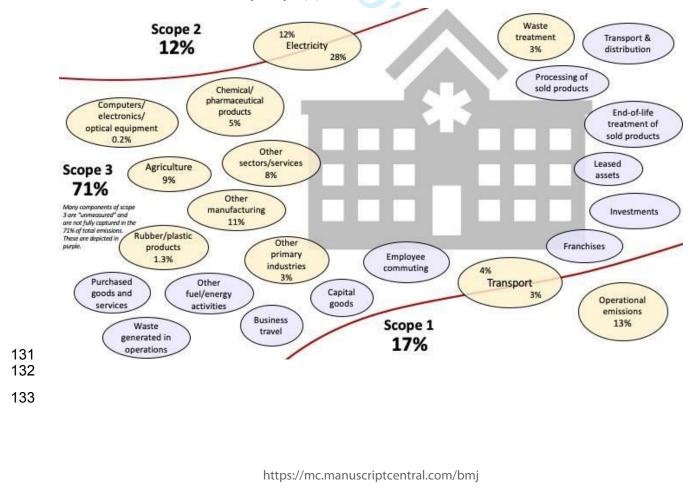


A Pathway to Net Zero for Health Care

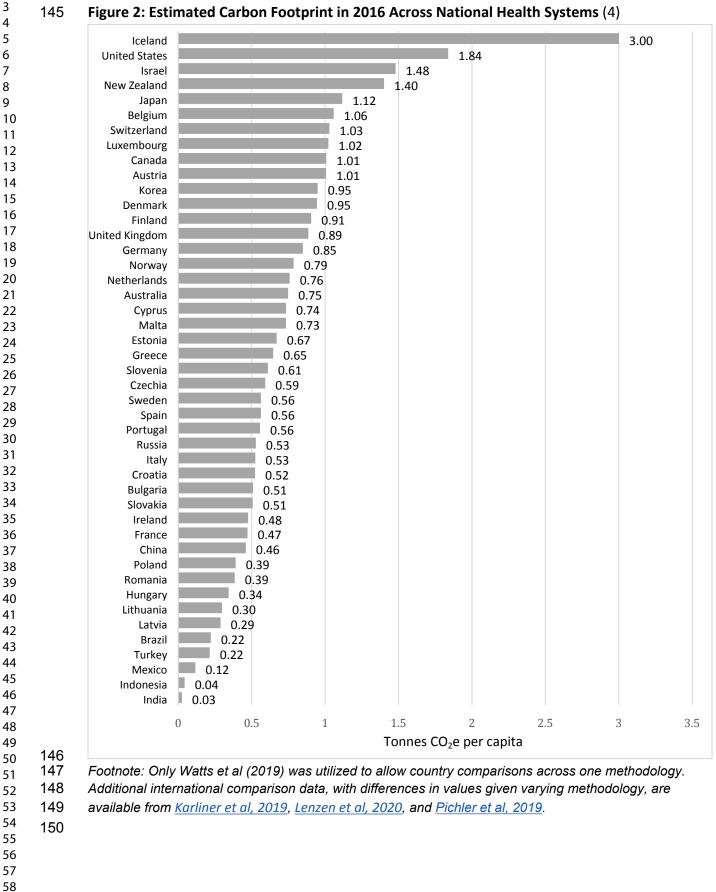
Journal:	ВМЈ
Manuscript ID	BMJ-2020-060628
Article Type:	Analysis
BMJ Journal:	ВМЈ
Date Submitted by the Author:	21-Jul-2020
Complete List of Authors:	Salas, Renee; Harvard Global Health Institute; Harvard T.H. Chan School of Public Health, Center for Climate, Health, and the Global Environment Maibach, Edward; George Mason University, Center for Climate Change Communication Pencheon, David; University of Exeter Medical School, Medical School Watts, Nick; University College London Frumkin, Howard; University of Washington
Keywords:	Climate Change, Greenhouse Gases, Net Zero, Climate Crisis, Health Care Delivery, Decarbonization, Climate and Health

1		
2		
3 4	1	Analysis
5	2	
6 7	3	A Pathway to Net Zero for Health Care
8 9	4	
10	5	Renee N. Salas, MD, MPH, MS ^{1,2,3}
11	6	Edward Maibach, MPH, PhD ⁴
12	7	David Pencheon, BM, BCh⁵
13	8	Nicholas Watts, MBBS, MA ⁶
14 15	9	Howard Frumkin, MD, DrPH ⁷
16	10	
17	11	¹ Harvard Global Health Institute, Cambridge, MA, USA
18	12	² Center for Climate, Health, & the Global Environment, Harvard T.H. Chan School of Public Health, Boston, MA, USA
19 20	13	³ Department of Emergency Medicine, Harvard Medical School, Boston, MA, USA
20	14	⁴ Center for Climate Change Communication, George Mason University, Fairfax, VA, USA
22	15	⁵ Medical and Health School, University of Exeter, Exeter, UK
23	16 17	⁶ Institute for Global Health, University College London, London, UK
24	18	⁷ University of Washington School of Public Health, Seattle, WA, USA
25 26	19	Correspondence to:
27	20	
28	20 21	Renee N. Salas, MD, MPH, MS 55 Fruit Street, Zero Emerson Place, Suite 3B,
29	22	Boston, MA 02115
30 21	23	Email: <u>rnsalas@mgh.harvard.edu</u>
31 32	24	Phone: 617-724-5143
33	25	
34	26	Word count: 2463
35	27	References: 82
36 37	28	
38	29	Key Messages
39	30	 Greenhouse gas emissions from health care are substantial, and with a few notable
40	31	exceptions such as the British National Health Service, the health sector has lagged most
41 42		
43	32	other industries in reducing its carbon footprint.
44	33	 Health care leaders and organizations have both a responsibility and an opportunity to
45	34	chart a path to Net Zero emissions. Doing so, as part of a broader climate-ready health
46 47	35	care strategy, can improve health, protect health care delivery by minimizing
48	36	disruptions, yield economic benefits, and establish the health care sector as a leader in
49	37	climate action.
50	38	• Rising to the challenge of Net Zero in health care will require broad transformative steps
51 52	39	that harness levers within and outside of the health care sector, such as reducing
53		
54	40	demand through preventive care, powering the entire enterprise with clean energy,
55		
56 57		
58		
59		

choosing medical supplies and equipment with lower carbon footprints, and reducing travel through telemedicine. **Contributors and sources** The authors on this analysis represent diverse perspectives and expertise with an international scope. This project was led by Dr. Renee N. Salas, through which the article was commissioned, who is an emergency medicine physician and climate and health expert based in Boston, MA, USA. Dr. Edward Maibach is a climate and health communication expert based in Fairfax, VA, USA whose work focuses on public understanding of climate change and clean energy. Dr. David Pencheon is a physician and sustainability expert based in Exeter, UK. Dr. Nicholas Watts is a climate and health expert based in London, UK, with additional expertise in sustainability. Dr. Howard Frumkin is a climate and health expert based in Seattle WA, USA with extensive expertise on energy policy. The unique knowledge of each author was leveraged in the conceptualization and construction of this analysis. Acknowledgements We would like to thank Katherine Raphael and Kristen Riley for their support on this manuscript. **Conflicts of Interest** We have read and understood BMJ policy on declaration of interests and do not have any conflicts of interest to declare. Licence The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non-exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd ("BMJ"), and its Licensees to permit this article (if accepted) to be published in The BMJ's editions and any other BMJ products and to exploit all subsidiary rights, as set out in The BMJ's licence.


