the**bmj**

Generic immunosuppression in solid organ transplantation: a systematic review and meta-analysis

Journal:	ВМЈ				
Manuscript ID:	BMJ.2015.025321				
Article Type:	Research				
BMJ Journal:	ВМЈ				
Date Submitted by the Author:	08-Feb-2015				
Complete List of Authors:	Molnar, Amber; University of Ottawa, Medicine (Nephrology); Ottawa Hospital Research Institute, Clinical Epidemiology Program Fergusson, Dean; Ottawa Hospital Research Institute, Surgery Tsampalieros, Anne; University of Ottawa, Pediatric Nephrology; Ottawa Hospital Research Institute, Clinical Epidemiology Program Knoll, Greg; Ottawa Hospital Research Institute, Clinical Epidemiology Program; University of Ottawa, Medicine (Nephrology) Bennett, Alexandria; Ottawa Hospital Research Institute, Surgery Fergusson, Nick; Ottawa Hospital Research Institute, Clinical Epidemiology Program Ramsay, Timothy; Ottawa Hospital Research Institute,				
Keywords:	immunosuppression, transplant, generics, bioequivalence, rejection, review				
	SCHOLARONE [™] Manuscripts				

https://mc.manuscriptcentral.com/bmj

BMJ

Generic immunosuppression in solid organ transplantation: a systematic review and meta-analysis

Amber O Molnar, Dean Fergusson, Anne K Tsampalieros, Alexandria Bennett, Nicholas Fergusson, Timothy Ramsay, Greg A Knoll

Word count: abstract 320; Main text 3,957

Date: February 6th, 2015

The results of this study have not been published elsewhere.

The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd to permit this article (if accepted) to be published in BMJ editions and any other BMJPGL products and sublicences such use and exploit all subsidiary rights, as set out in our licence.

All authors have completed the Unified Competing Interest form and declare: no support from any organisation for the submitted work, no financial relationships with any organisations that might have an interest in the submitted work in the previous three years, no other relationships or activities that could appear to have influenced the submitted work.

All authors fulfill the ICMJE criteria for authorship. Amber O. Molnar- conception and design of the work, acquisition, analysis and interpretation of data, drafting and final approval of the manuscript. Dean Fergusson- design of the work, interpretation of data, drafting and final approval of the manuscript. Anne K Tsampalieros-acquisition and interpretation of data, drafting and final approval of the manuscript. Alexandria Bennett and Nick Fergusson- acquisition of data, drafting and final approval of the manuscript. Greg A. Knoll-Conception and design of the work, interpretation of the data, drafting and final approval of the manuscript. All authors agree to be accountable for all aspects of the work. Amber O. Molnar and Greg A. Knoll are the primary guarantors.

The lead author affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

No ethical approval was required for this study. No funding was provided for this study. There were no study sponsors.

Competing interests: We have read and understood the BMJ policy on declaration of interests and declare the following interests: None.

Data sharing: No additional data available.

Abstract

Objective: To compare the clinical efficacy and bioequivalence of generic immunosuppressive medications in the solid organ transplant population.

Design: Systematic review and meta-analysis of all studies comparing generic with brand name immunosuppressive medications.

Data sources: MEDLINE and EMBASE from 1980 to September 2014.

Review methods: A literature search was performed for all studies comparing a generic to a brand name immunosuppressive drug in solid organ transplantation. Two reviewers independently extracted data and assessed quality of studies. Meta-analyses of prespecified outcomes were performed when deemed appropriate. Outcomes included patient survival, allograft survival, acute rejection, adverse events and bioequivalence. **Results:** 1,679 citations were screened of which n=50 studies met eligibility criteria (17 randomized trials, 15 non-randomized interventional studies and 18 observational studies). Generics were compared to Neoral (cyclosporine) (n=32 studies), Prograf (tacrolimus) (n=12 studies) and Cellcept (mycophenolate mofetil) (n=6 studies). 11 studies met established criteria for bioequivalence (Neoral n=10, Prograf n=1 and Cellcept n=0). Acute rejection was rare but did not differ between groups (Neoral pooled Peto OR (95% CI) for kidney RCT's and observational studies 0.81 (0.42 to 1.57), 0.66 (0.40 to 1.08), respectively; Prograf pooled Peto OR (95% CI) for kidney observational studies 0.98 (0.37 to 2.60); Cellcept pooled Peto OR for kidney observational studies (0.49 (0.09 to 2.56)). There was insufficient data reported on patient or graft survival. **Limitations:** Pooling of results was limited by inconsistent study methodology and reporting of outcomes. Many studies did not report standard criteria used to determine

bioequivalence. While acute rejection rates appeared similar and were relatively rare, few studies were designed to properly compare clinical outcomes. The majority of studies had short follow up times and included stable patients without a history of rejection. **Conclusions:** There is limited and inconsistent data on the bioequivalence and clinical efficacy of generic immunosuppressive medications in the transplant population. Given the serious consequences of rejection and allograft failure, well-designed studies are needed to demonstrate the safety and efficacy of generic immunosuppression.

