The Association of Paternal Age and Perinatal Outcomes between 2007 and 2016 in the United States

Journal:	BMJ
Manuscript ID	BMJ.2018.044966.R2
Article Type:	Research
BMJ Journal:	BMJ
Date Submitted by the Author:	19-Sep-2018
Complete List of Authors:	Khandwala, Yash; Stanford Hospital and Clinics, Baker, Valerie L.; Stanford Hospital and Clinics, Obstetrics and Gynecology Shaw, Gary; Stanford Hospital and Clinics, Pediatrics Stevenson, David; Stanford Hospital and Clinics, Pediatrics Lu, Ying; Stanford Hospital and Clinics, Biomedical Data Science Eisenberg, Michael; Stanford University School of Medicine, Urology
Keywords:	Paternal age, Birth, Infant health, Peripartum

The Association of Paternal Age and Perinatal Outcomes between 2007 and 2016 in the United States

Yash S. Khandwala M.D.', Valerie L. Baker M.D. ${ }^{2}$, Gary M. Shaw Ph.D ${ }^{3}$, David Stevenson M.D. ${ }^{3}$, Ying Lu Ph.D ${ }^{4}$, Michael L. Eisenberg M.D.'2

1. Department of Urology, Stanford University School of Medicine, Stanford, CA
2. Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA.
3. Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
4. Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA

Key Words: Paternal age, Birth, Infant health, Peripartum

Corresponding Author:

Michael L. Eisenberg
Department of Urology
Stanford University School of Medicine
300 Pasteur Drive
Stanford, CA 94305-5118
Phone: 650-723-5700
Fax: 650-498-5346
Email: eisenberg@stanford.edu

Abstract

Objective

To evaluate the impact of advanced paternal age (APA) on maternal and perinatal outcomes in the US.

Design

A retrospective, population-based cohort study.

Setting

United States of America.

Subjects

All 40,529,905 documented live births between 2007 and 2016 in the US.

Main outcome measures

Primary perinatal outcomes included were gestational age, birth weight, apgar score, NICU admission, postpartum antibiotics, and seizures. Primary maternal outcomes evaluated were gestational diabetes and preeclampsia. Secondary outcome measured was the number of preventable perinatal events.

Results

Increasing paternal age was associated with increased risk of premature births, low birth weights, and low Apgar scores. After adjusting for maternal age, infants born to fathers 45 years and older had 14% higher odds of being admitted to the NICU (OR 1.14, 1.13-1.16), independent of gestational age, and 18% higher odds of having seizures (OR: 1.18, .97-1.44) compared to fathers 25 to 34 years. There were 34% higher odds of gestational diabetes (OR 1.34, 1.29-1.38) in mothers with the oldest partners. 13.2% ($12.5 \%-13.9 \%$) of premature births and 18.2% ($17.5 \%-18.9 \%$) of gestational diabetes in births associated with older fathers were estimated to be attributable to APA.

Conclusions

APA is associated with negative effects on both mothers and offspring. Given the relatively low prevalence of APA in the US, population level impacts are currently modest. Nevertheless, as APA has doubled in the US over the past generation, further investigation is warranted on the impact of paternal age on birth outcomes and public health.

Introduction

The age at which parents have children within the United States continues to rise. ${ }^{12}$ The number of first births to women older than 35 years has climbed by about 2% annually since the 1970s, and the percentage of all births in the US to fathers over 40 has doubled to 9% over the same time period. While the effects of advanced maternal age on perinatal outcomes have been extensively studied, research on the impact of older fathers on offspring health has been limited mostly to the evaluation of congenital disease risk. ${ }^{3.8}$

Indeed, the high number of male germ-cell divisions in aging fathers has been proposed to increase the risk of autism, genetic abnormalities, psychiatric morbidity, and neoplasia in offspring, but recent studies have also suggested a potential paternal effect on perinatal morbidity. ${ }^{69,14}$ One common explanation arises from the epigenetic changes that occur within spermatocytes, specifically histone modifications and DNA methylation changes in spermatozoa of older men. These alterations occur in regions of the genome that are responsible for several offspring diseases. ${ }^{15}$ Disruption of histone methylation in developing male germ cells may be the precursor to aberrant embryonic and placental development with prior studies suggesting paternal imprinting of aging may affect both fetal growth and maternal health during pregnancy. ${ }^{1.67}$

Utilizing birth registries, several groups have attempted to characterize the risk of advanced paternal age on risk for adverse birth events such as preterm birth, low birth weight, and pre-eclampsia. ${ }^{18}$ However, findings remain inconclusive due to insufficient sample sizes, short study periods, and difficulty obtaining reliable paternal age data. ${ }^{1820}$ Thus, the potential association between advanced paternal age and health of the mother and offspring remains poorly defined. The objective of this study was to examine the association of paternal age on maternal and neonatal health and to estimate the impact of advancing paternal age in the United States.

Methods

Data Source

This retrospective cohort analysis draws on data published by the National Vital Statistics System (NVSS), a federal data sharing program provided by the CDC and the National Center for Health Statistics (NCHS). Through contracts with individual vital registration systems within each state, the NCHS compiles live birth data collected from birth certificates and permits distribution of these statistics for medical research purposes. Standard birth certificates contain self-reported parental demographics such as age, race, and education as well as pregnancy and birth outcomes, which are documented by health care providers. All births occurring within the United States since 1985 are captured by this system. ${ }^{221}$ The NCHS ensures completion, accuracy, and standardization of reporting of vital events by providing training modules and guidelines for healthcare practitioners collecting birth data. ${ }^{22}$ Coding of the data also undergoes rigorous statistical quality checks and is edited for accuracy by the NCHS. If systematic reporting failures are noted, records are returned to the registration site for correction. ${ }^{20}$ This study was exempt from our Institutional Review Board approval as all data are federally mandated for collection and de-identified prior to being made available for analysis. Thus, no patients were directly involved in the study.

Study Cohort and Demographic Variables

All reported live births between 2007 and 2016 within the United States were included in the analysis. Data files were compiled sequentially by year, and all available demographic variables were extracted including age, race, education, marital status, smoking history, and access to care. Paternal age was categorized into ten year intervals: <25 years, 25 to 34 years, 35 to 44 years, 45 years to 54 years, and 55 years and older ${ }^{23}$ Five year intervals were also analyzed though no significant difference in trends were noted (Supplemental Table 1). Racial categories were defined by the US Office of Management and Budget (OMB), and subjects were categorized based on how they self-identified. Data on paternal education was unavailable until 2009 due to NCHS collection policy. Missing paternal data from birth certificates were accounted for using inverse probability weighting (IPW) ${ }^{224}$ To account for inconsistent reporting of paternal data across various demographics, a logistic regression model incorporating maternal age, race, birth year, and education was
utilized to model the probability of paternal reporting for each birth. Inverse probability weighting was subsequently applied to all statistical analyses to maximize generalizability to all births. This weighting methodology was described previously. ${ }^{24}$

Outcomes

The primary outcome of interest was the perinatal risk to child and mother correlated with advanced paternal age. A preliminary literature search was conducted to determine birth outcomes that have previously been associated with advanced paternal ages. Of these variables, those available within the NVSS data files were subsequently included in the analysis. Neonatal outcomes evaluated were premature birth (gestational age <37 weeks), low birth weight (birth weight <2500 grams), low 5-minute Apgar score (<8), requirement of assisted ventilation at birth, admission to the Neonatal Intensive Care Unit (NICU), requirement of postpartum antibiotics, and seizures. ${ }^{2326}$ A neonatal adverse event was defined as the requirement or occurrence of at least one of the following: assisted ventilation, NICU admission, antibiotics, or seizure. The maternal outcomes evaluated were gestational diabetes, preeclampsia, and eclampsia. All variables were categorized as dichotomous while gestational age, birth weight (LBW), and Apgar score were also presented as continuous variables. The sex-ratio of all births was also evaluated for each paternal age group.

