from the development cohort.[22,23] Thus, there is a 

critical need for an accurate, simple and open-source method for patient risk stratification that 

generalizes across hospitals and patient populations. 

In this study, we develop and validate an open-source patient deterioration model, Michigan 

Critical Care Utilization and Risk Evaluation System (M-CURES), using routinely available data 

extracted from electronic health records (EHR). We externally validate this risk model across 
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multiple dimensions, while preserving data privacy and forgoing the need for data sharing 

across healthcare institutions. To evaluate the effectiveness of the model in settings where risk 

stratification could be highly beneficial, we focus on patients hospitalized with COVID-19 from 

13 US medical centers. COVID-19 represents an important case study given increases in 

hospitalizations during the COVID-19 pandemic have strained hospital resources on a global 

scale;[24–26] some hospitals have been forced to cancel up to 85% of elective surgical 

procedures to free up resources.[27,28] We hypothesized that a simple model based on a 

handful of variables would generalize across diverse patient cohorts. 

METHODS

This study was approved by the institutional review boards of all participating sites, with a 

waiver of informed consent. Additional methodological details can be found in the Supplement. 

Study Cohorts

Development Cohort. The model was trained on adult (18 years and older) patient 

hospitalizations at Michigan Medicine, the academic medical center of the University of 

Michigan, during the 5-year period from January 1, 2015 to December 31, 2019. All 

hospitalizations with respiratory distress, i.e., those admitted through the emergency department 

who received supplemental oxygen support, were included. Hospitalizations that met the 

outcome (described below) prior to or at the time of receiving supplemental oxygen were 

excluded. 

Internal Validation Cohort. The model was internally validated on adult patient hospitalizations 

at Michigan Medicine from March 1, 2020 to February 28, 2021 who required supplemental 

oxygen and were diagnosed with COVID-19. To identify COVID-19 hospitalizations from 

retrospective data, we included hospitalizations with either 1) a positive laboratory test or 2) a 
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recorded ICD-10 code for COVID-19 without a negative laboratory test. A randomly selected 

subset of 100 hospitalizations were used for variable selection and excluded from evaluation. 

External Validation Cohorts. The external validation cohorts included adult patient 

hospitalizations at 12 external medical centers from March 1, 2020 to February 28, 2021 who 

required supplemental oxygen and were diagnosed with COVID-19. Inclusion criteria were 

similar to those used for the internal validation cohort (eMethods 1 in Supplement). 

In alphabetical order, the external healthcare systems were Mass General Brigham (MGB), the 

University of California San Francisco Medical Center, and University of Texas Southwestern 

Medical Center. MGB included 10 hospitals: Brigham and Women’s Faulkner Hospital, Brigham 

and Women's Hospital, Cooley Dickinson Hospital, Martha’s Vineyard Hospital, Massachusetts 

General Hospital, McLean Hospital, Nantucket Cottage Hospital, Newton-Wellesley Hospital, 

North Shore Medical Center, and Wentworth-Douglass Hospital. Six sites with fewer than 100 

cases that met the primary outcome were combined into a single cohort when performing 

evaluation, resulting in a total of 7 external validation cohorts. These medical centers represent 

both large academic medical centers and small to mid-size community hospitals in regions 

geographically distinct from the development institution (Midwest), including the Northeast, 

West, and South regions of the US. Institution-specific results were anonymized. 

Cohort Comparison. We compared the internal validation cohort to the development cohort 

and to each of the external validation cohorts across demographic characteristics and 

outcomes, using chi-squared tests for homogeneity with a Bonferroni correction for multiple 

comparisons, at a significance level of α=0.001.
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Outcome

The model was trained to predict a composite outcome of clinical deterioration, defined as either 

in-hospital mortality or the need for intensive care unit (ICU)-level therapies, including the 

receipt of invasive mechanical ventilation, heated high-flow nasal cannula, or intravenous 

vasopressors. The outcome time was defined as the earliest (if any) of these events within the 

first five days of hospitalization. Additional implementation details are described in eMethods 1 

in the Supplement. 

Model Development & Evaluation

Variable Selection and Feature Engineering. A model based on data extracted from the EHR 

was developed to predict the primary outcome every 4-hours (at set time points; see eFigure 1 

in Supplement). Clinical knowledge and data-driven feature selection was used to reduce the 

input space from 2,686 EHR variables (including demographics, laboratory results, and data 

recorded in nursing flowsheets) to 9 variables. First, variables with the potential to be spuriously 

correlated with the outcome were removed based on clinical expertise.[29] In addition, variables 

that relied on existing deterioration indices or composite scores (e.g., the SOFA score[30]) were 

removed, due to the potential for inconsistencies or lack of availability across healthcare 

systems. Then, using 100 randomly selected hospitalizations from the internal validation cohort, 

permutation importance[31,32] and forward selection[33] were used to further reduce the 

variable set (eMethods 2 in Supplement). The final 9 variables included: age, respiratory rate, 

oxygen saturation, oxygen flow rate, pulse oximetry type (e.g., continuous, intermittent), head of 

bed position (e.g., at 30 degrees), patient position when blood pressure was measured (e.g., 

standing, sitting, lying), venous blood gas pH, and arterial blood gas pCO2. FIDDLE,[34] an 

open-source preprocessing pipeline for structured EHR data, was used to map the 9 data 

elements to 88 binary features (each with a value in {0,1}) describing every 4-hour window. The 

features were used as input to the machine learning model, and included summary information 
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about each variable (e.g., the minimum/maximum/mean respiratory rate within a window) and 

indicators for missingness (e.g., whether respiratory rate was measured within a window). 

Model training. An ensemble of regularized logistic regression models was trained to map 

patient features from each 4-hour window to an estimate of clinical deterioration risk. From the 

development cohort, a single 4-hour window was randomly sampled for each hospitalization to 

train a logistic regression model. For hospitalizations in which the outcome occurred, only 

windows prior to the one before the outcome were used. The process was repeated 500 times, 

leading to an ensemble of 500 models, whose outputs were averaged to create a final 

prediction. Models were trained to predict whether a hospitalization would experience the 

primary outcome within five days of hospitalization. Additional details are described in 

eMethods 2 in Supplement. 