What this paper adds

There are an increasing number of generic immunosuppresants available for use in the solid organ transplant population. These generics are approved after meeting the current standards for bioequivalence with the brand name reference drug. Given the potential for organ rejection if a generic immunosuppressant is not equivalent, there is growing concern that the current criteria for approval are not rigorous enough. Our systematic review and meta-analysis found a lack of high quality data supporting the equivalence of generics and brand name immunusoppressants but also a lack of data to suggest that they are not equivalent. High quality studies on this issue are needed.

 BMJ

INTRODUCTION

With the recent patent expiry of commonly prescribed immunosuppressive medications such as Prograf (tacrolimus) and Cellcept (mycophenolate mofetil), the use of generics in solid organ transplantation has become controversial.¹⁻⁵ Generic substitution has the potential for huge cost savings.¹ However, there is significant concern among physicians and patients that generics are not equivalent to the brand name versions of immunosuppressant drugs.⁶⁻⁹

Prior to approval, each generic drug must demonstrate bioequivalence to the brand name version in healthy adults, but there is no requirement to show bioequivalence or clinical efficacy in transplant patients. Many argue that the current criteria are not sufficient as transplant patients often have co-morbidities and are on multiple medications, which could alter the pharmacokinetics of a drug.^{1,3,4} Also, bioequivalence may not necessarily mean equivalence in terms of clinical effectiveness, which could lead to catastrophic consequences in a transplant patient (i.e., loss of the graft). However, based on current guidelines, clinical effectiveness is assumed if bioequivalence can be demonstrated.¹⁰ The concerns raised in the transplant community have led to the recommendation that patients and healthcare providers pay careful attention to drug formulations, and monitor drug levels more frequently if a patient is switched to a generic preparation.^{2,4,11} Certain countries in Europe, such as the United Kingdom and Denmark, have gone even further and banned the generic substitution of tacrolimus and cyclosporine products.^{12,13} These recommendations are not based on high quality evidence, and many, including regulatory agencies, argue that the methods of determining bioequivalence are reliable and

sufficient.^{14,15} If patients and physicians remain doubtful of the equivalence of generic immunosuppressive medications, this will limit the cost saving potential of these medications due to under-prescribing and more frequent laboratory monitoring when a generic is prescribed.^{1,16} The aim of this study was to determine the clinical efficacy, safety and bioequivalence of generic immunosuppressive medications compared to brand name formulations in solid organ transplant recipients. Our focus was on clinically important outcomes, such as patient survival, transplant allograft survival and acute rejection.

METHODS

Search strategy

We performed a comprehensive, systematic search of articles published in peer-reviewed journals using MEDLINE and EMBASE (1980 to September 4th, 2014). The search was carried out with the assistance of a librarian experienced in systematic reviews. A structured search strategy, (outlined in Appendix A), was conducted using controlled vocabulary and relevant key terms to enhance sensitivity. Reference lists of included papers and previous reviews were hand-searched for additional relevant studies. There were no restrictions based on study design or language in the search.

Study Selection

An initial screen of identified titles and abstracts was performed by one investigator (AM). Titles and abstracts deemed to be clearly irrelevant were removed on the initial screen. A second screen to identify potentially relevant studies was performed by two independent reviewers (AM and AT). If no abstract was available, the full text was

Page 7 of 69

BMJ

obtained unless the article could be confidently excluded by title alone. If there was any doubt as to whether or not a study could be excluded, a full text screen was performed to reduce the likelihood of incorrectly excluding a relevant study. Full-text versions of potentially eligible studies were obtained and independently screened by two reviewers (AM and AB) to determine their eligibility based on the selection criteria. Any disagreements during the screening process were resolved through discussion amongst the authors in accordance with the selection criteria.

Randomized controlled trials (RCT), non-randomized interventional studies and observational studies were included if they reported a comparative evaluation of a brand name immunosuppressive medication to at least one generic version of the same drug in solid organ (heart, lung, liver, pancreas, kidney, small bowel or combinations of these organs) transplant recipients. The comparative evaluation had to include at least one clinical efficacy/safety outcome, [death, transplant failure, acute rejection, marker of graft function (e.g. serum creatinine), health care utilization (e.g. hospitalization), infection, drug concentration or other serious adverse event], or the determination of bioequivalence. There are different definitions of bioequivalence depending on the jurisdiction. In the United States, the Food and Drug Administration (FDA) requires that the 90% confidence interval of the mean ratio (generic/brand) for the area under the curve (AUC) of the concentration-time curve and the peak concentration (C_{max}) be between 80% and 125%.^{10,17-19} For narrow therapeutic index drugs (e.g. cyclosporine and tacrolimus), Health Canada (HC) and the European Medicines Agency (EMA) have tighter limits for the AUC acceptance interval (90% to 112% and 90% to 111%,