1 2					
2 3 4	83	A Pathway to Net Zero for Health Care			
- 5 6	84	Standfirst			
7 8 9 10 11 12	85	The health care sector has a profound responsibility and opportunity to reduce greenhouse gas			
	86	emissions to limit the widespread health harms of climate change and as part of a broader climate-ready			
	87	health care delivery strategy. Renee N. Salas and colleagues chart a path to Net Zero emissions for			
	88	health care.			
13 14	89				
15 16	90	Introduction			
17 18 19	91	The Intergovernmental Panel on Climate Change (IPCC) has made clear that limiting global warming to			
	92	1.5°C above pre-industrial levels will greatly reduce the probability of sustained public health			
20 21	93	catastrophes. To achieve this aim, by 2030 human-caused carbon dioxide (CO $_2$) emissions must fall to			
22 23	94	roughly half of 2010 levels, and to Net Zero by 2050. Emissions of other greenhouse gases (GHGs) must			
24	95	reach Net Zero soon thereafter (between 2063 and 2068)(1).			
25 26	96				
27 28	97	"Net Zero" means that net emissions of GHGs are zero. To achieve this aim, emissions from all sources			
29	98	— electricity generation, industry, transportation, buildings, etc. — must be reduced to as close to zero			
30 31	99	as possible, and any remaining emissions must be balanced by removing CO_2 from the atmosphere,			
32 33	100	through such means as reforestation and direct physical-chemical removal. While modeled estimates			
34 35	101	vary on specifics, the needed direction of travel is clear: We must urgently and radically reduce GHG			
36	102	emissions.			
37 38	103				
39 40	104	Across much of the world's economy, Net Zero is a technically feasible goal, although some sectors, such			
41	105	as steel and cement manufacturing and long-distance air travel, will prove more difficult. Nations, cities,			
42 43	106	investors, and businesses are increasingly committing to Net Zero targets.			
44 45	107				
46	108	Health care delivery is substantially more energy-intensive than most other commercial and service			
47 48	109	activities (2), and the health sector has lagged in efforts to reduce emissions. By striving for Net Zero,			
49 50 51 52 53	110	the health care industry can help limit climate change and its downstream consequences, promote			
	111	public health through reduced air and water pollution, create cost-savings by eliminating waste and			
	112	inefficiency, and become leaders rather than laggards in the global effort to limit global warming to 1.5°			
54 55	113	С.			
56 57 58	114				
59 60		https://mc.manuscriptcentral.com/bmj			

This paper charts a course to Net Zero emissions in health care. It describes efforts to date, recounts the
benefits of Net Zero operations, reviews available strategies, and identifies knowledge gaps.


117 Health care's carbon emissions

Decarbonizing health care begins with identifying and quantifying the sources of CO_2 emissions, known as the "carbon footprint," as well as the sources of other GHG emissions. This reckoning is complex. It requires defining system boundaries; as shown in Figure 1, these encompass the production and transport of medical supplies, patient and staff transportation, energy use in medical facilities, the investment portfolios of health care organizations, and more. Complete accounting requires considering the entire life cycle of health care products and processes and allocating all associated carbon footprint contributions. If a blanket, defibrillator, or medication used in a hospital is manufactured at a distant factory through a production process that emits large amounts of CO_2 , then that item is said to carry "embedded carbon", which is attributed to the hospital and not to the manufacturer. Key concepts are shown in Box 1.

Figure 1: Measured and Unmeasured Health care Sector Activities that Contribute to Greenhouse Gas Emissions by Scope (3).

2 3	134	Box 1: Key Concepts and Definitions
4 5 6 7 8 9 10 11 12 13 14 15 16	134	 Box 1: Key Concepts and Definitions Two core concepts for GHG emission quantification: Life cycle analysis: "Cradle to grave" assessment that captures all emissions associated with a product or activity, from manufacturing through use and disposal. Multi-region input-output (I-O) modelling: An analytical approach to consumption-based emission and resource accounting. I-O modeling tracks flows of goods and services from different sectors of the economy into the health sector, monetizes these flows, links monetary accounts to GHG emissions in each sector, and allocates "embedded" carbon emissions to the health sector (3,4,28,63,64). The GHG Protocol defines three emission scopes:
17 18 19 20 21 22 23 24 25 26		 Scope 1 emissions fall under the direct control of the health care facility (e.g. on-site fuel combustion, fleet vehicles, anesthetic gas leaks). Scope 2 emissions derive from electricity purchased by the facility. Scope 3 emissions are all other indirect emissions (e.g., embedded carbon in purchased supplies and equipment, employee commuting, waste disposal (65). Scope 1 emissions afford health care facilities the most control over their emissions. However, it
27 28 29 30 31	135	is estimated that over 70% of health care emissions arise from the diverse categories within Scope 3, which very few health systems calculate or report (3). The British National Health System is a notable exception.
32 33	136	On a global basis, the health care carbon footprint in 2016 represented an estimated 4-6% of all
34 35	137	emissions (4). Figure 2 showcases national comparisons. The United States (U.S.) has the second highest
36	138	per capita emissions, with health care estimated to contribute upwards of 10% of U.S. carbon emissions
37 38	139	(5), second only to Iceland where import emissions are significant (6). Emissions rose in many countries
39	140	between 2007 and 2016, including China (180%), South Korea (75%), Japan (37%), and the U.S. (19%)
40 41	141	(4); the dramatic increase in China came during a decade of significant poverty reduction and
42 43	142	investment in healthcare services.
44 45	143	
46 47 48 49 50 51 52 53 54 55 56 57 58	144	
59 60		https://mc.manuscriptcentral.com/bmj

145 Figure 2: Estimated Carbon Footprint in 2016 Across National Health Systems (4)

59 60

With regard to medical specialties and treatments, key evidence is highlighted in Table 1. Individual treatments can range substantially; for example, the carbon footprint of renal dialysis varies 4-fold depending on technique used (7), and the carbon footprint of pharmaceutical manufacturing varies 5-fold across companies (8), suggesting considerable room for improvement among high emitters. There is great variation across treatments, although highly variable assessment methods are used, which stymies comparisons. There remain large gaps in knowledge — entire specialties and treatments whose carbon footprints have not yet been quantified, and the experience of countries other than the U.S., United Kingdom (U.K.), and Australia where most studies have been conducted.

 Table 1: Estimated Carbon Footprint Across Specialties, Health Industry Sector, and Treatments

Specialty	Setting	Carbon footprint	Comments	Reference
Renal (inpatient & outpatient care, peritoneal & haemodialysis, transplantation, and administration)	U.K. 1 county renal service (service population 865,000)	3,006 tonnes CO₂e/year	 Building energy 13% Travel 15% Pharmaceuticals 35% Equipment 25% 	Connor A, Lillywhite R, Cooke MW. The carbon footprint of a renal service in the United Kingdom. <i>QJM</i> . 2010;103(12):965 75. (9)
Surgery	U.S., U.K., Canada Three academic hospitals	3,219-5,188 tonnes CO ₂ e/ surgical suite/ year 1.7-2.3 tonnes CO ₂ e/m ² area 0.15-0.23 tonnes CO ₂ e/case	Major contributors were anesthetic gases and energy consumption (high HVAC requirements for surgical suites)	MacNeill AJ, Lillywhite R, Brown CJ. The impact of surgery on global climate: a carbon footprinting study of operating theatres in three health systems. The Lancet Planetary Health. 2017;1(9):e381- e8. (10)

https://mc.manuscriptcentral.com/bmj

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13 14	
14 15	
16 17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28 29	
29 30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42 43	
45 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56 57	
57 58	
58 59	
60	
00	

Intensive care	U.K. Royal Cornwall Hospital critical care unit	0.009 tonnes CO ₂ e/bed day	Considered only Scope 1 and Scope 2 electricity use	Pollard AS, Paddle JJ, Taylor TJ, Tillyard A. The carbon footprint of acute care: how energy intensive is critical care? <i>Public health</i> . 2014;128(9):771- 6. (11)
Emergency medicine	U.S. and Canada 15 EMS systems	Median emissions: 0.037 tonnes CO ₂ e/response 0.0035 tonnes CO ₂ e/service-area resident	75% emissions from diesel and gasoline fuel	Blanchard IE, Brown LH. Carbon footprinting of North American emergency medical services systems. <i>Prehosp</i> <i>Emerg Care</i> 2011;15(1):23-9. (12)
Dentistry	Scotland 22 community dental clinics in Fife		 Travel 45% Procurement 36% Building energy 18% Five-fold variation across clinics 	Duane B, Hyland J, Rowan JS, Archibald B. Taking a bite out of Scotland's dental carbon emissions in the transition to a low carbon future. <i>Public health</i> . 2012;126(9):770- 7. (13)
Pharmaceuticals	15 largest pharmaceutical companies	49 tonnes CO ₂ e/M USD revenues for total pharmaceutical sector 35 tonnes CO ₂ e/M USD for the group of 15 companies	Considered only Scope 1 and 2 emissions Considered only the 15 (of 200) companies that reported emissions 2012-15 Industry mean (49 tonnes CO ₂ e/M USD) is 55% higher than	Belkhir L, Elmeligi A. Carbon footprint of the global pharmaceutical industry and relative impact of its major players. <i>J</i> <i>Cleaner</i> <i>Production.</i> 2019;214:185-94. (8)