Statistical Analysis

The mean paternal age with standard deviations along with standard demographics of all live births were analyzed from 2007 and 2016 as a pooled cohort. Logistic regression models were created to estimate the adjusted odds ratio (AOR) for each perinatal outcome by paternal age group with fathers between 25 and 34 years as the reference. Given the collinearity between paternal and maternal age, stratified analyses based on maternal age and sensitivity analyses were also performed. Moreover, given the association between adverse birth outcomes and prematurity, separate analyses were conducted while limiting analyses to full term infants (Supplemental Table 2). Other subgroup analyses were conducted to ensure that the paternal age association was not confounded by paternal age grouping, birth order, birth year, or missing paternal data (Supplemental Tables). To test for a systematic change in sex-ratio between paternal age groups, the number and percentage of male and female births to each paternal age group were compared. The Wilcoxon rank-sum test was used to determine whether a significant difference existed among age groups. A regression analysis was also conducted to determine adjusted odds ratios of siring a son for each paternal age group.

The number and percentage of men who fathered children with each morbidity were compared. The number of preventable perinatal events if fathers within the United States were all younger than 45 years of age was also estimated. The population attributable risk was calculated using the standard formula (observed prevalence - predicted prevalence of outcome after shift to new distribution of younger fathers)/(observed prevalence) . ${ }^{2728}$ All statistical analysis was carried out using Stata version 14 (College Station, TX) and the userwritten package punaf (Population Attributable Risk Fraction). ${ }^{29}$ Statistical tests were all two-sided and ninetynine percent confidence intervals were provided for precision of the estimates.

Results
A total of $40,529,905$ births occurring within the United States were evaluated between 2007 and 2016. Paternal, maternal and infant demographics were described in Table 1. The mean age of fathers during this time period increased from 30.0 years to 31.2 years.

After adjusting for maternal age, race, education, maternal smoking status, and number of prenatal visits, births sired by the oldest fathers were found to be associated with worse birth outcomes (Table 2). Fathers over 45 years sired children born at earlier gestational ages (on average 0.12 weeks younger, CI: - 0.13 to -0.11) and had 14% higher odds of having a premature birth (<37 weeks) compared to younger fathers (AOR: 1.14, CI: 1.13 to 1.16). Infants born to fathers in the second-oldest age group were also born 20.2 grams lighter, CI: -22.5 to -18.0 , and had a 14% greater risk of low birth weight $(<2500 \mathrm{~g})$ than infants born to younger fathers (AOR: 1.14, CI: 1.12 to 1.15). The odds of having a low Apgar score (<8) was found to be greater for only fathers older than 55 years (AOR: 1.14, CI: 1.08 to 1.20).

Infants born to fathers in the oldest age group also had a significantly higher risk of requiring additional medical care after birth. The odds of the child requiring assisted ventilation increased by 10% (AOR: 1.10, CI: 1.04 to 1.16) and the odds of requiring NICU admission increased by 28% (AOR: $1.28, \mathrm{CI}: 1.24$ to 1.33).

The secondary sex ratio declined with increasing paternal age as shown in Table 3. Younger fathers (< 25 years of age) were more likely to sire a boy than fathers between 25 and 34 years of age after adjustment for other paternal and maternal characteristics including maternal age (AOR: 1.007, CI: [1.003, 1.010]). However, no change in the secondary sex ratio of oldest fathers was noted (AOR: 0.995, CI: [.989, 1.002]). A sub-analysis was additionally conducted excluding births that underwent in vitro fertilization (IVF) (1.53% of all births) with no changes to the conclusions.

Pregnancy related outcomes for mothers were also examined. Fathers older than 45 years had 28% increased odds of a pregnancy complicated by gestational diabetes compared to fathers in the reference group (AOR: $1.28, \mathrm{CI}: 1.27$ to 1.30), though no significant association was found between paternal age and risk of pre-eclampsia or eclampsia (AOR $1.00, \mathrm{CI}: 0.96-1.05$ and AOR $1.03, \mathrm{CI}: 0.84-1.25$, respectively).

After stratification by maternal age, increasing paternal age remained significantly associated with perinatal outcomes with similar trends across all maternal age strata (Figure 1 and Supplemental Figure 1). Similar findings were noted when limiting the analysis to first births to mothers (Supplemental Table 3). In addition, similar findings were identified during separate time periods (i.e. 2007 vs 2016) indicating that these trends were not influenced by recent changes in medical practice (Supplemental Table 4).

The distribution of paternal age groups was recalculated for a scenario in which all fathers were younger than 45 years of age in order to estimate the population attributable risk of advanced paternal age. Table 4 demonstrates that over the last decade, 13% (CI: 12.5% to 13.9%) of all premature births and 14.5% (CI: 13.6% to 15.4%) of infants with low birth weight born to older fathers (under the assumption of a causal relation) can be attributed to the increase in number of fathers older than 45 years. 15.1% (CI: 14.2% to 15.9%) of all NICU admissions and 18.2% (CI: 17.5% to 18.9%) of all gestational diabetes diagnoses are also attributable to these older fathers.

Discussion

Paternal age is rising in the United States with potential implications for maternal and child health. Infants born to fathers over 35 years were found to be at a higher risk of premature birth, low birth weight, and increased morbidity (e.g. assisted ventilation, NICU stay, antibiotic administration) during the perinatal period. A large percentage of cases of premature births, LBW, and NICU admissions in children of older fathers was found to be associated with advanced paternal age. In addition, increased paternal age is negatively associated with maternal health as identified through an elevated risk of gestational diabetes. Though, as the prevalence of advanced paternal age remains modest, the impact of these associations at a population level remains uncertain. Indeed, the increased odds ratios are <1.5, suggesting the overall risk of these outcomes likely still remains low. The increased risks associated with father's age appears to be "dose" dependent with a J-shaped association curve. While the youngest fathers tend to have worse perinatal outcomes as men in their twenties, fathers that are 35 years and older appear to have significantly worse perinatal outcomes. This trend continues with increasing age (dose).

The initial identification of paternal contribution to birth outcome dates back to Willhelm Weinberg's discovery of a correlation between achondroplasia and birth order in 1912, but it was James Crow's seminal work at the turn of the century that spurred significant interest into paternal age effects on infant health. ${ }^{3{ }^{30}}$ Still, there is a dearth of published data on the paternal effects on birth outcomes, and the little existing data have been mostly equivocal. Studies evaluating the association between paternal age and risk of preeclampsia, low Apgar scores, and NICU admissions have also been rare.