respectively).^{10,20} For cyclosporine, the EMA has also imposed tighter limits for the Cmax acceptance interval (90% to 111%).²⁰ In this analysis, bioequivalence was assessed using both the FDA definition and the tighter standards from the EMA and Health Canada. Comparative studies that evaluated Sandimmune were excluded since this formulation is no longer used in clinical practice. We also excluded case reports, case series, studies including pediatric patients and studies performed on animals or conducted in vitro.

Data extraction and synthesis

Three investigators (AM, AD, NF) abstracted data. Each eligible study had data independently abstracted by two different investigators (see Appendix B for data abstraction form). A number of variables related to the organization and outcome of the studies were assessed: study design, setting (country), characteristics of the population studied, transplant organ, number of study participants, immunosuppressive medication studied, and reporting of relevant outcomes. The primary clinical efficacy outcome was acute rejection and the primary bioequivalence outcome was the mean ratio (and 90% confidence interval) for the C_{max} and AUC. The methodological quality of eligible randomized trials (parallel and cross over designs) was evaluated using the Cochrane Risk of Bias Assessment Tool.²¹ The methodological quality of observational and non-randomized experimental studies was evaluated using a checklist outlined by Wells *et al.*²² Quality assessment was performed for studies as a whole and separately for each pre-specified primary outcome. When data was only available in figures, the GNU image manipulation program (GIMP 2.8; http://www.gimp.org/) was used to extract data.

BMJ

Statistical analysis

Descriptive methods were used to present the data by type of immunosuppressive medication, type of organ transplant and outcome. For the randomized trials and nonrandomized interventional studies, we pooled the mean ratio and the 90% confidence interval for the C_{max} and AUC. Data was analyzed using the inverse variance method with a random effects model and presented as a pooled mean ratio with a 90% confidence interval. The standard errors of the AUC and C_{max} mean ratios were calculated using the 90% or 95% confidence intervals and T statistic of the study. Continuous efficacy outcomes, (e.g. serum creatinine), were pooled when deemed appropriate using the inverse variance method and presented as weighted mean differences. Dichotomous efficacy outcomes, (e.g. acute rejection), were pooled using the Peto method and presented as the Peto odds ratio (OR). The Peto OR was selected as it is the preferred estimate when cells contain 0 events. Cross-over trials were treated as parallel group trials in the analysis if individual patient-level data, sequence specific data or correlation coefficients were not available.²³ A pre-specified sensitivity analysis was performed for cyclosporine that excluded studies involving SangCya since it was recalled in 2000 and is no longer available.²⁴ Heterogeneity was assessed using the I² statistic. Meta-analyses were performed using RevMan 5.3. Data from observational studies were not pooled for the outcome of bioequivalence due to concerns about the validity of the results. Data from cross over trials and before/after studies were not pooled for the outcome of acute rejection due to concerns about the statistical and clinical validity of the results. The reporting of this systematic review is in accordance with PRISMA guidelines (refer to Appendix B for details).²⁵

BMJ

RESULTS

Eligible studies

The electronic database search identified 2,558 records and 6 further records were identified from reference lists. After independently reviewing the title and abstract of all potentially relevant records, 201 articles were retrieved and reviewed in full text. Of these, 50 studies were found to meet inclusion criteria. Study selection is outlined in Figure 1.

Patient and study characteristics

The characteristics of the 50 eligible studies are outlined in Supplementary Tables 1 a, b and c. Eligible studies included kidney, heart and liver transplant recipients. Study designs included RCTs (n=17; 8 cross-over and 9 parallel), non-randomized interventional studies (n=15) and observational studies (n=18; cohort and before/after designs). Brand name drugs studied included Neoral (cyclosporine; n= 32 studies²⁶⁻⁵⁷, 28 in kidney transplants, 3 in heart transplants, and 1 in liver transplants), Prograf (tacrolimus; n= 12 studies⁵⁸⁻⁶⁹, 7 in kidney transplants, 1 in heart transplants, 1 in liver transplants, and 3 in a mixture of liver, kidney or heart transplants) and Cellcept (mycophenolate mofetil; n= 6 studies⁷⁰⁻⁷⁵, 5 in kidney transplants and 1 in liver transplants). Neoral was compared to 12 different generic medications (Iminoral, Equoral, Gengraf, Cysporin, Zinograf-ME, Neoplanta, Consupren, SangCya (Sang-35), Sigmasporin Microral, Pliva, Cicloral, and Arpimune); Prograf was compared to four different generics (Tacni, Tacrobell, Adoport, and Sandoz-tacrolimus); and Cellcept was compared to five different generics (Myfenax, Medis, Linfonex, Mycept, and Myconol).