Internal Validation. Model discriminative performance was measured using the area under the 

receiver operating characteristics curve (AUROC) and the area under the precision-recall curve 

(AUPR). Models were evaluated from the first full window of data, with model predictions 

beginning in the window with a hospitalization’s first vital signs being recorded. The model aims 

to support clinical decision making prospectively during which a risk score is recomputed every 

4 hours and the care team decides whether or not to intervene once the hospitalization reaches 

a certain score. For this reason, all evaluations were performed at the hospitalization-level, 

rather than the 4-hour window-level (eMethods 2 in Supplement). Model calibration was 

assessed using reliability curves and expected calibration error (ECE) based on quintiles of 

predicted risk, i.e., the average absolute difference between predicted risk and observed 

risk.[35,36] Calibration was evaluated at the window-level to measure how well each prediction 

aligns with absolute risk. As a baseline, the model was compared to a common proprietary 

model, the Epic Deterioration Index,[37] in the internal validation cohort. 
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External Validation. Research teams at each collaborating institution applied the 

inclusion/exclusion criteria locally to identify an external validation cohort at their institution. 

Once cohorts were identified, local teams extracted the 9 clinical and demographic variables 

described above and saved their data to match a requested format that would allow application 

of identical preprocessing. In addition, teams applied the outcome definition to determine which 

hospitalizations experienced clinical deterioration. After preprocessing, each team 

independently applied the same model and evaluation code (eMethods 2 in Supplement) and 

reported results as summary statistics. As in the internal validation, the model was evaluated in 

terms of both discriminative and calibration performance in each external cohort. Internal 

performance and external performance were compared using a bootstrap resampling test by 

computing 95% confidence intervals (CIs) of the difference in performance, adjusted by 

Bonferroni correction. 

Assessing Model Generalizability Across Time and Demographic Subgroups. To further 

evaluate model performance across time, the AUROC and AUPR scores were measured for 

every quarter (three-month periods) between March 2020 and February 2021 within each 

validation cohort. Performance was also evaluated across different demographic subgroups as 

the mean (and standard deviation) of AUROC scores across cohorts for different subgroups of 

sex, age, race, and ethnicity (categorizations in eMethods 2 in Supplement). Within each 

cohort, subgroup performance was compared to overall performance using the same bootstrap 

resampling approach described above. 

Identifying Low-risk Patients.  To further examine how the model might be applied in hospitals 

for resource allocation, the model was evaluated for its ability to identify hospitalizations in 

which the patient who did not develop the outcome after 48 hours of observation. For each 

Page 10 of 42

https://mc.manuscriptcentral.com/bmj

BMJ

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Confidential: For Review Only

10

validation cohort, the percentage of hospitalizations correctly flagged as low risk was calculated 

for a negative predictive value (NPV) greater than or equal to 95% (i.e., of the hospitalizations 

flagged as low risk, 5% or fewer met the outcome). From this estimate, the number of bed days 

that could potentially be saved if these patients had been discharged at 48 hours was reported 

(eMethods 2 in Supplement). 

Implementation Details & Code Sharing Statement

All analyses were performed in Python 3.5.2[38] using the numpy,[39] pandas,[40,41] 

sklearn[42] packages. Code for data preprocessing and model evaluation were packaged, and 

each institution ran the same pipeline locally and independently. All code and documentation 

are available online at https://github.com/MLD3/M-CURES, (in a repository that will be made 

public upon publication) so that other institutions can validate and use the model. 

RESULTS

The development cohort included 35,040 hospitalizations between 2015 and 2019 at a single 

institution, of which 3,757 (10.7%) experienced the primary outcome (eTable 1 in Supplement). 

The internal validation cohort included 956 hospitalizations in which the patient had COVID-19, 

of which 206 (21.6%) experienced the primary outcome (Table 1). Compared to the 

development cohort, hospitalizations in the internal validation cohort were similar in age and sex 

but were more likely to be Black (19.6% vs. 11.3%) (eTable 1 in Supplement). Combined, the 

external validation cohorts consisted of 8,335 hospitalizations, of which 1,304 (15.6%) 

experienced the primary outcome. All external validation cohorts differed from the internal 

validation cohort in at least one demographic dimension (sex, age, race, and ethnicity) (Table 1; 

eTable 2 in Supplement). For example, the proportions of Hispanic or Latino patients were 

significantly higher, ranging 13.5%-29.0% vs. 3.6%; in four external cohorts there was a 

significantly larger proportion of very elderly patients (>85 yrs), with one institution skewing 
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Table 1. Characteristics of internal and external validation cohorts. We included all adult hospitalizations 
with a COVID-19 diagnosis between March 1, 2020 and February 28, 2021, from an internal validation cohort 
(MM) and 7 external validation cohorts (A-G) pertaining to 12 medical centers. Characteristics of the 
development cohort can be found in eTable 1 in Supplement. 

Institution MM A B C D E F G

Number of patients 887 2161 1252 1180 1009 909 747 555

Number of hospitalizations 956 2320 1320 1256 1073 965 794 607

Median age in years [IQR]   64 [52–75] 63 [50-76] 62 [50–73] 68 [56-79] 65 [53-76] 69 [58-80] 73 [59-84] 62 [48–75]

Age Group (%)
  [18, 25]
  (25, 45]
  (45, 65]
  (65, 85]
  >85

<25   
  129 (13.5)
374 (39.1)
365 (38.2)
  70   (7.3)

52 (2.2)
398 (17.2)
800 (34.5)
873 (37.6)
197   (8.5)

<25
225 (17.1)
518 (39.2)
497 (37.7)

57   (4.3)

<25
159 (12.7)
380 (30.3)
539 (42.9)
159 (12.7)

<25
159 (14.8)
358 (33.4)
435 (40.5)

97   (9.0)

<25  
77   (8.0)

327 (33.9)
412 (42.7)
145 (15.0)

<25
74   (9.3)

204 (25.7)
331 (41.7)
177 (22.3)

<25
114 (18.8)
215 (35.4)
184 (30.3)

74 (12.2)

Sex (%)
   Female
   Male

420 (43.9)
536 (56.1)

993 (42.8) 
1327 (57.2)

612 (46.3)
709 (53.7)

564 (44.9) 
692 (55.1)

533 (49.7) 
540 (50.3)

445 (46.1) 
520 (53.9)

363 (45.7) 
431 (54.3)

313 (51.6)
294 (48.4)

Race (%)
  White
  Black
  Asian
  Other/Unknown

649 (67.9)
187 (19.6)
  30   (3.1)  
  90   (9.4)

1364 (58.8)
190   (8.2)

80   (3.4)
686 (29.6) 

733 (55.6)
332 (25.2)
  29   (2.2)
226 (17.1)

935 (74.4)
123   (9.8)

51   (4.1)
147 (11.7)

589 (54.9)
234 (21.8)

39   (3.6)
211 (19.7)

636 (65.9)
135 (14.0)
<25
168 (17.4) 

584 (73.6)
49   (6.2)
39   (4.9)