Procedure or treatment	Carbon footprint	Reference
Cataract surgery	0.180 tonnes CO ₂ e/cataract surgery (University Hospital Wales, Cardiff, U.K.) 0.006 tonnes CO ₂ e/cataract surgery (Aravind Eye Hospital, Pondicherry, India) Note: The U.K. analysis included patient and staff travel, paper and ink, and food while the Indian analysis did not. Aligning the two results for comparison yields 0.130 tonnes CO ₂ e/procedure in the U.K. and 0.0006 tonnes/procedure in India, approximately a 20-fold difference.	Morris DS, Wright T, Somner JEA, Connor A. The carbon footprint of cataract surgery. <i>Eye</i> . 2013;27(4):495-501. (14) Thiel CL, Schehlein E, Ravilla T, Ravindran RD, Robin AL, Saeedi C et al. Cataract surgery and environmental sustainability: Waste and lifecycle assessment of phacoemulsification at a private healthcare facility. Journal of Cataract & Refractive Surgery. 2017;43(11). (15)
Asthma inhalers	0.010-0.036 tonnes CO ₂ e/device 0.017 tonnes CO ₂ e/patient/year for Relvar-Ellipta/Ventolin-Accuhaler 0.439 tonnes CO ₂ e/patient/year for Seretide-Evohaler/Ventolin-Evohaler	Wilkinson AJK, Braggins R, Steinbach I, Smith J. Costs of switching to low global warming potential inhalers. An economic and carbon footprint analysis of NHS prescription data in England <i>BMJ Open</i> . 2019;9(10):e028763. (16) Janson C, Henderson R, Löfdahl M Hedberg M, Sharma R, Wilkinson AJK. Carbon footprint impact of t choice of inhalers for asthma and COPD. Thorax. 2020;75(1):82-4. (17)
Anesthetics	Global warming potential relative to CO ₂ : Sevoflurane: 210 Isoflurane: 510 Desflurane: 1620	Sulbaek Andersen MP, Sander SP Nielsen OJ, Wagner DS, Sanford T Jr., Wallington TJ. Inhalation anaesthetics and climate change. <i>Brit J Anaesthesia</i> . 2010;105(6):760-6. (18)

Laparoscopic surgery	355,924 tonnes CO ₂ /year for all U.S. laparoscopic procedures	Power NE, Silberstein JL, Ghoneim TP, Guillonneau B, Touijer KA. Environmental impact of minimall invasive surgery in the United States: an estimate of the carbon dioxide footprint. <i>J Endourol</i> . 2012;26(12):1639-44. (19)
Hysterectomy	212,000 tonnes CO₂e/year for 500,000 hysterectomies in the U.S.	Thiel CL, Eckelman M, Guido R, Huddleston M, Landis AE, Sherma J, et al. Environmental Impacts of Surgical Procedures: Life Cycle Assessment of Hysterectomy in th United States. <i>Environ Sci Technol</i> 2015;49(3):1779-86. (20)
Renal dialysis	<u>In-centre</u> : 3.8 tonnes CO ₂ e/patient/year <u>Home</u> : 1.8-7.2 tonnes CO ₂ e/patient/year depending on technique	Connor A, Lillywhite R, Cooke MW The carbon footprints of home an in-center maintenance hemodialysis in the United Kingdom. <i>Hemodial Int</i> . 2011;15(1):39-51. (7)

163Footnote: U.K. = United Kingdom, CO_2e = carbon dioxide equivalent, U.S. = United States, m^2 = square164metres, HVAC = heating, ventilation, and air conditioning, EMS = emergency medical services

165 Benefits of GHG reduction

Approaching and ultimately achieving Net Zero offers a wide range of benefits for health care institutions. First and perhaps most importantly, Net Zero advances the core mission of health institutions — improving health — because measures that mitigate the climate crisis yield numerous health benefits (often called "co-benefits"). In the long term, these benefits flow from reducing the many adverse health impacts of the climate crisis (21). More immediate benefits (22) include the increased physical activity, improved air quality, reduced noise, and avoided car crashes that come with shifting from automobile travel to walking, cycling, and transit (23); the improved air quality that comes with a shift from fossil fuel combustion to renewable power sources (24,25); the reduced risk of cardiovascular disease and some cancers that comes with a shift from meat-heavy to plant-forward diets (26); and the improved health, well-being, and productivity that come with green, energy-efficient hospitals and clinics (27). The latest attempt at a global assessment of health care environmental footprints reveals that they are

178 wide-ranging, often avoidable, and predominantly indirect (i.e. Scope 3) (28). Consequently, health care

Page 11 of 25

BMJ

1		
2		
3		
4		
5		
6		
7		
8		
9		
	0	
1	1	
1	2	
1	3	
	4	
	5	
	6	
1		
1	8	
	9	
	0	
2	1	
2	2	
2	3	
2	4	
	5	
	6	
2		
2	8	
	9	
	0	
	1	
3	2	
3	3	
3	4	
	5	
	6	
3	7	
3	8	
	9	
4		
4		
4		
4	3	
4	4	
4		
4		
4		
4	8	
4	9	
5		
5		
2 -	1	
5		
5	3	

systems need to use their considerable influence (e.g., size, mission, and credibility) to decarbonize, not
just their internal operations, but their total supply chains and models of care and prevention. Ever
increasing health care delivered in current ways does not necessarily lead to better health, highlighting
the need to increase the quality and precision of health care — not simply the amount.

183 Getting to Net Zero will enable health care providers to deliver high quality care today, and in the future, 184 and these two concepts should be increasingly connected given their interdependence (28). Health 185 institutions can realize substantial financial benefits through reduced costs for energy, maintenance, 186 supplies, and other factors, and through reducing waste, even accounting for up - front investments 187 (29–31). This is especially important given the economic challenges confronting health care systems in 188 the COVID-19 pandemic. For example, the shift to carbon-neutral energy use, together with reduced 189 energy use through conservation, is projected to save Boston Medical Center 153 million USD between 190 2010 and 2030 (32). In addition, getting to Net Zero offers health institutions an opportunity for broader 191 community leadership (33). Lastly, environmental initiatives can position health care institutions as 192 leaders in their communities, as well as motivate the health care workforce and build employee morale 193 (34).

194 Solutions within and outside of health care systems

195 Recovery from the COVID-19 pandemic and the associated economic downturn provides an opportunity 196 to reimagine and transform health care systems toward resilience to future social, economic and 197 environmental challenges, particularly toward Net Zero performance. Given the urgent need for, and 198 benefits of, emission reductions, a range of transformative solutions must be considered both within, 199 and outside of, health care (Table 2). Some solutions are system-wide, such as creating a culture of 200 sustainability and implementing consistent and valid carbon metrics, an explicit reduction trajectory, 201 and associated accountability processes. Other solutions pertain to specific operational aspects of health 202 care delivery, from clean, renewable energy to transportation, from food services to supply chain 203 management, and still others relate to individual specialties or treatments. Innovative care models may 204 be more acceptable than ever in the wake of the COVID-19 pandemic. For example, despite the many 205 adverse impacts of COVID-19 on health care, such as reduced cancer screening, many of the adaptive 206 practices that were implemented at scale and pace during the pandemic — more telehealth 207 consultations, more care closer to home, more empowered self — care, less travel — may, if adopted 208 for ongoing use, benefit patient, purse, populations and planet. When inevitable trade-offs arise—such 55

59 60

as balancing energy-intensive infection control measures with reduced energy use — they will need to
be managed with careful adaptive management based on rigorous data collection and analysis.