BMJ

Neoral studies

Sample sizes ranged from 11 to 221 patients although one study did not report the number of included patients.³⁸ The average age in most studies was 40-50 years. Eight studies included incident transplants.^{34,35,40,45-48,57} (Supplementary Table 1a)

Prograf studies

Sample sizes ranged from 25 to 234 patients. The average age in most studies was between 50-60 years of age, except for the Robertsen *et al.* study that included only patients 60 years or older.⁶⁹ Five studies included incident transplant.^{59,60,63,66,69} (Supplementary Table 1b)

Cellcept studies

The sample sizes ranged from 5 to 56 patients. Three studies included incident transplant recipients.^{70,72,74} (Supplementary Table 1c)

Assessment of study quality

Randomized trials

The methodological quality of the RCTs was generally poor (Supplementary Fig 1). Only four RCTs reported on the methods used for randomization,^{29,57,63,69} and allocation concealment was poorly reported. There were only two double-blind trials^{54,69}, one of which was a RCT that had concerns about selective reporting of outcomes.⁵⁴

Non-Randomized Interventional Studies and Observational Studies

> The quality assessment of the non-randomized studies is presented in Supplementary Table 2. All non-randomized interventional studies had a before/after design, with patients serving as their own control. Observational studies were a mixture of retrospective and prospective designs. Most cohort studies identified patients as receiving generic or brand name medication based on era (e.g. the brand name was used in 2007 and the generic in 2008). Many studies did not account for potential confounders, such as dose adjustments, in their analyses.

Outcomes

Pharmacokinetic and clinical outcomes are summarized in Supplementary Tables 3 and 4, respectively. Where applicable, most studies explicitly stated that there was a mg:mg conversion from brand name to generic, however some studies allowed dose adjustments following the initial conversion while others did not clearly state whether or not dose adjustments were allowed.

Neoral

Ten studies (n=9 kidney transplant; n=1 liver transplant) reported 90% confidence intervals for the primary pharmacokinetic outcomes of the Cmax and AUC mean ratios.^{27,32,33,39,41,43,51,53-55} All reported 90% CI's for the Cmax and AUC mean ratios fell within the FDA guidelines for bioequivalence. However, seven studies reported 90% CI's for the Cmax and AUC mean ratios that did not meet the stricter EMA bioequivalence criteria,^{27,32,33,51,53-55}, and five studies did not meet the Health Canada bioequivalence criteria, based on the 90% CI of the AUC mean ratio.^{33,51,53-55} When results were pooled

BMJ

for the randomized kidney trials $(n=2)^{33,53}$, the FDA criteria for bioequivalence were met while the EMA/Health Canada guidelines were not met. Pooling of the results for nonrandomized interventional kidney studies^{25,30,39,41,47,49,55} met FDA/EMA/Health Canada bioequivalence criteria (Table 1a). There was variable reporting of other secondary pharmacokinetic outcomes (Supplementary Table 3a).

For clinical outcomes, follow up ranged from 1 week to 1 year. Acute rejection was reported in 16 studies, 8 of which reported no episodes of acute rejection^{36,37,43,44,50-52}, while one study had a large number of acute rejections (n=59).⁴⁶ Two studies reported a significant increase in acute rejection for those receiving generics compared to Neoral $(39\% \text{ vs. } 25\%, \text{P}=0.04^{46} \text{ and } 60\% \text{ vs. } 25\%, \text{P}<0.05^{44})$. Acute rejection was pooled for the randomized parallel group kidney trials that measured the outcome at 6 months or greater.^{47,52,57} No significant difference in acute rejection was found (pooled Peto OR 0.81; 95% CI 0.42 to 1.57) (Figure 2a). No significant difference in acute rejection was found when results from observational kidney studies were pooled (pooled Peto OR 0.66; 95% CI 0.40 to 1.08) (Figure 2b). There were 8 studies that reported graft loss and 9 that reported patient survival. Of the studies that reported graft loss, only 2 episodes occurred, and these were in the Neoral arm^{45,57} (Supplementary Table 4a). Serum creatinine data was pooled for the randomized parallel group kidney trials that measured creatinine at 6 months or greater.^{47,56,57} Serum creatinine was not significantly different between the Neoral and generic arms (mean difference 6.45 umol/L; 95% CI -0.67 to 13.57) (Supplementary Figure 2).