Astolfi and colleagues evaluated 1.5 million Italian births between 1990 and 1998 and observed that fathers 45 to 49 years of age had a higher risk of significantly preterm births (<32 weeks of gestation) compared to fathers 25 to 29 years of age, particularly in first-born children. ${ }^{19}$ In contrast, a study of 2.5 million American births to married, nulliparous women between 1995 and 2000 uncovered an association between teenage fathers
and preterm births but no association for fathers with advanced age. ${ }^{20}$ However, in this study only 0.5% of births (13,907 total births) were to fathers over the age of 45 . The risk of other perinatal complications such as preeclampsia, low birth weight, and low Apgar scores also remains uncertain given mixed findings from mostly underpowered studies. ${ }^{182522_{4} 31-36}$ While Reichman and Teitler initially found that fathers older than 35 years were at increased risk for LBW, their findings were later questioned due to missing paternal ages thought to result in selection bias. ${ }^{2033}$

Recent studies have begun to uncover a potential epigenetic link between the aging paternal genome and offspring health outcomes. ${ }^{37}$ Age-dependent alterations, such as DNA methylation, have been observed in mammalian somatic and germline cells. Higher rates of methylation were found on ribosomal DNA of older rat spermatozoa compared to younger controls. ${ }^{\text {s8 }}$ Additionally, genomic imprinting has been suggested to influence placental growth, morphology, and nutrient transfer, which in part explains the paternal influence on birth outcomes. ${ }^{39}$ For example, the overexpression of a demethylase enzyme (Kdm1a) in mice was found to result in loss of methylation of H3K4, an epigenetic mark associated with developmental genes in sperm. The offspring of these mice had increased rates of birth defects and neonatal mortality. ${ }^{\text {not }}$ Similarly, IGF2 is a paternally expressed gene susceptible to epigenetic modification that affects growth factors for both the placenta and embryo. ${ }^{16.17}$ This may partially explain the increased placental weight found in pregnancies to older fathers which in turn has been associated with an increased risk for pre-eclampsia and other maternal comorbidities (e.g. gestational diabetes). ${ }^{4}$ It has become increasingly clear that male aging influences germline integrity through other mechanisms as well, such as DNA fragmentation, telomere lengthening, mutations, and overall genomic instability. ${ }^{23}$ Investigators have estimated that males develop approximately two additional mutations in their germline DNA throughout life with de novo mutations increasing the risk of preterm birth. ${ }^{22 / 3 /}$ There certainly exists a need to further elucidate the potential causal relationship between advanced paternal age and maternal and infant outcomes, though it appears that the paternal effect on placental health may play a nontrivial, though speculative, role.

The current study incorporates all live births over a span of ten years allowing for an unbiased analysis of recent trends. The pooling of all births during this time period minimizes the risk of confounding from yearly fluctuations in perinatal outcomes. Moreover, similar measures of association were identified from separate times periods within the cohort indicating that findings do not reflect a time dependent phenomenon. Given the increased risk of negative birth outcomes in premature births, a subset analysis with only term births was conducted to corroborate the paternal age findings. The addition of IPW further reduces the overrepresentation of certain demographics of fathers: mostly older, college-educated fathers who are more likely to be present at birth. ${ }^{2}$ There are several other advantages of utilizing national birth certificate data provided by the NCHS. This unique system allows for incorporation of important covariates as well as for the formulation of propensity weighting to adjust for missing paternal data. The inclusion of all births within the United States allows for estimation of rates of occurrence and associated attributable risk fractions, which facilitates evaluation of the public health impact of aging fathers. ${ }^{29}$

As over 12% of births to fathers 45 years and older with adverse outcomes might have been prevented were the father younger, the significance of these data is most important to parents planning their reproductive future. Preconception counseling guidelines may need to change to incorporate the possibility that delaying parenthood for fathers may not be as inconsequential as previously understood. The cumulative risk over hundreds of thousands of births to older fathers is also likely to be significant both in terms of economic burden and overall public health.

While this study found an overall positive association between older fathers and declining sex ratio, the oldest group still maintained a similar proportion of male compared to female offspring as the reference group. Thus, there appears to be no meaningful alteration in secondary sex ratio based on paternal age. It remains likely that an altered secondary sex ratio is due to a combination of genetics and environmental exposures, which are more likely to explain the declining ratio than advanced paternal age.s

There are several limitations of using the Vital Statistics System for perinatal research. The natality database uses birth certificate data that are completed by parents and health-care workers and reviewed carefully for errors but remains susceptible to inaccuracies. This database is also limited to live births which

[^0]prevents the inclusion of stillbirths in the analysis. However, as fetal mortality is known to be associated with advanced paternal age, the inclusion of these data would likely reinforce the findings of this study ${ }^{46}$ Though inverse probability weighting was used to adjust for missing paternal data, the potential for over-representation of fathers from certain sociodemographic backgrounds remains. ${ }^{2}$ Multiple births to the same father are also not accounted for in this study as all data are collected at the maternal level, allowing for the potential bias of some at-risk fathers disproportionately contributing to estimated effects. Finally, despite attempts to adjust and account for potential maternal confounding using regression analysis and stratification, some residual confounding effects from older fathers being associated with older mothers may remain.

Nevertheless, this is the largest known study to evaluate potential fetal-maternal risks associated with advancing paternal age. While it is important to note that the absolute risk of advancing paternal age on adverse perinatal conditions remains modest, our findings emphasize the need to further investigate the public health implications of the rising paternal age within the US and other developed countries.