Table 2: Example Solutions for the Health care Sector with Potential Internal (Within Health Care) and
 External Levers (Outside of Health Care)

Category	Solution	Within Health Care	Outside of Health Care
System changes	Create a culture that values sustainability	 Connect sustainability with clinical practice implications and health benefits for patients Create a Chief Sustainability Officer (CSO) Divest from fossil fuels – mirroring divestment from tobacco Require each facility and/or unit to have a sustainability plan and to report on progress Build sustainability considerations into staff training, quality improvement projects, and staff performance evaluation 	 Join the global movement to create cultures where climate and health are intimately connected Appoint Chief Sustainability Officers (CSO), as in other sectors Advocate for a global movement of fossil fuel divestment across all sectors
	Standardize, track, and publicly report health care carbon footprints	 Institutional commitment to measuring and reporting Scopes 1- 3 emissions across institution and departments following accepted standards 	 Create a novel metric that determines carbon intensity of care per unit of health delivered Create a certification organization to assess and validate GHG

		 Integrate carbon footprint, and other environmental performance metrics, into health quality, outcome, and equality measures (28) 	emissions by health care organizations • Transparent reporting (naming and shaming)
	Financial incentives	 Tie departmental financial incentives to sustainability metrics 	 Tie reimbursement rates from governments and private insurers to GHG footprint
	Optimize collaboration across international, national, and subnational entities	 Sharing of best sustainability practices National and international health organizations engaging with other disciplines (e.g. engineering) to advance sustainability efforts 	 International agreements on how to measure scope 3 emissions
Supply Chain (35)	Green supply chain sourcing	 Invest in purchasing power agreements with other health care systems 	 Transparent disclosures of GHG emissions associated with products Selective purchasing of low-GHG products
Energy Use	Energy from renewable source	 Produce and/or purchase renewable energy (e.g., solar panels on parking garages) 	 Advocate for expansion of local and regional renewable energy production

2 3 4	
4 5 6	
7 8	
9 10	
11 12	
13 14	
15 16	
17 18	
19 20	
21 22	
23 24	
25 26	
27 28	
29 30	
31 32	
33 34	
35 36	
37 38	
39 40	
41 42 43	
44 45	
46 47	
48 49	
50 51	
52 53	
54 55	
56 57	
58 59	
60	

	Energy conservation	 Renovate existing building design Build new buildings as Net Zero or positive Re-imagine operations with energy conservation as a foundation 	• Advocate with decision makers for Net Zero health care buildings and energy conservation
Transportation (36)	Low carbon transportation	 Electric ambulance and emergency medical service fleets Financial incentives for utilizing active transport to get to work Highlight the health benefits to employees and patients 	 Lobby local and regional government officials to expand active travel infrastructure on the basis of improved human and environmental health
	Reduced transportation requirements	 Telemedicine and work from home programs for appropriate employees Provide care closer to home through more community- based primary care with less reliance on tertiary hospitals 	 Advocate for reimbursement parity between telemedicine visits Incentivize work from home
Food systems	Purchase low- carbon foods and packaging	 Prioritize plant- based foods Prioritize locally sourced foods Purchase low- carbon materials that are compostable 	 Educate the public about the benefits of plant-based diets Advocate for government and corporate policies that encourage plant-based diets Advocate for national policies requiring

			disclosure of GHGs associated with a standard serving
	Minimize food waste	 Re-imagine food preparation to minimize waste Divert extra food to community sources for consumption 	 Create community- wide collaborations to pair facilities with excess food with those that distribute to those in need
Waste Management	Minimizing waste	 Encourage investment in sustainable waste management (e.g., source reduction, reuse, proper waste segregation) Measurement and transparent reporting 	 Transformation of global waste management systems Cross-sectoral sharing of best practices for sustainable waste management
Innovative Models of Care to Reduce Health care Demand	Prioritize disease prevention and chronic disease management	 Full implementation of evidence-based preventive services in health care and public health agencies 	 Advocate for prioritization of preventive care in health care policy and reimbursements, systematic economic incentives
	Reduce overtreatment and overprescribing	 Track and incentivize accepted overtreatment and overprescribing based on evidence- based guidelines 	 Minimize litigation and optimize other means to protect patient safety (37)
	Innovative technology	 Wide expansion of telemedicine (38–40) 	 National telemedicine expansion across health systems

Additional Scope 3	Reducing professional travel	•	Reduce professional travel budgets to encourage virtual meetings Require a GHG emissions justification and approval for travel requests	•	Teleconferencing and Net Zero medical meetings (41)
-----------------------	---------------------------------	---	---	---	---

Creating a culture of sustainability within health care can draw from models in other industries and from successful health care quality improvement and change management efforts, such as in patient safety (42,43). Connecting the climate crisis to clinical practice and the institutional mission (44), as well as to fundamental health care values, such as "do no harm" and defining institutional success according to the triple bottom line (social and health improvements, economic performance, and environmental impact) (28), can create an inclusive culture by engaging individuals at all institutional levels, from non-clinical staff to health professionals. The creation of a Chief Sustainability Officer position, mirroring other industries, can help ensure that sustainability is prioritized across institutional decision-making (45), although senior institutional leaders need to support — and hold to account — a pan-organizational approach to avoid isolating the actions in one department. Individuals skilled at conflict analysis and resolution can be utilized to prevent inevitable conflicts from impeding the rapid transformation required.

Accurate health care carbon footprints are essential to informing decision-making and cost-effectiveness (46). Environmental footprint assessments that extend beyond carbon emissions can also address other environmental impacts (e.g., air pollutants, water depletion) that harm health (28). However, current measurement practices need to be better standardized, and because a large portion of health care emissions relate to the supply chain, Scope 3 emissions need to be routinely included. New metrics could be developed to reflect the carbon intensity of care per unit of health improvement delivered, applying the methods of value-based health care to environmental performance (47,48). Transparent reporting should extend to health care supply companies, such as disclosing the carbon footprints of medical products, and lead to open commercial advantage - assisting in selection by hospitals and incentivizing low-carbon production.

Page 17 of 25

1

58 59

60

239	The needed transformation to Net Zero includes efforts that extend beyond conventional clinical care.
240	Primordial and primary prevention — including poverty reduction, strong social networks, tobacco and
241	substance abuse control, healthy diets, and physical activity — is intrinsic to this transformation because
242	it reduces the need for health care and therefore for energy- and resource-intensive treatments.
243	Investment policy is also a part of this transformation. Health care institutions, by divesting their
244	financial holdings in fossil fuels, can both advance their mission and help normalize the withdrawal of
245	social license from this industry (49).
246	
247	Financial incentives can be tied to the transparent carbon emission reporting, utilizing a historic
248	blueprint from the U.S. Medicare, the national health care insurance program for elderly and disabled
249	people, served a transformative role in urgently desegregating hospitals by withholding reimbursements
250	if a facility was practicing racial discrimination (50). Similarly, reimbursements could be withheld from
251	health care systems not moving toward decarbonization. Such incentives are easier to implement when
252	the health and financial incentives are aligned: where the system monetizes health rather than illness.
253	
254	The COVID-19 pandemic has catalyzed the rapid expansion of low-carbon practices such as telehealth
255	and virtual meetings. It is difficult to imagine post-recovery health care systems without telehealth; the
256	concurrent carbon benefits will help institutions move toward Net Zero (38). Other innovative models
257	that reduce in-person health care encounters, once their efficacy and safety are documented, will also
258	deliver environmental and economic benefits. Similarly, the rapid expansion of virtual meetings and
259	conferences (41) likely heralds reduced professional travel in the post-COVID-19 era, saving time and
260	money while reducing carbon footprints.
261	
262	Specific examples of initiatives within health care systems around the globe are shown in Box 2 .
263	
264	Box 2: Case Study Examples of Efforts to Reduce Greenhouse Gas Emissions
	Nation's Health System The United Kingdom's National Health Service, already a world leader in sustainability, has announced widespread efforts to both improve the health of the nation and commit to achieving Net Zero emissions in the health sector through its campaign For a Greener NHS by 2050 (66). While this plan is now one of the most ambitious decarbonization efforts underway in the world, the NHS has already demonstrated their capability to reduce its emissions, decreasing total GHG by 18% from 2007 to 2017. The NHS is establishing a new expert panel to plan a path to Net Zero (67) and a current call for evidence (68) will help inform this strategy. Given that a significant portion of the NHS's footprint
	240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 261 262 263

BMJ

(about 57%) is attributable to indirect emissions via the supply chain, decarbonizing could have effects that extend globally, far beyond the scope of just the United Kingdom. The NHS has taken additional steps to manage their food waste by using a Waste-to-Water system (69) which allows for the safe treatment of 1,200 kg of food waste a week resulting in a significantly reduced carbon footprint as well as large economic savings.