Prograf studies

Three kidney RCTs reported the primary pharmacokinetic outcome of the C_{max} and AUC.^{58,63,69} When data was pooled, the 90% CI's for the AUC and C_{max} mean ratios did not meet FDA, EMA or Health Canada bioequivalence criteria (Table 1b). When each study was examined individually, two studies did not meet FDA, EMA or Health Canada bioequivalence criteria^{63,69} (Supplementary Table 3b).

For clinical outcomes, follow up ranged from 4 weeks to 1 year, with only 1 study having a follow up beyond 6 months. Of the studies that reported the outcome of acute rejection (n=10 studies), five reported no events. The only study that reported a difference (not statistically significant) in the incidence of acute rejection was by Yu *et al.*, (8% vs. 0% in the Prograf and generic arms respectively, p=0.08).⁶⁶ Acute rejection was pooled for the observational kidney studies that measured the outcome at 6 months or greater.^{59,61,62} No significant difference in rejection was found (Peto OR 0.98; 95% CI 0.37 to 2.60) (Figure 3). The study with the most acute rejection, (8 in the Prograf arm and 9 in the generic arm), was also the only study that reported patients with graft loss (6 in the Prograf arm and 8 in the generic arm, p=0.776).⁵⁹ The outcome of serum creatinine was measured at difference in serum creatinine between Prograf or generic arms in any of the studies that reported the outcome (Supplementary Table 4b).

Cellcept studies

BMJ

One study (cross over trial in kidney transplants) reported the AUC (0.899 to 1.023) and C_{max} (0.787 to 0.968) 90% CIs.⁷³ These values did not fulfill the FDA/EMA or Health Canada requirements for bioequivalence (Supplementary Table 3c).

For clinical outcomes, follow up ranged from 3 months to 2 years. One RCT reported acute rejection and there was only one event in each arm.⁷⁰ Acute rejection was pooled for the observational kidney studies that measured the outcome at 6 months or greater. No significant difference in rejection was found (Peto OR 0.49; 95% CI 0.09 to 2.56) (Figure 4). One study reported graft loss but there were no events⁷⁴ (Supplementary Table 4c).

Sensitivity Analysis

The Neoral bioequivalence meta-analysis was repeated after removing studies that used Sang-Cya^{53,55}, which did not significantly change the results.

DISCUSSION

Principal findings

This analysis included 50 studies comparing generic to brand name immunosuppression in greater than 3,130 solid organ transplant recipients. We found that generic cyclosporine met FDA but not EMA or Health Canada criteria for bioequivalence. Neither generic tacrolimus nor mycophenolate mofetil met any agency's criteria for bioequivalence. There was no significant difference in acute rejection for generic cyclosporine, tacrolimus or mycophenolate mofetil compared to brand name products.

Other important clinical outcomes, such as patient and graft survival were inconsistently reported with very few events occurring. Importantly, methodological quality of most studies was poor limiting inferences that can be made from this data.

Only 10 of 32 cyclosporine studies, (one in liver transplants and 9 in kidney transplants), reported the standard criteria needed to determine bioequivalence, and the results were inconsistent. As well, the lone published study conducted in liver transplants examined the generic Sang Cya, which is no longer approved for use. Available data suggest that the cyclosporine generics studied are bioequivalent to Neoral based on FDA criteria when used in kidney transplants. It remains unclear if Neoral and generic cyclosporine are bioequivalent based on EMA and Health Canada criteria and if bioequivalence exists in non-kidney solid organ transplant recipients.

Only 3 of 12 tacrolimus studies reported bioequivalence criteria. All 3 studies were RCT's and conducted in kidney transplants. Only Alloway *et al*⁵⁸ found bioequivalence (according to FDA/EMA/Health Canada criteria), and pooling of study results did not demonstrate bioequivalence. Included patients differed between the 3 studies, which could potentially explain the inconsistent results. Another potential explanation is that each study compared a different generic preparation to Prograf. Only 1 of 6 mycophenolate mofetil studies reported bioequivalence criteria. This study was a RCT conducted in stable kidney transplants and did not show bioequivalence. Overall, it remains unclear if generic tacrolimus or mycophenolate mofetil are bioequivalent to

BMJ

Prograf and Cellcept respectively, and there is a complete lack of data in non-kidney solid organ transplant recipients.

Acute rejection was found to be no different for all generics. For generic cyclosporine, only kidney transplant studies were included in the meta-analysis for acute rejection due to a lack of data for other solid organ transplants. Two cyclosporine kidney studies found a higher rate of acute rejection in the generic arm compared to the Neoral arm. However, these studies had overall high rates of acute rejection, only included incident transplants, were single centre and were retrospective with historical controls. For generic tacrolimus, a low number of events significantly limited the ability to pool data, and acute rejection could only be pooled for kidney observational studies. The confidence intervals for 2 of the 3 meta-analyzed tacrolimus studies were extremely wide due to a low number of events. Five tacrolimus studies reporting acute rejection included liver and/or heart transplant recipients, 4 of which reported no events while one study with incident liver transplants reported a greater number of events, (although not statistically significant), in the Prograf arm. This study was retrospective, with the Prograf arm composed of historical controls; era effect could therefore potentially explain the greater number of events in the Prograf arm. For generic mycophenolate mofetil, 3 kidney studies and 1 liver study reported acute rejection, with no differences being found. Due to limited data, only kidney observational studies were included in the meta-analysis. Once again, a small number of events resulted in wide confidence intervals. Overall, the data for acute rejection must be interpreted with caution given the low number of observed events and

largely observational nature of the data. As well, there is a paucity of data for non-kidney solid organ transplants.