122 (15.4)

214 (35.3)
62 (10.2)

135 (22.2)
196 (32.3)

Ethnicity (%)
  Hispanic or Latino
  Not Hispanic or Latino
  Other/Unknown

34   (3.6)
883 (92.4)

39   (4.1)

587 (25.3)
1569 (67.6)

164   (7.1)

379 (28.7)
915 (69.3)

26 (1.8)

350 (27.9)
875 (69.7)

31 (2.5)

210 (19.6)
841 (78.4)
<25

138 (14.3)
783 (81.1)

44   (4.6)

107 (13.5)
637 (80.2)

50   (6.3)

176 (29.0)
414 (68.2)
<25

Median LOS in hours [IQR] 138 
[83-261]

160 
[95-284]

141 
[96-257]

136 
[93-235]

167 
[100-287]

143 
[92-234]

154 
[95-256]

183 
[113-324]

Outcome ever (%)
  Death
  MV
  IV
  HHFNC

60  ( 6.3)
98 (10.3)
87   (9.1)

218 (22.4)

197   (8.5)
259 (11.2)
299 (12.9)
132   (5.7)

108   (8.2)
142 (10.7)
152 (11.5)
263 (19.9)

125 (10.0)
135 (10.7)
139 (11.1)
121   (9.6)

96   (8.9)
116 (10.8)
125 (11.6)

95   (8.9)

93   (9.6)
69   (7.2)
65   (6.7)
99 (10.3)

123 (15.5)
69    (8.7)
74   (9.3)

106 (13.4)

42   (6.9)
52   (8.6)
70 (11.5)

101 (16.6)

Primary Outcome <= 5 days 206 (21.6) 311 (13.4) 249 (18.8) 206 (16.4) 155 (14.4) 136 (14.1) 155 (19.5) 92 (15.2)

Reason for primary outcome 
(% of outcomes)
  Death
  MV
  IV
  HHFNC

5   (2.4)
20   (9.7)

9   (4.4)
172 (83.5)

34 (10.9)
89 (28.6)
95 (30.5)
93 (29.9)

4   (1.6)
25 (10.0)
18   (7.2)

202 (81.1)

21 (10.2)
52 (25.2)
33 (16.0)

100 (48.5)

16 (10.3)
52 (33.5)
26 (16.8)
61 (39.4)

25 (18.4)
22 (16.2)
10   (7.4)
79 (58.1)

37 (23.9)
18 (11.6)
21 (13.5)
79 (51.0)

2   (2.2)
8   (8.7)

16 (17.4)
66 (71.7)

Acronyms: IQR, interquartile range; LOS, Length-of-Stay; MV, Mechanical Ventilation; IV, Intravenous Vasopressors, HHFNC, Heated High-Flow Nasal 
Cannula. 
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12

much older (22.3% vs. 7.3%). Externally, primary outcome rates varied from 13.4% to 19.5%. In 

addition, the reason for meeting the primary outcome varied significantly across hospitals 

(eTable 3 in Supplement). 

The parameters of the final learned model are visualized in eFigure 2 in Supplement. The 

model demonstrated good overall performance in both internal and external validation. Applied 

to the internal validation cohort, it substantially outperformed the Epic Deterioration Index, 

achieving an AUROC of 0.80 (95% CI: 0.77, 0.84) vs. 0.66 (95% CI: 0.62, 0.70), AUPR of 0.55 

(95% CI: 0.48, 0.63) vs. 0.31 (95% CI: 0.26, 0.36) and ECE of 0.01 (95% CI: 0.00, 0.02) vs. 

0.31 (95% CI: 0.30, 0.32) (eFigure 3 in Supplement). External validation resulted in similar 

performance, with AUROC ranging 0.77-0.84, AUPR ranging 0.34-0.57, and ECE ranging 0.02-

0.04 (Figure 1). The AUROC across external institutions did not differ significantly from the 

internal validation AUROC (eTable 4 in Supplement) and had an average of 0.81. 

Across time (Figure 2), the model performed consistently in all validation cohorts throughout the 

4 quarters, with AUROC > 0.7 and AUPR > 0.2 in most cases. The major exception was during 

Jun-Aug 2020, where compared to the overall performance of each cohort, two cohorts had a 

drop in AUROC (from 0.79 to 0.57 and from 0.77 to 0.58) and one cohort had a drop in AUPR 

(from 0.42 to 0.17), but the differences were not statistically significant (eTable 5 in 

Supplement). Across demographic subgroups, the model displayed consistent discriminative 

performance in terms of AUROC (Figure 3); subgroup performance did not vary significantly 

from the overall performance when evaluated within specific sex, age, race, ethnicity 

subpopulation (eTable 6 in Supplement). In one external cohort, the model performed 

significantly better on Asian patients compared to White patients (eTable 7 in Supplement). 
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In terms of resource allocation and planning, the model was able to accurately identify low-risk 

patients after 48 hours of observation in both the internal and external cohorts. At best, the 

model could correctly triage up to 41.6% of low-risk COVID-19 hospitalizations to lower acuity 

care, potentially saving 5.2 bed days for each early discharge (Figure 4). The model achieved 

this performance level while maintaining a NPV of at least 95%, i.e., of the hospitalizations 

flagged as low risk, 5% or fewer met the outcome. 

DISCUSSION

Accurate predictions of patient deterioration can assist clinicians in risk assessment over a 

patient’s hospitalization by identifying who might be in need of ICU-level care in advance of 

deterioration.[43–45] In surge scenarios, hospitals might use predictions to manage limited 

resources (e.g., beds) by triaging low-risk individuals to lower-acuity care. To this end, we 

developed an open-source patient risk stratification model that uses 9 routinely collected 

demographic and clinical variables from the EHR for prediction of clinical deterioration. 

Compared to previous deterioration indices that have failed to generalize across multiple patient 

cohorts,[22,46] the model achieved good performance when externally validated in 12 different 

medical centers. External validation can highlight blind spots when the validation cohort differs 

substantially from the development cohort, including clinical conditions (e.g., COVID-19 is a new 

disease), demographics (e.g., race and ethnicity), clinical workflows, and hospital sizes. The 

model’s strong generalizability may be attributed in part to a separate but related development 

cohort for training, the clinician-informed data-driven approach to feature selection and a 

rigorous approach to internal validation. 