References

1. Martin JA, Hamilton BE, D P, et al. National Vital Statistics Reports Births : Final Data for 2014. Statistics (Ber). 2015;64(1):1-104.
2. Khandwala YS, Zhang CA, Lu Y, Eisenberg ML. The age of fathers in the USA is rising: an analysis of 168867480 births from 1972 to 2015. Hum Reprod. 2017;32(10):1-7. doi:10.1093/humrep/dex267
3. Conti S, Eisenberg M. Paternal aging and increased risk of congenital disease, psychiatric disorders, and cancer. Asian J Androl. 2016;18(3):420. doi:10.4103/1008-682X. 175097
4. Wiener-Megnazi Z, Auslender R, Dirnfeld M. Advanced paternal age and reproductive outcome. Asian J Androl. 2012;14(1):69-76. doi:10.1038/aja.2011.69
5. LJ H. Advanced maternal age -- how old is too old? N Engl J Med. 2004;351(19):1927-1929 3p. http://search.ebscohost.com/login.aspx?direct=true\&db=c8h\&AN=106597637\&lang=es\&site=ehost-live.
6. Puleo CM, Schmeidler J, Reichenberg A, et al. Advancing paternal age and autism. Autism. 2012;16:367380. doi:10.1177/1362361311427154
7. Croen LA, Najjar D V, Fireman B, Grether JK. Maternal and Paternal Age and Risk of Autism Spectrum Disorders. Arch Pediatr Adolesc Med. 2007;161(4):334-340. doi:10.1001/archpedi.161.4.334
8. Paulson RJ, Boostanfar R, Tourgeman DE, Slater CC, Francis MM, Jain JK. Pregnancy in the Sixth Decade of Life. 2012;288(18):2320-2323. doi:10.1001/jama.288.18.2320
9. Crow JF. The origins, patterns and implications of human spontaneous mutation. Nat Rev Genet. 2000;1(1):40-47. doi:10.1038/35049558
10. Frans EM, Sandin S, Reichenberg A, Lichtenstein P, Långström N, Hultman CM. Advancing Paternal Age and Bipolar Disorder. Arch Gen Psychiatry. 2008;65(9):1034. doi:10.1001/archpsyc.65.9.1034
11. Kong A, Frigge ML, Magnusson G, et al. Rate of de novo mutations, father's age, and disease risk. Nature. 2013;488(7412):471-475. doi:10.1038/nature11396.Rate
12. Waller DK, Correa A, Vo TM, et al. The population-based prevalence of achondroplasia and thanatophoric dysplasia in selected regions of the US. Am J Med Genet Part A. 2008;146(18):2385-2389. doi:10.1002/ajmg.a. 32485
13. D'Onofrio BM, Rickert ME, Frans E, et al. Paternal Age at Childbearing and Offspring Psychiatric and Academic Morbidity. JAMA Psychiatry. 2014;71(4):432. doi:10.1001/jamapsychiatry.2013.4525
14. Sipos A, Rasmussen F, Harrison G, et al. Paternal age and schizophrenia: a population based cohort study. Bmj. 2004;329(7474):1070-0. doi:10.1136/bmj.38243.672396.55
15. Jenkins TG, Aston KI, Pflueger C, Cairns BR, Carrell DT. Age-Associated Sperm DNA Methylation Alterations: Possible Implications in Offspring Disease Susceptibility. PLoS Genet. 2014;10(7).
doi:10.1371/journal.pgen. 1004458
16. Miozzo M, Simoni G. The Role of Imprinted Genes in Fetal Growth. Neonatology. 2002;81(4):217-228. https://www.karger.com/DOI/10.1159/000056752.
17. Parks JC, Tignanelli MD, McCubbin NI, McCallie BR, Schoolcraft WB, Katz-Jaffe M. Advanced paternal age directly impacts placental epigenetic mechanisms. Fertil Steril. 2017;108(3):e24-e25. doi:10.1016/j.fertnstert.2017.07.088
18. Nybo Andersen A-M, Urhoj SK. Is advanced paternal age a health risk for the offspring? Fertil Steril. 2017;107(2):312-318. doi:10.1016/j.fertnstert.2016.12.019
19. Astolfi P, De Pasquale A, Zonta LA. Paternal age and preterm birth in Italy, 1990 to 1998. Epidemiology. 2006;17(2):218-221. doi:10.1097/01.ede.0000197053.61176.f4
20. Chen XK, Wen SW, Krewski D, Fleming N, Yang Q, Walker MC. Paternal age and adverse birth outcomes: Teenager or 40+, who is at risk? Hum Reprod. 2008;23(6):1290-1296.
doi:10.1093/humrep/dem403
21. Schoendorf KC, Branum AM. The use of United States vital statistics in perinatal and obstetric research. Am J Obstet Gynecol. 2006;194(4):911-915. doi:10.1016/j.ajog.2005.11.020
22. Committee Opinion.; 2015. doi:10.1016/S0140-6736(16)31898-0
23. Sharma R, Agarwal A, Rohra VK, Assidi M, Abu-Elmagd M, Turki RF. Effects of increased paternal age
on sperm quality, reproductive outcome and associated epigenetic risks to offspring. Reprod Biol Endocrinol. 2015;13(1):1-20. doi:10.1186/s12958-015-0028-x
24. Mansournia MA, Altman DG. Inverse Probability Weighting. BMJ. 2016;189(January):1-2. doi:10.1136/bmj.i189
25. Sun Y, Vestergaard M, Zhu JL, Madsen KM, Olsen J. Paternal age and Apgar scores of newborn infants. Epidemiology. 2006;17(4):473-474. doi:10.1097/01.ede.0000220690.43455.22
26. Shah PS. Paternal factors and low birthweight, preterm, and small for gestational age births: a systematic review. Am J Obstet Gynecol. 2010;202(2):103-123. doi:10.1016/j.ajog.2009.08.026
27. Benichou J. A review of adjusted estimators of attributable risk. Stat Methods Med Res. 2001;10(3):195216. doi:10.1191/096228001680195157
28. Macinnis N, Woolcott CG, McDonald S, Kuhle S. Population Attributable Risk Fractions of Maternal Overweight and Obesity for Adverse Perinatal Outcomes. Sci Rep. 2016;6(March):1-7.
doi:10.1038/srep22895
29. Newson R. Attributable and unattributable risks and fractions and other scenario comparisons. Stata J. 2012;2(May):1-24.
30. Crow JF. There's Something Curious About Paternal-Age Effects. Science (80-). 2003;301(5633):606607. doi:10.1126/science. 1088552
31. Alio AP, Salihu HM, Mcintosh C, et al. The Effect of Paternal Age on Fetal Birth Outcomes. Am J Mens Health. 2012;6(5):427-435. doi:10.1177/1557988312440718
32. Harlap S, Paltiel O, Deutsch L, et al. Paternal age and preeclampsia. Epidemiology. 2002;13(6):660-667. doi:10.1097/01.EDE.0000031708.99480.70
33. Reichman NE, Teitler JO. Paternal age as a risk factor for low birthweight. Am J Public Health. 2006;96(5):862-866. doi:10.2105/AJPH.2005.066324
34. Tough SC, Faber AJ, Svenson LW, Johnston DW. Is paternal age associated with an increased risk of low birthweight, preterm delivery, and multiple birth? Can J Public Heal. 2003;94(2).
35. Zhu JL, Madsen KM, Vestergaard M, Basso O, Olsen J. Paternal age and preterm birth. Epidemiology. 2005;16(2):259-262. doi:10.1097/01.ede.0000152526.63279.da
36. Parker JD. Influence of Paternal Characteristics on the Risk of Low Birth Weight. Am J Epidemiol. 1992;136(4).
http://aje.oxfordjournals.org/content/136/4/399.short\\npapers2://publication/uuid/C012F2E6-9DE1-47A4-8EAB-0E9B53B1DE87.
37. Abbasi J. The paternal epigenome makes its mark. JAMA. 2017;317(20):2049-2051. doi:10.1001/jama.2017.1566
38. Oakes CC, Smiraglia DJ, Plass C, Trasler JM, Robaire B. Aging results in hypermethylation of ribosomal DNA in sperm and liver of male rats. Proc Natl Acad Sci. 2003;100(4):1775-1780.
doi:10.1073/pnas. 0437971100
39. Miozzo M, Simoni G. The role of imprinted genes in fetal growth. Biol Neonate. 2002;81(4):217-228. doi:10.1016/j.mam.2012.06.009
40. Yamauchi Y, Shaman JA, Ward WS. Non-genetic contributions of the sperm nucleus to embryonic development. Asian J Androl. 2011;13(1):31-35. doi:10.1038/aja.2010.75
41. Siklenka K, Erkek S, Godmann M, et al. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science (80-). 2015;350(6261). doi:10.1126/science.aab2006
42. Kong A, Frigge ML, Masson G, et al. Rate of de novo mutations and the importance of father's age to disease risk. Nature. 2012;488(7412):471-475. doi:10.1038/nature11396
43. Li J, Oehlert J, Snyder M, Stevenson DK, Shaw GM. Fetal de novo mutations and preterm birth. 2017:116.
44. Strøm-Roum EM, Haavaldsen C, Tanbo TG, Eskild A. Paternal age, placental weight and placental to birthweight ratio: A population-based study of 590835 pregnancies. Hum Reprod. 2013;28(11):31263133. doi:10.1093/humrep/det299
45. Marcus M, Kiely J, Xu F, McGeehin M, Jackson R, Sinks T. Changing sex ratio in the United States,
46. Nybo Andersen A-M, Hansen KD, Andersen PK, Davey Smith G. Advanced Paternal Age and Risk of Fetal Death: A Cohort Study. Am J Epidemiol. 2004;160(12):1214-1222. doi:10.1093/aje/kwh332