BMJ

Comparison with other studies

To our knowledge, our study is the first systematic review and meta-analysis published on this topic. The number of generic immunosuppressants available on the market continues to rise. As a result, the prescription and safety of generic immunosuppressants have become increasing topics of concern, leading to the publication of multiple narrative reviews and editorials.^{1,3,5,14-16,76-78} Our findings of an overall lack of high quality data supporting the bioequivalence and clinical efficacy of generic immunosuppressants in solid organ transplantation agree with that of a recently published narrative review.¹ The results of our review do not refute the current general consensus in the literature that any generic substitution be performed with caution or only in low-risk patients and that increased drug monitoring be performed post substitution, with the recognition that none of these recommendations are based on high quality evidence.^{1-3,5,11,16} Our results also do not refute concern that the current method of determining bioequivalence, whereby a single dose cross over trial is performed in healthy volunteers, may not be sufficient for immunosuppressants in the solid organ transplant population.¹

Strengths and limitations

Our review is comprehensive with the inclusion of all types of comparative peer reviewed published studies for three of the most commonly used immunosuppressants, and all of our primary outcomes of interest were pre-specified. Unfortunately, the

Page 19 of 69

BMJ

conclusions of our review are limited for several reasons. Included studies had inconsistent reporting of outcomes, limiting our ability to pool results. Although included studies were designed to examine the equivalence of a brand name drug to a generic, only a minority reported the 90% confidence intervals for the AUC and Cmax mean ratios, which are the standard criteria needed to determine bioequivalence.^{10,17-20} Many studies only reported drug levels, which are not sufficient to comment on the bioequivalence of two drug preparations and can actually be misleading. In a recent study by Robertsen *et al.* that examined the bioequivalence of Prograf to a generic version, the generic was not found to be bioequivalent based on AUC and Cmax mean ratio criteria, however trough drug levels were identical.⁶⁹ This highlights the need for formal pharmacokinetic studies when commenting on bioequivalence. Of the minority of studies that reported criteria for bioequivalence, the results were inconsistent and inconclusive potentially due to varying study methodology and sample sizes.

Acute rejection was measured at various time points across studies, the methods of determining acute rejection were inconsistent across studies (clinical judgment *vs.* biopsy proven), and the majority of meta-analyzed studies were observational, making the results potentially more prone to bias and confounding. Several studies that measured acute rejection were not included in the meta-analysis due to significant concerns about validity and clinical applicability of the data. Approximately one third of all studies included in this review were interventional before/after or conversion studies and approximately one half of included trials were crossover design. These study designs can be useful when examining pharmacokinetic outcomes, such as drug levels, but not very

> informative for clinical outcomes, such as acute rejection. Cross over trials generally have a short follow up time and can have a carry over effect; before/after studies are subject to an era effect bias, which is also a concern with many of the published cohort studies due to the use of historical controls. Published interventional before/after studies all specified as inclusion criteria stable graft function and many also specified no recent episodes of acute rejection, which creates a selection bias. The inclusion of only stable patients in the majority of studies is likely a contributing factor to the low number of observed events.

Overall, the quality of studies and study reporting were poor. The gold standard for determining bioequivalence and for comparing clinical outcomes is a randomized cross over trial^{10,17,20} and a randomized parallel group trial, respectively, which the majority of studies were not. Of the one third of studies that were randomized trials, most were open label with unclear methods of randomization and allocation concealment. Also, many studies either allowed dose adjustments to occur prior to measuring drug levels or did not clearly report the timing of drug level measurements in relation to any dose adjustments or if dose adjustments were allowed to occur. This is obviously a concern since a patient should receive the same dose of both brand name and generic when comparing any sort of pharmacokinetic outcome.

Conclusions

In conclusion, high quality data demonstrating bioequivalence and clinical efficacy of generic immunosuppressants in solid organ transplants are lacking. There is insufficient

BMJ

evidence to provide reassurance that generics are equivalent to brand name immunosuppressants, but there is also no data to firmly suggest that generics are not equivalent and therefore unsafe. As generics are considered standard of care in many jurisdictions, simple pragmatic trials with waived consent or cluster designs could efficiently answer unresolved questions. Without high quality data, the controversial issue of generic immunosuppressant prescribing will never be resolved, and the potential huge cost savings of these medications, if they are in fact equivalent, will never be fully realized.