We also evaluated performance on specific demographic subgroups (based on age, sex, race, 

and ethnicity) and across time.[47,48] Ensuring consistent performance across demographic 

subgroups can help mitigate biases against certain vulnerable populations.[49–51] Despite an 
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underrepresentation of Hispanic/Latino patients in the development institution relative to the 

external cohorts, model performance in this subgroup was consistent with non-Hispanic/Latino 

performance. At several points throughout the pandemic, changes in the patient population 

presenting with severe disease and changes to clinical workflows, treatments, and outcomes 

could have a substantial impact on how risk models may perform.[52–57] These changes may 

have resulted in a modest model performance decline at two sites in the summer of 2020, as 

specified in the results. However, performance then stabilized in the fall and winter surges, 

which may indicate a convergence in treatment for COVID-19. 

Unlike previous work on the external validation of patient risk stratification models,[21] our 

approach did not rely on sharing data across multiple sources. Instead, we developed the model 

using data from a single institution and then shared code with external institutions who then 

applied the model to their data using their own computing platforms. This approach has many 

benefits. Sharing and aggregating data containing protected health information (e.g., dates) 

from 12 healthcare systems into a single repository would have required extensive data use 

agreements and additional computational infrastructure and added substantial time delays to 

model evaluation. Maintaining patient data internally further mitigates the potential risk of data 

access breaches. In addition to distributing the workload and evaluation process, this approach 

introduced fewer errors because each team was most familiar with their own data and thus less 

likely to make incorrect assumptions when identifying the cohort, model variables, and 

outcomes.

The success of this paradigm relied on several design decisions early in the process as well as 

continued collaboration throughout. First, the number of variables used by the model was 

limited, ensuring that all variables could be reliably identified and validated at each institution. 

Beyond model inputs, it was equally crucial to validate inclusion/exclusion criteria and outcome 
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definitions. To this end, we worked closely with both clinicians and informaticists from each 

institution to establish accurate definitions. Finally, we developed a code workflow with common 

input/output formats and shared detailed documentation. This in turn allowed for quick iteration 

among institutions, facilitating debugging. 

The current analysis should be interpreted in the context of its study design. Importantly, a 

single EHR vendor (Epic Systems) was used across all medical centers. This commonality 

between institutions facilitated model implementation. Despite a common EHR vendor, 

however, local implementation of each EHR system requires local institutional knowledge, which 

was a feature of our multi-site team approach. To further ensure the model can generalize to 

more institutions, researchers should focus on validating the model in healthcare systems 

utilizing different EHR systems. Moreover, the model was developed and validated on adults 

with respiratory distress and a diagnosis of COVID-19 in the US. The model may or may not 

apply to individuals with respiratory distress without a COVID-19 diagnosis, or in countries with 

fewer healthcare resources. Furthermore, when estimating ‘potential bed days saved’ resulting 

from triaging low-risk patients, we assumed that those patients could be safely discharged at 48 

hours. However, there might be other reasons that a patient may need to remain in the hospital, 

preventing early discharge. Finally, the composite outcome we considered was developed early 

in the pandemic based on clinical workflows and treatments at the time. As treatments evolve, 

outcome definitions might change which could affect model performance. Without 

implementation into clinical practice, it is unknown whether the use of such a model has an 

impact on clinical or operational outcomes such as early discharge planning. 

This study represents an important step toward building and externally validating models for 

identifying individuals at both high and low risk of deteriorating within their hospital stay. The 

model transferred across a variety of institutions, subgroups and time periods. Our method for 
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external validation alleviates potential concerns surrounding patient privacy by forgoing the 

need for data sharing, while still allowing for realistic and accurate evaluations of a model within 

different patient settings. Thus, the implications are two-fold; the work here can help develop 

models for patient deterioration within a single institution and can promote external validation 

and multi-center collaborations without the need for data sharing agreements. 

Summary Box 

What is already known on this topic? 

 Risk stratification models can augment clinical care and help hospitals better plan and 

allocate resources in healthcare settings. 

 A useful risk stratification model should generalize across different patient 

populations, though generalization is often overlooked when developing models due 

to the difficulty of sharing patient data for external validation.  

 Models that have been externally validated have failed to generalize to populations 

that differed from the cohort on which the models were built.

What this study adds

 Our study presents a paradigm for model development and external validation without 

the need for data sharing, while still allowing for quick and thorough evaluations of a 

model within different patient populations.

 Our study suggests the use of data-driven feature selection combined with clinical 

judgement can help identify meaningful features that allow the model to generalize 

across a variety of patient settings. 
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FIGURE LEGENDS

Figure 1. Model performance across the internal and external validation cohorts. We measure 

discriminative performance in (A) ROC curves and (B) PR curves. Model calibration is shown in 

(C) Reliability plots based on quintiles of predicted scores. Results with 95% confidence 

intervals are summarized in (D).  The internal validation cohort at Michigan Medicine (MM) is 

bolded, while the external validation cohorts A-G are shown in different colors. Overall, 

discriminative performance and calibration performance was good across institutions. The 

AUPR varied most in part due to variation in outcome rates. 

Figure 2. Model discriminative performance (AUROC and AUPR scores) over the year broken 

down by quarter. The table denotes the legend and the number of hospitalizations included 

within each cohort in each quarter along with the percentage that met the outcome (in 

parentheses). The discriminative performance varied most in the second quarter during which 

there were the fewest number of patients who met the primary outcome. The AUROC across 

institutions varied little by the fourth quarter or third wave of the pandemic. 

Figure 3. Model discriminative performance (AUROC scores) evaluated across demographic 

subgroups. Values are macro-average performance across institutions (error bars are ± one 

standard deviation). Across subgroups the AUROC did not vary significantly from the overall 

performance.

Figure 4. The model can be used to identify potential candidates for early discharge after 48 

hours of observation. Using a decision threshold that achieves a negative predictive value of 

greater or equal to 95%, both the proportion of patients that could be discharged early (top) and 

the bedtime savings (in days), normalized by the number of correctly discharged 
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hospitalizations at each institution (bottom), are depicted. Results are computed over 1000 

bootstrap replications.
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Figure 1. Model performance across the internal and external validation cohorts. We measure discriminative performance in (A) 
ROC curves and (B) PR curves. Model calibration is shown in (C) Reliability plots based on quintiles of predicted scores. Results with 
95% confidence intervals are summarized in (D).  The internal validation cohort at Michigan Medicine (MM) is bolded, while the 
external validation cohorts A-G are shown in different colors. Overall, discriminative performance and calibration performance was 
good across institutions. The AUPR varied most in part due to variation in outcome rates.  
 