Individual Health Systems

Gundersen Health System, an integrated health care organization based in La Crosse, Wisconsin, and serving communities in Wisconsin, Minnesota, and Iowa, represents one of the biggest U.S. efforts to achieve Net Zero for its portfolio of buildings. By focusing on two main initiatives — reducing resources consumption through energy efficiency and conservation and investment in clean, renewable energy — Gundersen has made significant progress toward reduced energy use and has identified an additional goal of offsetting all utility energy consumption with equivalent, renewable, local energy generation. Gundersen relies heavily on wind energy; two wind farms in Lewiston, Minnesota and Cashton, Wisconsin each generate about 5 megawatts of energy, enough to collectively power 2,600 homes each year. Gundersen fully converted from fossil fuels to locally produced energy by 2014; together with other efforts, such as waste reduction, it calculates annual operational savings of 3.7M USD (70,71).

Bhagat Chandra Hospital, a multi-specialty, 85-bed facility in Dwarka, New Delhi, India has achieved significant financial and environmental benefits by transitioning to solar energy, conserving approximately 93,000 kilograms of CO_2 emissions since 2016. Through a coordinated, hospital-wide initiative, Bhagat Chandra has installed 50kW solar panels which connect to the electrical system and reduce 20-30% of their energy consumption. In addition to this major change in energy reliance, the hospital has made other significant changes to transition to clean energy including: installation of 4-star electrical appliances, swapping of conventional light bulbs for LEDs, and installation of auto lock on doors to maintain temperature and minimize unnecessary energy use. When taking into account the market cost of solar panels, the economic investment in the panels will be returned in 6 years and will save 65,000 kg CO_2 and 14,800USD in energy costs per year (72).

Buildings

Butaro District Hospital, a 150-bed facility located in the Northern Province of Rwanda, was constructed as a low-carbon building in collaboration with Partners in Health, the Rwandan Ministry of Health, and MASS Design. Butaro Hospital minimizes energy consumption through the use of non-permeable continuous flooring, natural daylight, natural ventilation, and optimized fans and UV lights to ventilate while minimizing transmission of airborne infections. Many of the materials for the construction of the facility were sourced locally (including volcanic rock from the Virunga mountain chain), and conscious labor practices were implemented so that 4,000 jobs were created for local residents and 85% of the costs of building construction were channeled into the local economy, resulting in significant economic savings when compared to other Rwandan hospitals (73–75).

Specialty Specific Interventions

Albert Einstein Hospital, located in Sao Paulo, Brazil tracked their greenhouse gas emissions and found that in 2012, nitrous oxide (N₂O) made up over half of their total hospital emissions. The hospital convened a team focused on limiting reliance on nitrous oxide and was able to reduce nitrous oxide use for anesthetic procedures by 23%. Nitrous oxide need only be used when it lowers the morbidity and mortality of the patient when compared to other anesthetic drugs. Albert Einstein Hospital has

BMJ

continued to make progress on reducing GHG emissions via less reliance on nitrous oxide and was recently presented with the 2020 Challenge Climate Champions award for a project ensuring a 7% reduction in total GHG emissions solely through reduced N_2O anesthetic use (75,76).

Food

Every day, the Melbourne Health Production Kitchen prepares nearly 3,000 meals for patients at the Melbourne Hospital City Campus in Melbourne, Australia. Previously, all surplus food was sent to landfills. Beginning in February of 2018, the extra food was diverted to the community, preventing 25kg of food from ending up in landfills each day, providing 4,200 meals per month, and reducing emissions due to food waste by 17 tonnes of CO_2e per year (77).

Through a different approach, the Buddhist Tzu-Chi Dialysis Center in Malaysia has reduced its carbon footprint by promoting vegetarianism and utilizing reusable food containers. Implementing an "only vegetarian" policy since the center opened in 1997, the center saves 4.9 kg of CO₂ emissions for every kilogram of tofu served in place of chicken. They have also observed significant reductions in carbon footprint by reducing the use of plastic bags (78).

Travel

Taiwan's Taichung Tzu Chi Hospital has reduced its carbon emissions by a dramatic 3 tonnes per year through the implementation of a hospital carpooling application which has encouraged the carpooling of 6,500 employees and patients since 2016. These efforts have saved 3,112 tonnes of CO_2e from 2011 to 2015 (79).

Landspitali, the National University Hospital of Iceland, has been able to significantly reduce its carbon footprint by increasing eco-friendly travel to and from work from 21% to 40% of employees. Through the design of a Green Travel Agreement, Landspitali has created economic and health gains for its employees all while minimizing CO_2e (80).

Supply Chain Interventions/Responsible Purchasing

The Philippine Heart Center has adopted a strategy of green procurement and incorporating environmental considerations into their decisions about products and services. Moving forward, the Philippine Heart Center plans to acquire knowledge on carbon emission accounting to be able to more accurately estimate the effects of green procurement on carbon output (81).

Kaiser Permanente, an integrated managed care consortium based in Oakland, California, has made concerted efforts to purchase environmentally responsible computers. They have been able to reduce the use of toxic materials and energy, resulting in energy cost savings of 4M USD per year (82).

- - 266 Unique considerations in low- and middle-income countries
- 267 While health care in low and middle-income country (LMIC) settings generally has small per capita
- 268 carbon footprints and expenditures, the overall environmental intensity can be quite large (28).
- 269 However many LMIC health care systems may not be in a position to reduce energy use, alter

BMJ

procurement practices, or make other disruptive changes. In fact, with 59% of health care facilities in LMICs reportedly lacking reliable electric power (51), the scarcity of energy and materials in many facilities is the pressing challenge (52,53). Insufficient electricity curtails access to lighting, ventilation, water, refrigeration, and functioning diagnostic and treatment equipment - with potentially dire consequences for patients. For example, a study of Ugandan emergency obstetric care found that only 2% of primary health centers, 29% of referral health centers, and 61% of hospitals providing this care had reliable electrical power supplies; this contributed to unacceptably high mortality from uterine rupture, hemorrhage, and other complications of childbirth (54). In a survey of surgeons across 39 African nations, most working in regional or national referral hospitals, 48% reported at least weekly power failures, 40% had experienced compromised surgical field lighting, 32% reported delayed or cancelled surgery as a result, 29% had operated using only mobile phone lights, and 18% had directly experienced poor surgical outcomes as a result (55).

For health care facilities in such circumstances, the path to Net Zero must include provision of reliable electricity. This requires leapfrog technologies – bypassing fossil fuels and conventional electrical grids in favor of solar and wind generation and on-site battery storage — and local innovation (56). Fortunately, this approach is affordable and practical and is increasingly being implemented. For example, between 2008 and 2015 the Indian state of Maharashtra installed 407 hybrid solar photovoltaic systems, mostly in remote health facilities, in an effort to promote reproductive and child health (57). Such strategies are championed by the non-governmental organization Sustainable Energy for All (58), which the U.N. launched in 2011 through its Powering Health Care Initiative (59).

While addressing energy deficits in health care facilities in LMICs is a priority, experience in low-resource settings can offer invaluable guidance for wealthy countries. For example, the carbon footprint of phycoemulsification cataract removal is reported to be 20 times lower in India than in the U.K., with similar clinical outcomes, signaling an opportunity for substantial reductions in emissions in wealthy settings (15).