REFERENCES

1 2 3

4 5

6 7

8

9

10

11

12 13

14

15

16

17

18 19

20

21

22

23

24 25

26

27

28

29

30 31

32

33

34

35

36 37

38

39

40

41

42 43

44

45

46

47

48 49

50

51

52

53 54

55

56

57 58 59

60

1. Harrison JJ, Schiff JR, Coursol CJ, et al. Generic immunosuppression in solid organ transplantation: a Canadian perspective. Transplantation 2012;**93**(7):657-65 doi: 10.1097/TP.0b013e3182445e9d[published Online First: Epub Date]].

BMJ

- 2. Kidney Disease: Improving Global Outcomes Transplant Work G. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant 2009;**9 Suppl 3**:S1-155 doi: 10.1111/j.1600-6143.2009.02834.x[published Online First: Epub Date]].
- 3. Sabatini S, Ferguson RM, Helderman JH, et al. Drug substitution in transplantation: a National Kidney Foundation White Paper. Am J Kidney Dis 1999;**33**(2):389-97
- 4. Uber PA, Ross HJ, Zuckermann AO, et al. Generic drug immunosuppression in thoracic transplantation: an ISHLT educational advisory. J Heart Lung Transplant 2009;28(7):655-60 doi: 10.1016/j.healun.2009.05.001[published Online First: Epub Date]].
- 5. Alloway RR, Isaacs R, Lake K, et al. Report of the American Society of Transplantation conference on immunosuppressive drugs and the use of generic immunosuppressants. Am J Transplant 2003;**3**(10):1211-5
- 6. Al Ameri MN, Whittaker C, Tucker A, et al. A survey to determine the views of renal transplant patients on generic substitution in the UK. Transpl Int 2011;24(8):770-9 doi: 10.1111/j.1432-2277.2011.01268.x[published Online First: Epub Date]|.
- Banahan BF, 3rd, Kolassa EM. A physician survey on generic drugs and substitution of critical dose medications. Arch Intern Med 1997;157(18):2080-8
- Figueiras MJ, Alves NC, Marcelino D, et al. Assessing lay beliefs about generic medicines: Development of the generic medicines scale. Psychol Health Med 2009;14(3):311-21 doi: 10.1080/13548500802613043[published Online First: Epub Date]|.
- Hakonsen H, Eilertsen M, Borge H, et al. Generic substitution: additional challenge for adherence in hypertensive patients? Curr Med Res Opin 2009;25(10):2515-21 doi: 10.1185/03007990903192223[published Online First: Epub Date]|.
- 10. Health Canada. Guidance Document-Comparative Bioavailability Standards: Formulations Used for Systemic Effects. Secondary Guidance Document-Comparative Bioavailability Standards: Formulations Used for Systemic Effects 2012. <u>http://www.hc-sc.gc.ca/dhp-mps/prodpharma/applicdemande/guide-ld/bio/gd standards ld normes-eng.php - a2.1</u>. (accessed 16 February 2014).
- 11. Knoll GA, Blydt-Hansen TD, Campbell P, et al. Canadian Society of Transplantation and Canadian Society of Nephrology commentary on the 2009 KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Kidney Dis 2010;**56**(2):219-46 doi: 10.1053/j.ajkd.2010.05.004[published Online First: Epub Date]].