(A) 

 

(B) 

 

(C) 

 

(D) 
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Figure 2. Model discriminative performance (AUROC and AUPR scores) over the year broken 
down by quarter. The table denotes the legend and the number of hospitalizations included 
within each cohort in each quarter along with the percentage that met the outcome (in 
parentheses). The discriminative performance varied most in the second quarter during which 
there were the fewest number of patients who met the primary outcome. The AUROC across 
institutions varied little by the fourth quarter or third wave of the pandemic.  
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Figure 3. Model discriminative performance (AUROC scores) evaluated across demographic 
subgroups. Values are macro-average performance across institutions (error bars are ± one 
standard deviation). Across subgroups the AUROC did not vary significantly from the overall 
performance. 
 

 
* No error bar is shown for the 18-25 subgroup because only a single institution had enough positive 
cases in this subgroup to calculate the AUROC score.  
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Figure 4. The model can be used to identify potential candidates for early discharge after 48 
hours of observation. Using a decision threshold that achieves a negative predictive value of 
greater or equal to 95%, both the proportion of patients that could be discharged early (top) and 
the bedtime savings (in days), normalized by the number of correctly discharged 
hospitalizations at each institution (bottom), are depicted. Results are computed over 1000 
bootstrap replications. 
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2 

 
eMethods 1. Details of Internal and External Validation Cohorts.  

 
Inclusion Criteria.  

● Michigan Medicine (MM) 
o COVID Diagnosis: To identify COVID-19, we included hospitalizations with 

either (i) a positive laboratory test or (ii) a recorded ICD-10 code for COVID-19 
and the absence of a negative laboratory test.  

o Respiratory Distress: Adult inpatient hospitalizations in which the patient 
required supplemental oxygen.  

● University of California, San Francisco (UCSF) 
o COVID diagnosis: Either “Detected” or “Indeterminate” covid test result, or when 

patient flagged as having covid from infection control status table. 
o Respiratory Distress: Any patient that had value for O2 device (that was not 

room air) OR (O2 flow rate >0) OR (FiO2 > 21) 
● University of Texas, Southwestern (UTSW) 

o COVID diagnosis: We included all COVID-19 infections associated with hospital 
encounters as retrieved from the COVID_19_HSP_INFECTIONS table. Patients 
are accessible in the table as part of the COVID-19 Hospital Infections registry 
where patients are added if they have an active or presumed COVID-19 infection 
flag during the admission. 

o Respiratory Distress: Includes all patients requiring supplemental oxygen 
during admission identified by flowsheet documentation of any oxygen device 
other than “room air”, any ventilator settings, any O2 flow >0, or O2 
concentration >21%. 

● Mass General Brigham (MGB) 
o COVID diagnosis: We included hospitalizations where the patient had an active 

COVID-19 or CoV Presumed infection flag at some point during the admission. 
At MGB, COVID-19 infection flags are automatically added after a positive 
COVID-PCR test or positive BinaxNOW now antigen assay. CoV-Presumed is 
applied in the following scenarios 1) symptoms and positive serological assay for 
SARS-CoV-2, 2) positive antigen assay when symptoms are documented, 
excluding the BinaxNOW assay; 3) PCR resulting as inconclusive, presumptive 
positive or NEG late signal (reported only at one institution on the Cepheid 
GeneXpert assay); 4) positive PCR or BinaxNOW assay in an individual who is 
between 91-180 days after initial diagnosis of COVID-19 or 5) at the discretion of 
Infection Control.   

o Respiratory Distress: Adult inpatient hospitalizations in which the patient 
required supplemental oxygen. Supplemental oxygen was defined as having 
flowsheet documentation of an oxygen device other than “None (Room Air)”.   
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Outcome Definition. Outcome labels were implemented by each institution individually, as 
hospitalization-level data were not shared across sites. An initial definition was developed by 
MM and then adapted by each individual institution in order to ensure that the same outcomes 
were captured accurately given differences in care processes and informatics infrastructure 
across institutions. Specific implementation details are summarized below. In general, MV and 
HHFNC are defined based on clinical events recorded in flowsheets; vasopressor are defined 
using keyword searches over medication administration records. While the MV and vasopressor 
definitions are mostly consistent, the HHFNC definition is not identical at each institution due to 
differences in workflows, though they all correspond to an elevated level of care. Specifically, at 
some institutions, we have an additional criterion of O2 flow rate ≥ 15L, because at these 
institutions, nasal cannula with low O2 flow rates were used on the floor but are recorded in the 
same way as nasal cannula with higher flow rates that are used in the ICU. 
 

● MM 
o IV vasopressors: Vasopressors are defined by medication administration 

records (MAR); we performed a keyword search on the drug name of the MAR 
for the following well-recognized vasopressors: ‘norepinephrine’ (aka ‘levophed’), 
‘epinephrine’, ‘dopamine’, ‘vasopressin’, ‘phenylephrine’ (aka ‘neo-synephrine’, 
‘neosynephrine’), ‘angiotensin’, and further filtered administrations with route of 
‘IV’ and notgiven = False.  

o Mechanical Ventilation: any of the following flowsheet event:  
▪ “UM IP R CMV START / STOP [Invasive Ventilation Start / Stop]” 

(313141) with value of “Start” 
▪ “UM IP R VENT MODE [Vent Mode]” (315640) with a few specific values 
▪ “UM ED R OXYGEN DEVICE [O2 Device]” 307923 with value ‘Ventilator - 

Emergency Department’ or ‘Mechanical Ventilation - UH/CVC’ 
o HHFNC: recorded flowsheet event of “UM ED R OXYGEN DEVICE [O2 Device]” 

(307923) with value ‘Nasal Cannula - Heated High Flow’ 
● UCSF 

o IV vasopressors: Med admin route as (Intravenous, or continuous infusion, or 
continuous IV infusion, or central venous line induction) and following 
medications: Dobutamine, Dopamine, Ephedrine, Epinephrine, Milrinone, 
Norepinephrine, Phenylephrine, Vasopressin.  

o Mechanical Ventilation: After excluding patients who had MV on admission 
(included string “present_on_admission” in values related to intubation), first time 
where there was a value for “R RT VENT MODE” that was not null 

o HHFNC: Either Nasal Cannula or HFNC values for oxygen delivery device with 
flow rates > 15 
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● UTSW 
o IV vasopressors: Includes all MAR administration of the pressors below based 

on medication order ID only if route is “intravenous”, medication was given (i.e., 
excludes the following MAR actions: 'Paused','Stopped','Canceled 
Entry','Held','HELD BY PROVIDER','Missed'), and rate is >0. 
 - '261095', '732983', '249321', '272111' --vasopressin 

- '240032', '240493', '12588', '732981' --norepinephrine 
- '3398', '250088', '244667', '3400', '266933', '735102', '250565', '250964',  

'732978' --epinephrine 
- '118907','232425','232428','19051' --dobutamine 
- '31759', '231514' --milrinone 
- '232499', '232498', '232500' --dopamine 
- '240509', '7429', '246371', '732982', '240041','734102' --phenylephrine 
- '233968', '230498', '3382' --ephedrine 

o Mechanical Ventilation: Includes flowsheet documentation of ventilator mode 
('UTSW R ED VENTILATOR MODE') or a ventilator FiO2 ('UTSW R ED 
VENTILATOR FIO2 (%)’) 

o HHFNC: Includes flowsheet documentation of an oxygen device of “high-flow 
nasal cannula” with an O2 flow rate cutoff > 15. 