Table 1. Paternal, maternal, and infant demographics by paternal age group. Data described as the number of births and percentage of all births within each paternal age group. Missing paternal age data is presented as the number of birth certificates without paternal age for each category and the percentage of the total number of missing paternal age data.

[^1]Table 2a. Multivariate linear regression models predicting effect of paternal age on birth outcomes before and after adjustment for year, maternal age, race, and education, parental race and education, prenatal visits, tobacco use, and marital status.

		Paternal age (years)								
		<25		25-34	35-44		45-54		55+	
Gestational Age (weeks)	unadjusted	-0.03	[-.04, -.03]	reference	-0.18	[-.18, -.18]	-0.36	[-.37, -.35]	-0.46	[-.48, -.44]
	adjusted	-0.01	[-.02, -.01]	reference	-0.06	[-.07, -.06]	-0.12	[-.13, -.11]	-0.17	[-.20, -.14]
Birth Weight (g)	unadjusted	-86.6	[-87.3, -85.9]	reference	-1.97	[-2.59, -1.34]	-53.4	[-54.9, -51.9]	-104.2	[-108.7, -99.7]
	adjusted	-22.9	[-24.1, -21.7]	reference	0.95	[-.02, 1.91]	-20.2	[-22.5, -18.0]	-49.2	[-55.9, -42.5]
Apgar (5 minute)	unadjusted	-0.03	[-.04, -.03]	reference	0.01	[0.00, 0.01]	-0.02	[-.03, -.02]	-0.05	[-.06, -.05]
	adjusted	-0.02	[-.02, -.02]	reference	0.01	[.01, .01]	-0.01	[-.01, -.01]	-0.02	[-.03, -.01]

Table 2b. Multivariate logistic regression models predicting effect of paternal age on birth outcomes before and after adjustment for year, maternal age, race, and education, parental race and education, prenatal visits, tobacco use, and marital status. Adverse event is defined as the requirement of assisted ventilation, NICU, antibiotics, or seizure after bith.

		Paternal age (years)								
		<25		25-34	35-44		45-54		55+	
Premature Birth (< 37 weeks)	unadjusted adjusted	1.15	[1.15, 1.16]	reference	1.14	[1.14, 1.15]	1.42	[1.41, 1.43]	1.65	[1.62, 1.69]
		1.03	[1.02, 1.04]	reference	1.06	[1.05, 1.06]	1.14	[1.13, 1.15]	1.25	[1.22, 1.29]
Low Birth Weight (<2500 g)	unadjusted	1.20	[1.19, 1.20]	reference	1.14	[1.13, 1.14]	1.46	[1.45, 1.47]	1.78	[1.73, 1.82]
	adjusted	1.05	[1.04, 1.06]	reference	1.04	[1.04, 1.05]	1.14	[1.12, 1.15]	1.27	[1.22, 1.31]
Low 5 Minute Apgar Score (<8)	unadjusted	1.23	[1.23, 1.24]	reference	0.98	[.97, .98]	1.15	[1.14, 1.17]	1.34	[1.29, 1.39]
	adjusted	1.11	[1.10, 1.12]	reference	0.97	[.96, .98]	1.04	[1.02, 1.06]	1.14	[1.08, 1.20]
Assisted Ventilation	unadjusted	1.06	[1.05, 1.07]	reference	1.02	[1.02, 1.03]	1.17	[1.15, 1.18]	1.27	[1.21, 1.32]
	adjusted	1.04	[1.02, 1.05]	reference	1.00	[.99, 1.01]	1.06	[1.04, 1.16]	1.10	[1.04, 1.16]
NICU	unadjusted	1.03	[1.03, 1.04]	reference	1.12	[1.11, 1.12]	1.39	[1.38, 1.40]	1.64	[1.59, 1.68]
	adjusted	1.01	[1.00, 1.02]	reference	1.03	[1.03, 1.04]	1.14	[1.13, 1.16]	1.28	[1.24, 1.33]
Antibiotics	unadjusted	1.13	[1.12, 1.14]	reference	0.96	[.95, .97]	1.09	[1.07, 1.11]	1.20	[1.13, 1.26]
	adjusted	1.04	[1.03, 1.06]	reference	0.96	[.95, .97]	1.03	[1.00, 1.05]	1.06	[.99, 1.14]
Seizures	unadjusted	1.14	[1.06, 1.22]	reference	0.98	[.91, 1.05]	1.13	[.97, 1.32]	1.21	[.77, 1.89]
	adjusted	1.06	[.93, 1.20]	reference	1.00	[.91, 1.11]	1.18	[.97, 1.44]	1.30	[.77, 2.20]
Adverse Event	unadjusted	1.05	$[1.05,1.06]$		1.08	$[1.07,1.08]$	1.31	[1.30, 1.32]	1.52	[1.48, 1.55]
	adjusted	1.03	$[1.02,1.03]$	reference	1.02	[1.01, 1.02]	1.12	[1.11, 1.13]	1.24	[1.20, 1.28]

Table 2c. Multivariate logistic regression models predicting effect of paternal age on maternal pregnancy outcomes before and after adjustment for year, maternal age, race, and education, parental race and education, prenatal visits, tobacco use, and marital status.

Table 3. Comparison of sex-ratio by paternal age group. p value was derived from a non-parametric test of trend for the decreasing sex-ratio across the advancing paternal age groups.

	Paternal age (years)							
	<25		$25-34$		$35-44$	$45-54$	$55+$	
Female (\%)	$4,134,050$	48.66%	$10,351,338$	48.78%	$4,612,303$	48.82%	603,896	48.89%
Male (\%)	$4,361,018$	51.34%	$10,870,121$	51.22%	$4,835,218$	51.18%	632,795	48.78%
OR [99\% CI]	1.007	$1.003,1.010$	reference	0.997	$[.994, .1 .00]$	0.995	$[.989,1.002]$	1.004

Table 4. Total number of affected births (weighted) and births attributable to paternal age 45 years and older for all perinatal outcomes.
Attributable births are presented as a percentage of all affected births along with the 95% confidence interval.