48 295 Critical Knowledge Gaps 49

Knowledge gaps on the path to health care Net Zero emissions fall into several categories. First, we need
 a detailed understanding of the sources of emissions across the health care delivery life cycle. Of
 particular importance are major elements of the supply chain such as pharmaceuticals and medical
 equipment. This requires sophisticated but user-friendly methods of quantifying carbon footprint, which

https://mc.manuscriptcentral.com/bmj

Page 21 of 25

1 2

3 4	300	require further development (60). Second, research and development efforts need to deliver innovative
5	301	equipment, supplies, and practices that reduce the carbon footprint. Third, we need each of these
6 7	302	innovations to be tested to establish safety and efficacy. Fourth, we need economic analyses of low-
8 9	303	carbon innovations, to establish their costs and benefits. The research needed to achieve these broad
10	304	knowledge goals requires multidisciplinary collaborations, including engineers, process analysts, and
11 12 13	305	clinicians.
14 15	306	Conclusion
16 17	307	Without decisive and urgent action, the climate crisis will increasingly undermine human health and
18	308	disrupt health care delivery. There are both moral and practical reasons for health professionals to be at
19 20	309	the forefront of climate action (61,62) — to embrace the drive to decarbonize the economy and to reach
21 22	310	Net Zero emissions. This is as crucial in hospitals, clinics, and pharmacies as anywhere. Health care must
23	311	lead from the front — which entails urgently getting our own house in order by charting a Pathway to
24 25	312	Net Zero.
26 27	313	
28		
29 30		
31		
32 33		
34 35		
35 36		
37 38		
39		
40 41		
42		
43 44		
45 46		
47		
48 49		
50		
51 52		
53		
54 55		
56 57		
58		
59 60		https://mc.manuscriptcentral.com/bmj
00		

3	314	Refe	rences
4	315	1.	IPCC. Global Warming of 1.5°C [Internet]. 2018. Available from: https://www.ipcc.ch/sr15/
5	316	2.	Bawaneh K, Ghazi Nezami F, Rasheduzzaman M, Deken B. Energy Consumption Analysis and
6	317		Characterization of Healthcare Facilities in the United States. Energies [Internet]. 2019 Oct 4 [cited 2020 Jul
7	318		17];12(19):3775. Available from: https://www.mdpi.com/1996-1073/12/19/3775
8	319	3.	Karliner J, Slotterback S, Boyd R, Ashby B, Steele K. Health Care's Climate Footprint: How the Health Sector
9	320	5.	Contributes to the Global Climate Crisis and Opportunities for Action. 2019.
10	321	4.	Watts N, Amann M, Arnell N, Ayeb-Karlsson S, Belesova K, Boykoff M, et al. The 2019 report of The Lancet
11	322	4.	Countdown on health and climate change: ensuring that the health of a child born today is not defined by a
12	323		changing climate [Internet]. Vol. 394, The Lancet. Lancet Publishing Group; 2019 [cited 2020 Jul 17]. p.
13	323		1836–78. Available from: http://www.thelancet.com/article/S0140673619325966/fulltext
14	325	5.	
15	326	5.	Eckelman M, Sherman J. Environmental impacts of the U.S. Health care system and effects on public health. PLoS One. 2016;11(6):e0157014.
16	320	6.	
17	328	0.	Clarke J, Heinonen J, Ottelin J. Emissions in a decarbonised economy? Global lessons from a carbon
18	328 329	7	footprint analysis of Iceland. J Clean Prod. 2017 Nov 10;166:1175–86.
19		7.	Connor A, Lillywhite R, Cooke MW. The carbon footprints of home and in-center maintenance hemodialysis
20	330	0	in the United Kingdom. Hemodial Int. 2011;15(1):39–51.
21	331	8.	Belkhir L, Elmeligi A. Carbon footprint of the global pharmaceutical industry and relative impact of its major
22	332	c	players. J Clean Prod. 2019;214:185–94.
23	333 224	9.	Connor A, Lillywhite R, Cooke M. The carbon footprint of a renal service in the United Kingdom. QJM An Int
24	334	40	J Med. 2010;103(12):965–75.
25	335	10.	MacNeill A, Lillywhite R, Brown C. The impact of surgery on global climate: a carbon footprinting study of
26	336		operating theatres in three health systems. Lancet Planet Heal. 2017;1(9):e381–8.
27	337	11.	Pollard A, Paddle J, Taylor T, Tillyard A. The carbon footprint of acute care: how energy intensive is critical
28	338		care? Public Health. 2014;128(9):771–6.
29	339	12.	Blanchard I, Brown L. Carbon footprinting of North American emergency medical services systems.
30	340	4.5	Prehospital Emerg Care. 2011;15(1):23–9.
31	341	13.	Duane B, Lee MB, White S, Stancliffe R, Steinbach I. An estimated carbon footprint of NHS primary dental
32	342		care within England. How can dentistry be more environmentally sustainable? Br Dent J [Internet].
33	343		2017;223(8):589–93. Available from: http://dx.doi.org/10.1038/sj.bdj.2017.839
34	344	14.	Morris D, Wright T, Somner J, Connor A. The carbon footprint of cataract surgery. Eye. 2013;27:495–501.
35	345	15.	Thiel CL, Schehlein E, Ravilla T, Ravindran RD, Robin AL, Saeedi OJ, et al. Cataract surgery and
36	346		environmental sustainability: Waste and lifecycle assessment of phacoemulsification at a private
37	347		healthcare facility. J Cataract Refract Surg [Internet]. 2017 Nov 1 [cited 2020 Jul 20];43(11):1391–8.
38	348		Available from: http://journals.lww.com/10.1016/j.jcrs.2017.08.017
39	349	16.	Wilkinson A, Braggins R, Steinbach I, Smith J. Costs of switching to low global warming potential inhalers.
40	350		An economic and carbon footprint analysis of NHS prescription data in England. BMJ Open.
41	351		2019;9:e028763.
42	352	17.	Janson C, Henderson R, Löfdahl M, Hedberg M, Sharma R, Wilkinson AJK. Carbon footprint impact of the
43	353		choice of inhalers for asthma and COPD. Thorax [Internet]. 2020 Jan 1 [cited 2020 Jun 29];75(1):82–4.
44 45	354		Available from: https://pubmed.ncbi.nlm.nih.gov/31699805/
45 46	355	18.	Sulbaek Andersen MP, Sander SP, Nielsen OJ, Wagner DS, Sanford TJJ, Wallington TJ. Inhalation
40 47	356		anaesthetics and climate change. Br J Anaesth [Internet]. 2010;105(6):760–6. Available from:
47 48	357		https://bjanaesthesia.org/article/S0007-0912(17)33404-9/fulltext
48 49	358	19.	Power NE, Silberstein JL, Ghoneim TP, Guillonneau B, Touijer KA. Environmental impact of minimally
49 50	359		invasive surgery in the United States: An estimate of the carbon dioxide footprint. J Endourol [Internet].
50 51	360		2012 Dec 1 [cited 2020 Jul 20];26(12):1639–44. Available from:
52	361		https://pubmed.ncbi.nlm.nih.gov/22845049/
53	362	20.	Thiel C, Eckelman M, Guido R, Huddleston M. Environmental impacts of surgical procedures: Life cycle
54	363		assessment of hysterectomy in the United States. Environ Sci Technol. 2015;49:1779–86.
55	364	21.	WHO. COP24 Special Report: Health & Climate Change [Internet]. 2018. Available from:
56	365		https://www.who.int/globalchange/publications/COP24-report-health-climate-change/en/
57			
58			
59			
60			https://mc.manuscriptcentral.com/bmi