● MGB 
o IV vasopressors: Defined as a documented MAR administration of a 

vasopressor with an associated MAR action indicating that the medication was 
given (i.e., excluding actions such as “missed” and “held”). Restricted to MAR 
actions with a documented route of “Intravenous” and a non-zero dose. 
Vasopressors were defined using pharmaceutical subclasses of Cardiovascular 
Sympathomimetic - Beta-Adrenergic Agonists, Antidiuretic and Vasopressor 
Hormones, Cardiovascular Sympathomimetics, and Renin-Angiotensin-
Aldosterone System (RAAS) Hormones 

o Mechanical Ventilation: Defined as flowsheet documentation of a ventilator 
mode of ‘AC/VC’, ‘AC/PC’, ‘SIMV/PC’, ‘ASV’, ‘AC/PRVC’, ‘PC-PSV’, ‘AC/VG’, 
‘SIMV/PRVC’, ‘SIMV/VC’, or ‘HFJV’ 

o HHFNC: Defined as flowsheet documentation of an oxygen device of “High Flow 
Nasal Cannula” or “High flow face mask”. No additional O2 rate cutoffs were 
used.  
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eMethods 2. Additional Details on Model Development and Validation.  

 

Variable Selection. First, clinicians reviewed the potential list of EHR variables and removed 
those which may potentially leak the outcome or themselves are model scores, such as SOFA 
scores. From here, a model was trained on the remaining EHR variables using the development 
cohort. EHR variables were sorted based on their permutation importance as measured on the 
development set.31,32,59 Variables were added to a set of features one by one, based on their 
permutation importance, and the model was retrained using just the subset of features. Each 
retrained model was then evaluated on a small subset of COVID-19 patients from Michigan 
Medicine (which were subsequently removed from Michigan Medicine’s internal validation 
cohort). Variables were added until the performance on the subset of COVID-19 patients did not 
increase, resulting in 9 total variables.  
 
External Validation Details. Master Table description 
 
Demographic Subgroups. We considered the following demographic subgroups.  

● Age groups are defined by pre-specified bins: 18-25, 26-45, 46-65, 66-85, >85 
● Sex: Female, Male 
● Race: Asian, Black, White, Other (which includes: American Indian or Alaskan, Native 

Hawaiian or Other Pacific Islander, Other, Unknown, Patient Refused, More than 1). 
● Ethnicity: Hispanic or Latino, Non–Hispanic or Latino, Unknown 

 
Model Training. The goal of the primary prediction task was to identify high-risk patients who 
deteriorate quickly. Thus, we labeled a hospitalization based on whether or not the patient 
experienced the composite outcome within five days of hospitalization. We used all 4-hour 
windows from the time of the first vital sign up until (but not including) either i) 5 days after the 
first vital sign was measured or ii) the window in which the individual experienced the outcome 
or was discharged (whichever comes first). We randomly sampled one window per individual 
hospitalization to include in the training set, such that no individual was represented more than 
any other. We repeated this process and created 500 different training sets, leading to an 
ensemble of 500 regularized logistic regression models, whose outputs were averaged to create 
a final prediction. The model hyperparameter (L2 regularization strength) was selected using 5-
fold cross-validation on the first model and applied to the remaining models in the ensemble. 
 
Primary Use-Case Hospitalization-Level Evaluation. To evaluate on a hospitalization level, 
we swept the decision threshold and identified individuals who exceeded that threshold prior to 
the endpoint (when outcome is met or when the 5-day mark is reached) as high risk and low risk 
otherwise. This approach has been used in past work and avoids biasing our evaluations to 
patient encounters with more windows [Henry et al. 2015, Oh et al. 2018, Singh et al. 2020]. 
Additionally, at inference time, to ensure the model is not biased by incomplete data, we 
removed all windows in which a complete 4-hour window of data was unavailable. 
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Secondary Use Case Evaluation. To evaluate models for the secondary use-case, (i.e., 
triaging low-risk patients), we consider a situation in which a triaging decision is made 48 hours 
after the patient’s first vital sign is measured. Accordingly, we excluded patient hospitalizations 
that were no longer eligible for potential triaging at 48 hours (those who met the composite 
outcome or were discharged within 48h of the patient’s first vital sign measurement). For each 
hospitalization, we make the triaging decision based on the average model prediction within the 
first 48 hours (excluding incomplete windows). A hospitalization’s risk score is defined as their 
average model score of each complete window within the first 48 hours. To measure the 
number of hospitalizations we can correctly triage to lower acuity care, we calculated the 
maximum percentage of hospitalizations correctly flagged as low risk (i.e., those with the lowest 
average predicted score) where the negative predictive value (NPV) is greater than or equal to 
0.95 (i.e., of the hospitalizations flagged as low risk, at least 95% will not meet the outcome 
during the hospital stay). Moreover, for these hospitalizations, we calculated the potential 
number of days saved, normalized by the total number of correct discharges, if the flagged 
individuals were discharged from the hospital at 48 hours into their stay. We repeated the 
procedure on 1,000 bootstrapped samples of each hospital’s cohort and visualized the 
distributions of potential discharge proportions and potential bed days savings and reported the 
median values from the bootstrapped results. 
 

Confidence Intervals. For all results, 95% confidence intervals (CIs) were generated using 
1,000 bootstrapped samples of each cohort. 
 
 
eText. Additional Results and Discussion 

● A well-validated outcome definition is crucial to external validation. If incorrectly coded, it 
does not matter how good the model is, evaluation metrics will suffer. While in-hospital 
mortality is easy to measure, our composite outcome which represents ICU-level care is 
encoded using proxies such as MV, HHFNC, and IV vasopressors. How these data are 
recorded in the EHR differed across hospitals.  