\# of Affected Births to:									
	Total Cases	Fathers < 45	\%	Fathers 45+	\%	p value	\% of Cases Prevented if Father were < 45		
Premature Birth	4,608,250	4,409,654	11.3\%	198,597	14.6\%	<0.001	13.2\%	12.5\%	13.9\%
Low Birth Weight	3,141,068	3,003,266	7.7\%	137,802	10.1\%	<0.001	14.5\%	13.6\%	15.4\%
Low Apgar Score	1,629,302	1,568,507	4.0\%	60,795	4.5\%	<0.001	5.9\%	4.5\%	7.2\%
Gestational Diabetes	2,225,092	2,095,396	5.3\%	129,696	9.5\%	<0.001	18.2\%	17.5\%	18.9\%
Pre-eclampsia	1,876,535	1,807,634	4.6\%	68,901	5.1\%	<0.001	3.9\%	2.8\%	5.0\%
Eclampsia	97,069	93,219	0.2\%	3,850	0.3\%	<0.001	5.4\%	0.1\%	11.0\%
Assisted Ventilation	1,483,395	1,426,653	3.6\%	56,742	4.2\%	<0.001	8.6\%	7.2\%	9.9\%
NICU	3,035,690	2,901,941	7.4\%	133,749	9.8\%	<0.001	15.1\%	14.2\%	15.9\%
Antibiotics	816,272	786,280	2.0\%	29,992	2.2\%	<0.001	6.2\%	4.4\%	8.0\%
Seizures	11,794	11,348	0.0\%	446	0.0\%	0.041	19.9\%	2.9\%	36.7\%
Adverse Events	3,351,823	3,209,968	8.2\%	141,855	10.4\%	<0.001	12.2\%	11.5\%	13.0\%

Supplemental Table 1. Multivariate linear and logistic regression model replicas of Table $\mathbf{2}$ with ' 5 year paternal age intervals'

	Paternal age (years)														
	<20		20-24		25-29	30-34		35-39		40-44		45-50		>50	
Gestational Age (weeks)	-0.10	[-.11, -.09]	-0.02	[-.02, -.01]	reference	-0.05	[-.06, -.05]	-0.08	[-.09, -.08]	-0.13	[-.13, -.12]	-0.15	[-.16, -.14]	-0.18	[-.20, -.16]
Birth Weight (g)	-54.7	[-57.1, -52.2]	-16.3	[-17.6, -15.1]	reference	4.0	[3.0, 4.9]	6.0	[4.8, 7.1]	-3.6	[-5.3, -2.0]	-15.3	[-17.9, -12.7]	-33.8	[-37.5, -30.0]
Apgar (5 minute)	-0.04	[-.05, -.04]	-0.01	[-.01, -.01]	reference	0.01	[0.01, 0.01]	0.01	[.01, .01]	0.00	[.00, .01]	-0.01	[-.01, .00]	-0.01	[-.02, -.01]
Paternal age (years)															
	<20		20-24		25-29	30-34		35-39		40-44		45-50		> 50	
Premature Birth (< 37 weeks)	1.14	[1.13, 1.16]	1.03	[1.02, 1.04]	reference	1.04	[1.03, 1.05]	1.06	[1.06, 1.07]	1.12	[1.11, 1.13]	1.16	[1.15, 1.18]	1.22	[1.20, 1.25]
Low Birth Weight (<2500 g)	1.15	[1.13, 1.17]	1.05	[1.04, 1.06]	reference	1.03	[1.03, 1.04]	1.05	[1.04, 1.06]	1.10	[1.09, 1.11]	1.15	[1.13, 1.17]	1.23	[1.21, 1.26]
.ow 5 Minute Apgar Score (<8	1.24	[1.21, 1.27]	1.07	[1.06, 1.08]	reference	0.96	[.95, .97]	0.94	[.93, .95]	0.98	[.97, 1.00]	1.01	[.99, 1.03]	1.06	[1.03, 1.09]
Assisted Ventilation	1.11	[1.09, 1.14]	1.03	[1.01, 1.04]	reference	1.00	[.99, 1.01]	0.99	[.98, 1.00]	1.02	[1.01, 1.04]	1.06	[1.03, 1.08]	1.09	[1.05, 1.12]
NICU	1.08	[1.06, 1.10]	1.01	[1.00, 1.02]	reference	1.03	[1.02, 1.04]	1.03	[1.02, 1.04]	1.10	[1.09, 1.11]	1.16	[1.14, 1.17]	1.23	[1.21, 1.26]
Antibiotics	1.12	[1.09, 1.15]	1.02	[1.01, 1.04]	reference	0.98	[.97, .99]	0.94	[.92, .95]	0.97	[.95, .99]	1.01	[.98, 1.04]	1.04	[1.00, 1.09]
Seizures	0.97	[.75, 1.25]	1.08	[.94, 1.23]	reference	1.02	[.92, 1.13]	1.01	[.89, 1.14]	1.03	[.87, 1.21]	1.23	[.98, 1.55]	1.15	[.83, 1.59]
Adverse Event	1.10	[1.08, 1.11]	1.02	[1.01, 1.03]	reference	1.02	[1.01, 1.02]	1.01	[1.01, 1.02]	1.07	[1.06, 1.08]	1.12	[1.11, 1.14]	1.20	[1.17, 1.22]
	Paternal age (years) 20 $20-24$ $29-29$ $30-34$														
								35-39		40-44		45-50		>50	
Gestational Diabetes	0.59	[.57, .61]	0.91	[.90, .92]	reference	1.16	[1.15, 1.17]	1.25	[1.24, 1.26]	1.34	[1.32, 1.35]	1.42	[1.40, 1.44]	1.44	[1.41, 1.47]
Pre-eclampsia	1.12	[1.10, 1.15]	1.04	[1.02, 1.05]	reference	0.96	[.96, .97]	0.94	[.93, .95]	0.97	[.96, .99]	0.97	[.95, .99]	0.99	[.96, 1.01]
Eclampsia	1.21	[1.11, 1.32]	1.07	[1.02, 1.13]	reference	0.95	[.92, .99]	0.95	[.91, 1.00]	1.00	[.94, 1.06]	0.99	[.91, 1.08]	1.01	[.90, 1.13]

Supplemental Table 2. Multivariate linear and logistic regression model replicas of Table 2 with only 'term births,' defined as births at least 37 weeks into gestation.