2			
3	366	22.	Gao J, Kovats S, Vardoulakis S, Wilkinson P, Woodward A, Li J. Public health co-benefits of greenhouse gas
4	367	22.	emissions reduction: A systematic review. Sci Total Env. 2018;627:388–402.
5	368	23.	Xia T, Zhang Y, Crabb S, Shah P. Cobenefits of replacing car trips with alternative transportation: a review of
6	369	_0.	evidence and methodological issues. J Environ Public Heal. 2013;2013.
7	370	24.	Buonocore JJ, Luckow P, Norris G, Spengler JD, Biewald B, Fisher J, et al. Health and climate benefits of
8	371		different energy-efficiency and renewable energy choices. Nat Clim Chang. 2015;6(1):100–5.
9	372	25.	Driscoll C, Buonocore JJ, Levy JI, Lambert KF, Burtraw D, Reid SB, et al. US power plant carbon standards
10	373	_0.	and clean air and health co-benefits. Nat Clim Chang. 2015;5:535–40.
11	374	26.	Springmann M, Godfray HCJ, Rayner M, Scarborough P. Analysis and valuation of the health and climate
12	375		change cobenefits of dietary change. Proc Natl Acad Sci U S A [Internet]. 2016 Apr 12 [cited 2020 Jul
13	376		17];113(15):4146–51. Available from: https://www.pnas.org/content/113/15/4146
14	377	27.	Cedeño-Laurent JG, Williams A, MacNaughton P, Cao X, Eitland E, Spengler J, et al. Building Evidence for
15	378		Health: Green Buildings, Current Science, and Future Challenges. Annu Rev Public Health [Internet]. 2018
16	379		Apr 2 [cited 2020 Jul 17];39(1):291–308. Available from:
17	380		http://www.annualreviews.org/doi/10.1146/annurev-publhealth-031816-044420
18	381	28.	Lenzen M, Malik A, Li M, Fry J, Weisz H, Pichler P-P, et al. The environmental footprint of health care: a
19	382		global assessment. Lancet Planet Heal [Internet]. 2020 Jul 1 [cited 2020 Jul 20];4(7):e271–9. Available from:
20	383		https://linkinghub.elsevier.com/retrieve/pii/S2542519620301212
21 22	384	29.	Kats G. Greening Our Built World: Costs, Benefits, and Strategies. United States: Island Press; 2013.
22	385	30.	Zhang L, Wu J, Liu H. Turning green into gold: A review on the economics of green buildings. Vol. 172,
25 24	386		Journal of Cleaner Production. Elsevier Ltd; 2018. p. 2234–45.
24	387	31.	World Green Building Council. The Business Case for Green Building: A Review of the Costs and Benefits for
26	388		Developers, Investors and Occupants [Internet]. 2013 [cited 2020 Jul 17]. Available from:
20	389		https://www.worldgbc.org/news-media/business-case-green-building-review-costs-and-benefits-
28	390		developers-investors-and-occupants
29	391	32.	Cohen G, Walsh K. Commentary: Healthcare industry is a driver of climate change; it needs to be a leader
30	392		in finding solutions. Modern Healthcare [Internet]. 2019 Feb; Available from:
31	393		https://www.modernhealthcare.com/article/20190202/NEWS/190139992/commentary-healthcare-
32	394		industry-is-a-driver-of-climate-change-it-needs-to-be-a-leader-in-finding-solutions
33	395	33.	Pencheon D, Rissel CE, Hadfield G, Madden DL. Health sector leadership in mitigating climate change:
34	396		experience from the UK and NSW. N S W Public Health Bull [Internet]. 2009 [cited 2020 Jul 17];20(11–
35	397		12):173–6. Available from: https://pubmed.ncbi.nlm.nih.gov/20132739/
36	398	34.	Walsh C, Sulkowski AJ. A greener company makes for happier employees more so than does a more
37	399		valuable one: a regression analysis of employee satisfaction, perceived environmental performance and
38	400		firm financial value. Interdiscip Environ Rev. 2010;11(4):274.
39	401	35.	Kane G, Bakker C, Balkenende A. Towards design strategies for circular medical products. Resour Conserv
40	402		Recycl. 2018;135:38–47.
41	403	36.	Maizlish N, Woodcock J, Co S. Health cobenefits and transportation-related reductions in greenhouse gas
42	404		emissions in the San Francisco Bay Area. Res Pract. 2013;103(4):703–9.
43	405	37.	Lyu H, Xu T, Brotman D, Mayer-Blackwell B, Cooper M, Daniel M, et al. Overtreatment in the United States.
44	406		Moise IK, editor. PLoS One [Internet]. 2017 Sep 6 [cited 2020 Jul 16];12(9):e0181970. Available from:
45	407	22	https://dx.plos.org/10.1371/journal.pone.0181970
46	408	38.	Holmner Å, Ebi KL, Lazuardi L, Nilsson M. Carbon Footprint of Telemedicine Solutions - Unexplored
47	409		Opportunity for Reducing Carbon Emissions in the Health Sector. Linkov I, editor. PLoS One [Internet]. 2014
48	410	20	Sep 4 [cited 2020 Jul 20];9(9):e105040. Available from: https://dx.plos.org/10.1371/journal.pone.0105040
49 50	411	39.	Tuckson R V., Edmunds M, Hodgkins ML. Telehealth. N Engl J Med [Internet]. 2017 Oct 19 [cited 2020 Jul
50 51	412 413	40.	20];377(16):1585–92. Available from: http://www.nejm.org/doi/10.1056/NEJMsr1503323
52	413	40.	Latifi R, Doarn CR. Perspective on COVID-19: Finally, Telemedicine at Center Stage. Telemed e-Health
53	414		[Internet]. 2020 May 14 [cited 2020 Jul 20];tmj.2020.0132. Available from:
55		41	https://www.liebertpub.com/doi/10.1089/tmj.2020.0132
55	416 417	41.	Zotova O, Pã C, Gopfert A, Van Hove M. Carbon-neutral medical conferences should be the norm
56	417	42.	[Internet]. 2020 [cited 2020 Jul 20]. Available from: www.thelancet.com/planetary-health
57	-10	42.	Gandhi TK, Kaplan GS, Leape L, Berwick DM, Edgman-Levitan S, Edmondson A, et al. Transforming concepts
58			
59			
60			https://mc.manuscriptcentral.com/bmj