● Based on existing and new connections formed between different institutions and the 
relevant access to data each institution has, we identified the sites at which we can 
rapidly perform the external validation. We first provided a specification document to 
each institution that describes a unified format containing all information needed to 
perform the evaluation. Researchers at each institution performed their own cohort data 
extraction from EHR databases and outcome definitions and collated everything into a 
unified format. Model parameters for each of the 500 models along with the necessary 
code (including a standard feature processing procedure) were packaged into a 
transferable computer program by MM, which was sent to each institution. Researchers 
at each institution then ran the program on their own infrastructure and transferred back 
only model results; no identifiable information was shared. This procedure was done 
quickly (within a month) and involved less risk of PHI-related issues compared to sharing 
raw patient data (which involves signing data use agreements with multiple institutions).  
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eTable 1. Characteristics of the development cohort and comparison with the internal 

validation cohort. Both cohorts are from Michigan Medicine. Statistically significant differences 
(at α=0.001 with a Bonferroni correction for multiple hypotheses) are denoted by *. 

Institution Development Internal Validation p-value 

Number of patients 24,419 887 - 

Number of hospitalizations 35,040 956 - 

Median age in years [IQR] 63 [51-74]   64 [52–75] - 

Age Group (%) 

  [18, 25] 

  (25, 45] 

  (45, 65] 

  (65, 85] 

  >85 

 

1,275   (3.6) 

5,114 (14.6) 

13,060 (37.3) 

13,064 (37.3) 

2,432   (6.9) 

 

17 (1.8)   

  129 (13.5) 

374 (39.1) 

365 (38.2) 

  70   (7.3) 

0.02 

Sex (%) 

   Female 

   Male 

 

16,877  (48.2) 

18,163  (51.8) 

 

420 (43.9) 

536 (56.1) 

0.01 

Race (%) 

  White 

  Black 

  Asian 

  Other/Unknown 

 

29,402 (83.9) 

3,954 (11.3) 

625   (1.8) 

1,059   (3.0) 

 

649 (67.9) 

187 (19.6) 

  30   (3.1)   

  90   (9.4) 

<0.0001* 

  

Ethnicity (%) 

  Hispanic or Latino 

  Not Hispanic or Latino 

  Other/Unknown 

 

- 

- 

- 

 

34   (3.6) 

883 (92.4) 

39   (4.1) 

- 

Median LOS in hours [IQR] 97  [55–173] 138  [83–261] - 

Outcome ever (%) 

  Death 

  MV 

  IV Vaso 

  HHFNC 

 

963  (2.7) 

2,341  (6.7) 

1,320  (3.8) 

1,858  (5.3) 

 

60  ( 6.3) 

98 (10.3) 

87   (9.1) 

218 (22.4) 

<0.0001* 

Primary Outcome <= 5 days 3,757  (10.7) 206 (21.6) <0.0001* 

Reason for composite outcome (% of outcomes) 

  Death 

  MV 

  IV Vaso 

  HHFNC 

 

252    (6.7) 

1,737  (46.2) 

454  (12.1) 

1,314  (35.0) 

 

5   (2.4) 

20   (9.7) 

9   (4.4) 

172 (83.5) 

<0.0001* 

Acronyms: IQR, interquartile range; LOS, Length-of-Stay; MV, Mechanical Ventilation; IV, Intravenous Vasopressors, HHFNC, 

Heated High-Flow Nasal Cannula.   
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eTable 2. P-values for pairwise comparisons of characteristics between the internal 

validation cohort and each external validation cohort. We applied chi-square tests for 
homogeneity to compare categorical demographic variables. Every external validation cohort 
differed in at least one demographic dimension. Statistically significant differences (at α=0.001 
with a Bonferroni correction for multiple hypotheses) are denoted by *.  

Characteristic MM vs A MM vs B MM vs C MM vs D MM vs E MM vs F MM vs G 

Sex 0.6 0.3 0.6 0.01 0.3 0.5 0.003 

Age Group 0.02 0.009 3e-6* 0.09 5e-11 3e-21* 2e-5* 

Race 2e-43* 3e-10* 1e-9* 4e-11* 2e-7 2e-16* 2e-70* 

Ethnicity 2e-51* 1e-52* 2e-49* 4e-28* 1e-15 1e-14* 1e-45* 

Has Outcome (Ever) 7e-36* 0.05 4e-14* 8e-14* 4e-8* 2e-12* 0.03 

Has Primary Outcome 6e-9* 0.1 0.002 3e-5* 2e-5* 0.3 0.002 

Acronyms: MM, Michigan Medicine.   
 
 
eTable 3. P-values for pairwise comparisons of the reasons for meeting the composite 

outcome, between the internal validation cohort and the development cohort, as well as 

between the internal cohort and each external validation cohort. We applied chi-square 
tests for homogeneity to compare the reason for outcome. Statistically significant differences (at 
α=0.006 with a Bonferroni correction for multiple hypotheses) are denoted by *.  

Reason for 
Outcome MM vs DEV MM vs A MM vs B MM vs C MM vs D MM vs E MM vs F MM vs G 

p-value 2e-41* 3e-30* 0.7 1e-11* 2e-15* 4e-7* 9e-12* 0.007 

Acronyms: MM, Michigan Medicine; DEV, Development cohort.   
 
 
eTable 4. Estimated 95% confidence intervals of the performance difference between the 

internal validation cohort and each external validation cohort. The difference is significant if 
the interval does not overlap with zero (denoted by *).  

Institution MM vs A MM vs B MM vs C MM vs D MM vs E MM vs F MM vs G 

Difference 
in AUROC [-0.05, 0.03] [-0.08, 0.02] [-0.06, 0.04] [-0.04, 0.08] [-0.08, 0.01] [-0.02, 0.09] [-0.03, 0.09] 

Difference 
in AUPR [0.04, 0.23] * [-0.13, 0.08] [-0.01, 0.19] [0.04, 0.25] * [-0.01, 0.21] [0.03, 0.24] * [0.10, 0.32] * 

Acronyms: MM, Michigan Medicine; AUROC, Area Under the Receiver Operating Characteristic; AUPR: Area Under the Precision 

Recall Curve.   
 
 

Page 39 of 42

https://mc.manuscriptcentral.com/bmj

BMJ

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Confidential: For Review Only

 

9 

eTable 5. Estimated 95% confidence intervals (99.8% CIs with Bonferroni correction) of 

the performance difference during a specific time period relative to overall performance, 

within each validation cohort. No difference is statistically significant (the intervals all overlap 
with zero).  