	Paternal age (years)								
	<25		25-34	35-44		45-54		55+	
Birth Weight (g)	-22.4	[-23.4, -23.4]	reference	5.38	[4.6, 6.2]	-9.3	[-11.2, -7.4]	-30.0	[-35.7, -24.4]
Apgar (5 minute)	-0.02	[-.02, -.02]	reference	0.01	[.01, .01]	0.00	[-.01, .01]	-0.01	[-.02, -.01]
	Paternal age (years)								
	<25		25-34	35-44		45-54		55+	
Low Birth Weight (<2500 g)	1.07	[1.05, 1.08]	reference	1.04	[1.02, 1.05]	1.18	[1.15, 1.20]	1.36	[1.28, 1.43]
Low 5 Minute Apgar Score (<8)	1.15	[1.13, 1.17]	reference	0.95	[.94, .96]	1.01	[.99, 1.04]	1.15	[1.07, 1.23]
Assisted Ventilation	1.05	[1.04, 1.07]	reference	0.98	[.97, .99]	1.05	[1.02, 1.07]	1.09	[1.02, 1.18]
NICU	1.02	[1.00, 1.03]	reference	1.01	[1.00, 102]	1.16	[1.14, 1.18]	1.37	[1.31, 1.44]
Antibiotics	1.08	[1.06, 1.10]	reference	0.91	[.90, .93]	1.00	[.97, 1.04]	1.06	[.96, 1.17]
Seizures	1.08	[.94, 1.25]	reference	0.99	[.88, 1.11]	1.08	[.85, 1.37]	1.18	[.61, 2.27]
Adverse Event	1.04	[1.03, 1.05]	reference	0.99	[.99, 1.00]	1.11	[1.10, 1.13]	1.27	[1.22, 1.33]
	Paternal age (years)								
	<25		25-34	35-44		45-54		55+	
Gestational Diabetes	0.82	[.81, .83]	reference	1.16	[1.15, 1.16]	1.28	[1.27, 1.30]	1.34	[1.29, 1.39]
Pre-eclampsia	1.06	[1.05, 1.08]	reference	0.96	[.95, .97]	0.97	[.96, .99]	0.97	[.92, 1.02]
Eclampsia	1.12	[1.06, 1.19]	reference	0.98	[.93, 1.02]	1.00	[.91, 1.10]	1.09	[.83, 1.41]

Supplemental Table 3. Multivariate linear and logistic regression model replicas of Table 2 with only 'maternal first births'

	Paternal age (years)								
	<25		25-34	35-44		45-54		55+	
Gestational Age (weeks)	-0.03	[-.03, -.02]	reference	-0.08	[-.09, -.07]	-0.14	[-.16, -.12]	-0.17	[-.23, -.11]
Birth Weight (g)	-8.5	[-19.4, -6.6]	reference	-17.4	[-19.4, -15.5]	-30.0	[-34.9, -25.0]	-47.2	[-60.8,-33.6]
Apgar (5 minute)	-0.01	[-.01, .00]	reference	0.00	[.00, .00]	0.00	[-.01, .01]	0.00	[-.02, .02]
	Paternal age (years)								
	<25		25-34	35-44		45-54		55+	
Premature Birth (<37 weeks)	1.02	[1.01, 1.03]	reference	1.10	[1.09, 1.11]	1.16	[1.13, 1.19]	1.23	[1.16, 1.32]
Low Birth Weight (<2500 g)	0.99	[.97, 1.00]	reference	1.10	[1.09, 1.12]	1.15	[1.12, 1.19]	1.20	[1.12, 1.29]
Low 5 Minute Apgar Score (<8)	1.02	[1.01, 1.04]	reference	0.99	[.97, 1.01]	0.98	[.94, 1.02]	0.98	[.88, 1.09]
Assisted Ventilation	0.98	[.96, 1.00]	reference	1.01	[.99, 1.02]	1.02	[.98, 1.06]	0.99	[.89, 1.10]
NICU	0.93	[.92, .95]	reference	1.06	[1.05, 1.07]	1.11	[1.08, 1.14]	1.15	[1.07, 1.23]
Antibiotics	0.96	[.94, .98]	reference	0.98	[.95, 1.00]	0.97	[.92, 1.02]	1.00	[.88, 1.15]
Seizures	0.89	[.75, 1.07]	reference	0.92	[.78, 1.10]	1.07	[.73, 1.58]	0.71	[.19, 2.67]
Adverse Event	0.95	[.94, .96]	reference	1.05	[1.04, 1.06]	1.08	[1.05, 1.11]	1.12	[1.05, 1.19]
	Paternal age (years)								
	<25		25-34	35-44		46-54		55+	
Gestational Diabetes	0.80	[.78, .81]	reference	1.12	[1.11, 1.14]	1.21	[1.18, 1.25]	1.38	[1.27, 1.49]
Pre-eclampsia	0.97	[.95, .98]	reference	0.97	[.96, .98]	0.91	[.88, .94]	0.93	[.85, 1.01]
Eclampsia	0.98	[.92, 1.05]	reference	1.02	[.96, 1.09]	0.94	[.81, 1.09]	1.10	[.77, 1.57]

Supplemental Table 4a. Multivariate linear and logistic regression model replicas of Table 2 with 'births from 2007'

	Paternal age (years)								
	<25			35-44		45-54		55+	
Gestational Age (weeks)	-0.03	[-.05, -.02]	reference	-0.04	[-.05, -.02]	-0.04	[-.07, -.01]	-0.04	[-.15, .08]
Birth Weight (g)	-31.4	[-35.3, -27.5]	reference	4.5	[1.2, 7.9]	-14.2	[-16.1, 4.1]	-32.3	[-58.3, -6.3]
Apgar (5 minute)	-0.01	[-.02, -.01]	reference	0.01	[-.01, .01]	-0.01	[-.02, .00]	-0.02	[-.05, .01]
	Paternal age (years)								
	<25		25-34	35-44		45-54		55+	
Premature Birth (<37 weeks)	1.07	[1.05, 1.09]		1.03	[1.01, 1.05]	1.1	[1.06, 1.15]	1.14	[1.02, 1.28]
Low Birth Weight (<2500 g)	1.09	[1.06, 1.11]	reference	1.03	[1.01, 1.06]	1.07	[1.02, 1.12]	1.26	[1.11, 1.43]
Low 5 Minute Apgar Score (<8)	1.15	[1.10, 1.20]	reference	0.95	[.91, .99]	1.04	[.96, 1.14]	1.06	[.83, 1.35]
Assisted Ventilation	1.05	[1.03, 1.07]	reference	1.02	[1.00, 1.04]	1.20	[1.13, 1.19]	1.25	[1.18, 1.26]
NICU	1.02	[1.00, 1.04]	reference	1.05	[1.03, 1.07]	1.15	[1.12, 1.17]	1.26	[1.22, 1.33]
Antibiotics	1.03	[.99, 1.04]	reference	0.95	[.91, .99]	1.08	[1.03, 1.15]	1.03	[.91, 1.24]
Seizures	1.13	[.94, 1.46]	reference	0.96	[.68, 1.14]	1.32	[.95, 1.78]	1.19	[.65, 1.90]
Adverse Event	1.29	[1.15, 1.44]	reference	1.07	[.97, 1.18]	1.12	[.91, 1.38]	1.16	[.64, 2.12]
	Paternal age (years)								
	<25		25-34	35-44		45-54		55+	
Gestational Diabetes	0.81	[.78, .85]	reference	1.15	[1.12, 1.18]	1.33	[1.26, 1.40]	1.34	[1.15, 1.56]
Pre-eclampsia	1.10	[1.06, 1.14]	reference	0.9	[.87, .93]	0.95	[.88, 1.01]	0.90	[.73, 1.11]
Eclampsia	1.29	[1.15, 1.44]	reference	1.07	[.97, 1.18]	1.12	[.91, 1.38]	1.16	[.64, 2.12]

Supplemental Table 4b. Multivariate linear and logistic regression model replicas of Table 2 with 'births from 2016'