58 59 60			https://mc.manuscriptcentral.com/bmj
56 57	471	66.	NHS. For a greener NHS [Internet]. [cited 2020 Jul 20]. Available from:
55 56	470	65.	Greenhouse Gas Protocol [Internet]. [cited 2020 Jul 20]. Available from: https://ghgprotocol.org/
54	469		and resource accounting. Vol. 69, Ecological Economics. Elsevier; 2009. p. 211–22.
53	468	64.	Wiedmann T. A review of recent multi-region input-output models used for consumption-based emission
52	467		Res Lett. 2019;14(6):064004.
51	466	63.	Pichler P, Jaccard I, Weisz U, Weisz H. International comparison of health care carbon footprints. Environ
50	465		Med. 2016 May 3;164(9):608–10.
49	464	62.	Crowley RA. Climate change and health: A position paper of the American college of physicians. Ann Intern
48	463		Vol. 19, AMA Journal of Ethics. American Medical Association; 2017. p. 1153–6.
47	462	61.	Peters JL. Mitigating the impact of climate change on human health: The role of the medical community.
46	461		Health. 2018;108(S2):S56–7.
45	460	60.	Frumpkin H. The US Health Care Sector's Carbon Footprint: Stomping or Treading Lightly? Am J Public
44	459		2020 Jul 20]. Available from: https://poweringhc.org/
43	458	59.	Sustainable Energy for All. Powering Health Care for Women, Children, and Families [Internet]. 2019 [cited
42	457	58.	Sustainable Energy for All [Internet]. [cited 2020 Jul 20]. Available from: https://www.seforall.org/
41	456	57.	Dholakia H. Solar powered healthcare in developing countries. Nat Energy. 2018;3(9):705–7.
40	455		healthcare facilities in the Global South. Sustain Energy Technol Assessments. 2017;22:92–105.
39	454	56.	Franco A, Shaker M, Kalubi D, Hostettler S. A review of sustainable energy access and technologies for
38	453		2017;41(12):3055–65.
30 37	452	23.	Safety in Low-Resource Settings: A Cross-Sectional Survey of Surgical Providers. World J Surg.
35 36	451	55.	Forrester J, Boyd N, Fitzgerald J, Wilson I, Bekele A, Weiser T. Impact of Surgical Lighting on Intraoperative
34 35	450	54.	achieve the Millennium Development Goal. Int J Gynecol Obstet. 2007;98(3):285–90.
33 34	449	54.	Mbonye A, Mutabazi M, Asimwe J. Declining maternal mortality ratio in Uganda: Priority interventions to
32	448		e0200261.
31 22	447	55.	conceptual framework and complementary data assessment in Malawi. PLoS One. 2018;13(7):e0200261–
30	446	53.	Suhlrie L, Bartram J, Burns J, Joca L, Tomaro J, Rehfuess E. The role of energy in health facilities: A
29	445		Glob Heal Sci Pract. 2013;1(2):249–61.
28	444	52.	facilities of sub-Saharan Africa: a systematic review of data on electricity access, sources, and reliability.
27	443	52.	Adair-Rohani H, Zukor K, Bonjour S, Wilburn S, Kuesel A, Hebert R. Limited electricity access in health
26	442	51.	Coverage and inequalities. Int J Hyg Environ Health. 2018;221(3):409–22.
25	441	51.	Cronk R, Bartram J. Environmental conditions in health care facilities in low- and middle-income countries:
24	440		/pmc/articles/PMC2690142/?report=abstract
23	430	50.	Vol. 83, Milbank Quarterly. Milbank Memorial Fund; 2005 [cited 2020 Jul 20]. p. 247–69. Available from:
22	437	50.	Smith DB. The politics of racial disparities: Desegregating the hospitals in Jackson, Mississippi [Internet].
21	430 437	49.	discourse. Sustainability. 2018;10(7).
20	435 436	40	Jul 20]. Available from: https://www.bmj.com/content/356/bmj.j437 Bergman N. Impacts of the fossil fuel divestment movement: Effects on finance, policy and public
19	434 435	48.	Gray M. Value based healthcare [Internet]. Vol. 356, BMJ (Online). BMJ Publishing Group; 2017 [cited 2020
18	433	40	4;169(5):329–32.
17	432	47.	Tsevat J, Moriates C. Value-based health care meets cost-effectiveness analysis. Ann Intern Med. 2018 Sep
16	431	•=	Planet Heal. 2017;1(9):e357–8.
15	430	46.	Taylor T, Mackie P. Carbon footprinting in health systems: one small step towards planetary health. Lancet
14	429		https://doi.org/10.1007/s10551-018-3818-1
12	428		Ethics [Internet]. 2019 Nov 1 [cited 2020 Jul 20];159(4):1065–87. Available from:
11 12	427	45.	Peters GF, Romi AM, Sanchez JM. The Influence of Corporate Sustainability Officers on Performance. J Bus
10 11	426		17]; <mark>382(7):589–91.</mark> Available from: http://www.nejm.org/doi/10.1056/NEJMp2000331
9 10	425	44.	Salas RN. The Climate Crisis and Clinical Practice. N Engl J Med [Internet]. 2020 Feb 13 [cited 2020 Jul
8	424		p. 1–945. Available from: https://www.ncbi.nlm.nih.gov/books/NBK133363/
7	423		report/technology assessment. Agency for Healthcare Research and Quality (US); 2013 [cited 2020 Jul 17].
6	422		II: an updated critical analysis of the evidence for patient safety practices. [Internet]. Evidence
5	421	43.	Shekelle PG, Wachter RM, Pronovost PJ, Schoelles K, McDonald KM, Dy SM, et al. Making health care safer
4	420		26. Available from: https://pubmed.ncbi.nlm.nih.gov/30018115/
3	419		in patient safety: A progress report. BMJ Qual Saf [Internet]. 2018 Dec 1 [cited 2020 Jul 17];27(12):1019–
2			

1			
2			
3	472		https://www.england.nhs.uk/greenernhs/
4	473	67.	Wise J. Climate emergency: new expert panel will set out how NHS can achieve net zero. BMJ [Internet].
5	474		2020 Jan 24 [cited 2020 Jul 20];368:m310. Available from: https://www.bmj.com/content/368/bmj.m310
6	475	68.	NHS. NHS Net Zero - Call for evidence [Internet]. 2020 [cited 2020 Jul 20]. Available from:
7	476		https://www.engage.england.nhs.uk/survey/nhs-net-zero/
8	477	69.	Moss D. Unique Food Waste Digestor saving thousands for NHS [Internet]. 2011. Available from:
9	478		http://greenhospitals.net/wp-content/uploads/2013/06/Stockport-NHS-Foundation-Trust-UK-Food.pdf
10	479	70.	Gundersen Health System. Envision Energy Independence [Internet]. 2018 [cited 2020 Jul 20]. Available
11	480		from: https://www.gundersenenvision.org/app/files/public/4683/Envision-Energy-Independence-
12	481		Infographic.pdf
13	482	71.	Capturing the Wind's Energy to Create Clean Electricity: Gundersen Health System. 2016.
14	483	72.	A Solar Energy Initiative to Reduce Cost and Carbon Emission Bhagat Chandra Hospital, India [Internet].
15	484	, 2.	2018. Available from: https://www.hospitalesporlasaludambiental.net/wp-
16	485		content/uploads/2018/05/Solar-Energy-Initiative-India.pdf
17	486	73.	Tanuwidjaja G, Huang EY-J, Sutanto IH, Tobias AA, Siong CC, Bahtiar J, et al. Butaro Hospital, a Sustainable
18	487	75.	
19	488		Hospital with Participatory Design and Construction Process. Rev Urban Archit Stud. 2016 Jun 1;14(1):43–
20		74	
21	489	74.	MASS Design Group. The Butaro District Hospital [Internet]. [cited 2020 Jul 20]. Available from:
22	490		https://massdesigngroup.org/work/design/butaro-district-hospital
23	491	75.	World Bank Group. Climate-Smart Healthcare: Low-Carbon and Resilience Strategies for the Health Sector
24	492		[Internet]. Washington, DC; 2017. Available from:
25	493		http://documents1.worldbank.org/curated/en/322251495434571418/pdf/113572-WP-PUBLIC-FINAL-
26	494		WBG-Climate-smart-Healthcare-002.pdf
27	495	76.	Albert Einstein. Sustainability Report 2017 [Internet]. 2017. Available from:
28	496		https://www.einstein.br/Documentos Compartilhados/relatorio_sustentabilidade2017_ingles.pdf
29	497	77.	Reducing hunger and food waste in our community: Melbourne Health, Australia [Internet]. 2019.
30	498		Available from: https://www.greenhospitals.net/wp-content/uploads/2020/01/GGHH-Case-Study-
31	499		Reducing-hunger-and-food-waste-in-our-community-Melbourne-Health.pdf
32	500	78.	Vegetarianism and Utilization of Reusable Food Containers Reduces Carbon Emissions: Buddhist Tzu-Chi
33	501		Dialysis Centre (Penang Branch). 2016.
34	502	79.	Hospital Carpooling App: Give a Ride to Improve Sustainable Mobility: Taichung Tzu Chi Hospital, Tzu Chi
35	503		Medical Foundation [Internet]. 2016. Available from: https://www.hospitalesporlasaludambiental.net/wp-
36	504		content/uploads/2016/11/Hospital-Carpooling-App.pdf
37	505	80.	Green Travel Agreement for Employees: Landspitali, Iceland [Internet]. 2018. Available from:
38	506		https://www.greenhospitals.net/wp-content/uploads/2018/04/Green-Travel-Agreement-for-Employees-
39	507		Iceland.pdf
40	508	81.	Philippine Heart Center: Initiative on Green Procurement [Internet]. Available from:
41	509		https://www.hospitalesporlasaludambiental.net/wp-content/uploads/2016/07/Purchasing-Initiative-on-
42	510		Green-Procurement-Philippine-Heart-Center-Philippines.pdf
43	511	82.	Healthier Hospitals Initiative. Kaiser Permanente Electronic Products Environmental Assessment Tool
44	512		(EPEAT) – Purchasing Environmentally Responsible Computers [Internet]. 2012 [cited 2020 Jul 20].
45	513		Available from: http://healthierhospitals.org/get-inspired/case-studies/kaiser-permanente-electronic-
46	514		mundiverse any important sector many tradition and
47	515		products-environmental-assessment-tool-epeat-
48	010		
49			
50			
50			
52			
53			
55			
54 55			
55 56			
56 57			
58 50			
59 60			https://mc.manuscriptcentral.com/bmi