Institution MM A B C D E F G 

Mar ’20 – May ’20 [-0.03, 0.16] [-0.08, 0.06] [-0.01, 0.18] [-0.10, 0.05] [-0.12, 0.11] [-0.06, 0.10] [-0.10, 0.10] [-0.13, 0.22] 

Jun ’20 – Aug ’20 [-0.34, 0.20] [-0.36, 0.14] [-0.19, 0.08] [-0.55, 0.18] [-0.60, 0.20] [-0.22, 0.16] [-0.71, 0.15] [-0.23, 0.13] 

Sept ’20 – Nov ‘20 [-0.18, 0.04] [-0.08, 0.13] [-0.12, 0.10] [-0.11, 0.17] [-0.39, 0.18] [-0.20, 0.19] [-0.19, 0.19] [-0.30, 0.13] 

Dec ’20 – Feb ‘21 [-0.13, 0.11] [-0.10, 0.09] [-0.08, 0.07] [-0.09, 0.11] [-0.09, 0.14] [-0.14, 0.07] [-0.15, 0.16] [-0.09, 0.16] 

Acronyms: MM, Michigan Medicine.  
 
eTable 6. Estimated 95% confidence intervals (99.8% CIs with Bonferroni correction) of 

the performance difference of each demographic subgroup relative to overall 

performance, within each validation cohort. No subgroup is significantly different from overall 
performance in terms of AUROC.  

Institution MM A B C D E F G 

Sex:F [-0.14, 0.11] [-0.07, 0.10] [-0.13, 0.06] [-0.10, 0.10] [-0.08, 0.14] [-0.10, 0.12] [-0.13, 0.12] [-0.19, 0.10] 

Sex:M [-0.09, 0.08] [-0.09, 0.07] [-0.05, 0.10] [-0.10, 0.07] [-0.14, 0.08] [-0.09, 0.08] [-0.12, 0.11] [-0.12, 0.13] 

Age:17-25 N/A [-0.61, 0.22] N/A N/A N/A N/A N/A N/A 

Age:25-45 [-0.25, 0.11] [-0.03, 0.14] [-0.16, 0.12] [-0.19, 0.15] [-0.13, 0.21] [-0.28, 0.17] [-0.16, 0.23] [-0.44, 0.26] 

Age:45-65 [-0.15, 0.08] [-0.13, 0.06] [-0.05, 0.11] [-0.09, 0.13] [-0.20, 0.13] [-0.14, 0.10] [-0.15, 0.15] [-0.16, 0.14] 

Age:65-85 [-0.07, 0.13] [-0.07, 0.09] [-0.12, 0.06] [-0.11, 0.08] [-0.18, 0.11] [-0.11, 0.11] [-0.12, 0.13] [-0.17, 0.15] 

Age:85-1000 [-0.13, 0.20] [-0.19, 0.10] [-0.49, 0.18] [-0.21, 0.14] [-0.27, 0.20] [-0.14, 0.13] [-0.27, 0.10] [-0.22, 0.18] 

Race:Asian [-0.58, 0.24] [-0.16, 0.16] [-0.63, 0.20] [-0.19, 0.15] [-0.01, 0.27] N/A [-0.10, 0.28] [-0.16, 0.16] 

Race:Black [-0.09, 0.15] [-0.12, 0.16] [-0.12, 0.11] [-0.23, 0.14] [-0.09, 0.21] [-0.27, 0.14] [-0.41, 0.21] [-0.63, 0.17] 

Race:Other [-0.32, 0.20] [-0.10, 0.09] [-0.10, 0.12] [-0.32, 0.15] [-0.09, 0.18] [-0.03, 0.16] [-0.33, 0.08] [-0.14, 0.15] 

Race:White [-0.12, 0.07] [-0.09, 0.07] [-0.09, 0.08] [-0.06, 0.10] [-0.19, 0.07] [-0.09, 0.07] [-0.07, 0.12] [-0.18, 0.15] 

Ethnicity:Hispanic [-0.60, 0.23] [-0.06, 0.10] [-0.11, 0.09] [-0.08, 0.12] [-0.12, 0.16] [-0.02, 0.18] [-0.29, 0.16] [-0.12, 0.18] 

Ethnicity:Non-Hispanic [-0.08, 0.08] [-0.06, 0.06] [-0.06, 0.08] [-0.10, 0.08] [-0.14, 0.08] [-0.11, 0.07] [-0.10, 0.10] [-0.14, 0.12] 

Ethnicity:Unknown [-0.39, 0.24] [-0.20, 0.11] [-0.39, 0.20] [-0.46, 0.22] N/A [-0.10, 0.20] [-0.40, 0.20] N/A 

Acronyms: MM, Michigan Medicine; F, Female; M, Male; AUROC, Area Under the Receiver Operating Characteristic.
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eTable 7. Estimated 95% confidence intervals (99.8% CIs with Bonferroni correction) of 

the performance difference between White and each other race subgroup, within each 

validation cohort. The difference is significant if the interval does not overlap with zero 
(denoted by *). 

Institution MM A B C D E F G 

W-A [-0.26, 0.53] [-0.19, 0.13] [-0.18, 0.45] [-0.17, 0.19] [-0.36, -0.04] * N/A [-0.25, 0.08] [-0.21, 0.20] 

W-B [-0.17, 0.06] [-0.18, 0.11] [-0.10, 0.12] [-0.12, 0.22] [-0.26, 0.03] [-0.13, 0.23] [-0.17, 0.36] [-0.17, 0.66] 

W-O [-0.20, 0.30] [-0.12, 0.07] [-0.13, 0.08] [-0.14, 0.22] [-0.28, 0.00] [-0.17, 0.02] [-0.02, 0.39] [-0.22, 0.15] 
Acronyms: MM, Michigan Medicine; A, Asian; B, Black; O, Other races; W, White. 

 

 

 

eFigure 1. Measurement frequency of patient heart rate throughout different times of the 

day, in the development cohort (Michigan Medicine, 2015-2019). Based on the empirical 
measurement frequency of important vital signs, we defined 4-hour time windows with respect 
to time points of a day at 1am, 5am, 9am, 1pm, 5pm, and 9pm. These time points correspond to 
right after the measurement “peaks” and were selected with the feasibility of real-time 
deployment of the system in mind.  
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eFigure 2. Weights of the 88 features over 500 regularized logistic regression models in the ensemble.  
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eFigure 3. Model performance of MCURES model (shown in blue) and Epic Deterioration Index (shown in gray) on the MM 
internal validation cohort. We measure discriminative performance in (A) ROC curves and (B) PR curves. Model calibration is 
shown in (C) Reliability plots based on quintiles of predicted scores. Legend and results with 95% confidence intervals are 
summarized in (D). The MCURES model outperforms the Epic Deterioration Index in terms of both discriminative performance and 
calibration performance.  

(A) 

 

(B) 

 

(C) 

 

(D) 

 
EDI, Epic Deterioration Index.  
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