	Paternal age (years)								
	<25		25-34	35-44		45-54		55+	
Gestational Age (weeks)	-0.03	[-.05, -.02]	reference	-0.05	[-.06, -.05]	-0.12	[-.14, -.10]	-0.18	[-.25, -.11]
Birth Weight (g)	-24.3	[-27.2, -21.4]	reference	2.5	[.26, 4.7]	-17.2	[-22.2, -12.1]	-48.4	[-63.2, -33.6]
Apgar (5 minute)	-0.02	[-.02, -. 01]	reference	0.01	[.01, .01]	-0.01	[-.01, .00]	-0.02	[-.04, -.01]
	Paternal age (years)								
	<25		25-34	35-44		45-54		55+	
Premature Birth (<37 weeks)	1.03	[1.02, 1.05]	reference	1.06	[1.05, 1.07]	1.15	[1.12, 1.18]	1.25	[1.17, 1.33]
Low Birth Weight (<2500 g)	1.05	[1.03, 1.07]	reference	1.04	[1.02, 1.05]	1.13	[1.09, 1.16]	1.26	[1.17, 1.35]
Low 5 Minute Apgar Score (<8)	1.09	[1.06, 1.12]	reference	0.96	[.94, .98]	1.01	[.96, 1.05]	1.10	[.99, 1.24]
Assisted Ventilation	1.04	[1.02, 1.06]	reference	1.05	[1.03, 1.05]	1.10	[1.09, 1.13]	1.12	[1.08, 1.15]
NICU	1.01	[.99, 1.03]	reference	1.03	[1.01, 1.04]	1.14	[1.11, 1.18]	1.28	[1.19, 1.37]
Antibiotics	1.02	[.98, 1.05]	reference	0.95	[.92, .97]	1.06	[1.01, 1.12]	1.02	[.88, 1.18]
Seizures	1.17	[.89, 1.55]	reference	0.98	[.79, 1.21]	1.37	[.93, 2.04]	1.29	[.44, 3.77]
Adverse Event	1.02	[1.00, 1.04]	reference	1.01	[1.00, 1.02]	1.11	[1.09, 1.14]	1.24	[1.16, 1.32]
	Paternal age (years)								
	<25		25-34	35-44		45-54		55+	
Gestational Diabetes	0.82	[.80, .84]	reference	1.16	[1.14, 1.17]	1.28	[1.25, 1.32]	1.31	[1.22, 1.42]
Pre-eclampsia	1.06	[1.04, 1.08]	reference	0.97	[.95, .99]	0.99	[.96, 1.03]	0.96	[.88, 1.06]
Eclampsia	1.15	[1.04, 1.27]	reference	0.99	[.92, 1.07]	1.11	[.96, 1.29]	0.91	[.59, 1.41]

Supplementary Table 5. Multivariate linear and logistic regression model replicas of Table 2 limited to 'births with complete paternal data.'

	Paternal age (years)								
	<25		25-34	35-44		45-54		55+	
Gestational Age (weeks)	-0.01	[-.01, .00]	reference	-0.06	[-.07, -.06]	-0.12	[-.13, -.12]	-0.18	[-.21, -.16]
Birth Weight (g)	-21.8	[-23.0, -20.6]	reference	0.56	[-.38, 1.50$]$	-22.0	[-24.1, -19.9]	-52.0	[-58.0, -46.0]
Apgar (5 minute)	-0.02	[-.02, -.02]	reference	0.01	[.00, .01]	-0.01	[-.01, .00]	-0.02	[-.03, -.01]
	Paternal age (years)								
		25	25-34				54		5+
Premature Birth (<37 weeks)	1.03	[1.02, 1.04]	reference	1.06	[1.05, 1.06]	1.15	[1.14, 1.16]	1.27	[1.23, 1.31]
Low Birth Weight ($<2500 \mathrm{~g}$)	1.05	[1.04, 1.06]	reference	1.05	[1.04, 1.05]	1.15	[1.13, 1.16]	1.28	[1.24, 1.33]
Low 5 Minute Apgar Score (<8)	1.11	[1.10, 1.12]	reference	0.97	[.96, .98]	1.03	[1.01, 1.05]	1.13	[1.07, 1.19]
Assisted Ventilation	1.04	[1.03, 1.05]	reference	0.99	[.98, 1.00]	1.06	[1.04, 1.08]	1.11	[1.05, 1.17]
NICU	1.00	[.99, 1.02]	reference	1.05	[1.03, 1.08]	1.10	[1.08, 1.12]	1.24	[1.20, 1.30]
Antibiotics	1.04	[1.03, 1.06]	reference	0.95	[.94, .96]	1.03	[1.00, 1.05]	1.06	[.99, 1.14]
Seizures	1.07	[.95, 1.21]	reference	1.00	[.90, 1.10]	1.18	[.97, 1.43]	1.27	[.75, 2.17]
Adverse Event	1.03	[1.02, 1.03]	reference	1.02	[1.01, 1.02]	1.12	[1.11, 1.13]	1.25	[1.21, 1.29]
	Paternal age (years)								
	<25		25-34	35-44		45-54		55+	
Gestational Diabetes	0.83	[.82, .84]	reference	1.15	[1.15, 1.16]	1.28	[1.27, 1.30]	1.34	[1.30, 1.39]
Pre-eclampsia	1.06	[1.05, 1.07]	reference	0.96	[.96, .97]	0.99	[.98, 1.01]	1.01	[.96, 1.05]
Eclampsia	1.11	[1.06, 1.16]	reference	0.99	[.96, 1.03]	1.04	[.96, 1.12]	1.06	[.87, 1.30]

Figure 1. Scatter plots of the odds of an adverse birth event by paternal age stratified by maternal age group. Error bars indicate the 95% confidence intervals based on the distribution of births within each paternal age group.

Supplemental Figure 1. Scatter plots of the odds of all outcomes by paternal age stratified by maternal age group. Error bars indicate the 95% confidence intervals based on the distribution of births within each paternal age group. a) Premature Birth, b) Low Birth Weight, c) Low Apgar Score, d) Assisted Ventilation, e) NICU, f) Antibiotics, g) Seizures, h) Gestational Diabetes, i) Pre-eclampsia, j) Eclampsia

MOTHERS BETWEEN 25 AND 34 YEARS

MOTHERS OLDER THAN 34 YEARS

d)

MOTHERS YOUNGER THAN 25 YEARS					
1.6					
1.4					
	*	*	Ψ	Φ	1
0.6					
0.4	<25	25-34	35-44	45-54	55+
			NAL AGE		

MOTHERS BETWEEN 25 AND 34 YEARS

MOTHERS OLDER THAN 34 YEARS

MOTHERS YOUNGER THAN 25 YEARS

MOTHERS BETWEEN 25 AND 34 YEARS

MOTHERS OLDER THAN 34 YEARS
1.6

f)

Page 23 of 24

MOTHERS BETWEEN 25 AND 34 YEARS
g)

MOTHERS OLDER THAN 34 YEARS

MOTHERS BETWEEN 25 AND 34 YEARS

MOTHERS OLDER THAN 34 YEARS

h)
i)

MOTHERS YOUNGER THAN 25 YEARS

MOTHERS BETWEEN 25 AND 34 YEARS

MOTHERS OLDER THAN 34 YEARS

[^0]: https://mc.manuscriptcentral.com/bmj

[^1]: https://mc.manuscriptcentral.com/bmj