https://mc.manuscriptcentral.com/bmj

1	
2	
3	12. Medicines and Health Prodeucts Regulatory Agency. Oral tacrolimus products:
4	prescribe and dispense by brand name only, to minimize the risk of
5 6	inadvertent switching between products, which has been associated with
7	reports of toxicity and graft rejection. Drug Safety Update, 2012.
8	
9	http://www.mhra.gov.uk/Safetyinformation/DrugSafetyUpdate/CON15575
10	6. (accessed 23 January 2015).
11	13. Danish Health and Medicines Authorit. Generic substitution terminated for oral
12	medicines containing cyclosporine or tacrolimus, 2011.
13	http://sundhedsstyrelsen.dk/en/news/2011/generic-substitution-
14	terminated-for-oral-medicines-containing-cyclosporine-or-tacrolimus.
15	(accessed 23 January 2015).
16	
17	14. Christians U, First MR, Benet LZ. Recommendations for bioequivalence testing of
18	cyclosporine generics revisited. Ther Drug Monit 2000; 22 (3):330-45
19	15. Davit BM, Nwakama PE, Buehler GJ, et al. Comparing generic and innovator
20	drugs: a review of 12 years of bioequivalence data from the United States
21 22	Food and Drug Administration. Ann Pharmacother 2009; 43 (10):1583-97
22	doi: 10.1345/aph.1M141[published Online First: Epub Date]].
23	16. Klintmalm GB. Immunosuppression, generic drugs and the FDA. Am J Transplant
25	2011; 11 (9):1765-6 doi: 10.1111/j.1600-6143.2011.03616.x[published
26	
27	Online First: Epub Date] .
28	17. U.S Food and Drug Administration. The FDA Process for Approving Generic
29	Drugs. Secondary The FDA Process for Approving Generic Drugs 2009.
30	<u>http://www.fda.gov/training/forhealthprofessionals/ucm090320.htm</u> .
31	(accessed 16 February 2014).
32	18. Meyer MC. United States Food and Drug Administration requirements for
33	approval of generic drug products. J Clin Psychiatry 2001;62 Suppl 5:4-9;
34	discussion 23-4
35 36	
30 37	19. Nation RL, Sansom LN. Bioequivalence requirements for generic products.
38	Pharmacol Ther 1994; 62 (1-2):41-55
39	20. CHMP Pharmacokinetics Working Party (PKWP). Questions & Answers:
40	Postitions on specific questions addressed to the Pharmacokinetics Working
41	Party. 2011.
42	http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guidel
43	ine/2009/09/WC500002963.pdf (accessed September 15, 2014).
44	21. Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration's tool for
45	assessing risk of bias in randomised trials. BMJ 2011; 343 :d5928 doi:
46	
47	10.1136/bmj.d5928[published Online First: Epub Date] .
48	22. Wells G, Shea, B, Higgins, JP, Sterne, J, Tugwell, P, Reeves, BC. Checklists of
49 50	methodological issues for review authors to consider when including non-
50 51	randomized studies in systematic reviews. Research Synthesis Methods
52	2013;4(1):63-77
53	23. Elbourne DR, Altman DG, Higgins JP, et al. Meta-analyses involving cross-over
54	trials: methodological issues. International journal of epidemiology
55	2002; 31 (1):140-9
56	2002, 31 (1).140-7
57	
58	
59	22
60	2.

24. Henney JE. From the food and drug administration: nationwide recall of SangCya oral solution. JAMA : the journal of the American Medical Association 2000;**284**(10):1234

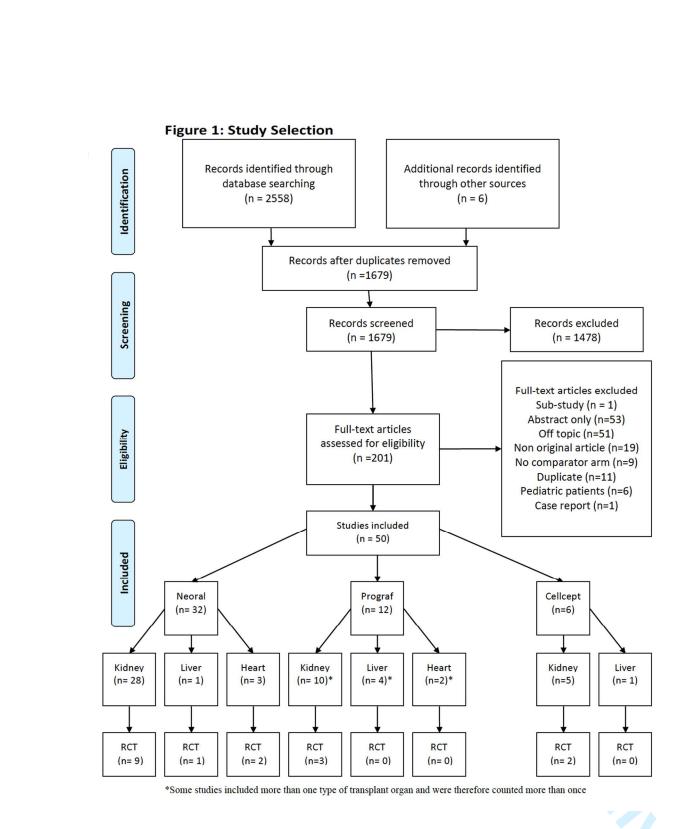
- 25. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Journal of clinical epidemiology 2009;**62**(10):e1-34 doi: 10.1016/j.jclinepi.2009.06.006[published Online First: Epub Date]].
- 26. Al Wakeel JS, Shaheen FAM, Mathew MC, et al. Six-month clinical outcome of cyclosporine microemulsion formulation (Sigmasporin Microral) in stable renal transplant patients previously maintained on sandimmun neoral. Transplantation proceedings 2008;**40**(7):2245-51
- 27. Al Wakeel JS, Shaheen FAM, Mathew MC, et al. Therapeutic equivalence and mg:mg switch ability of a generic cyclosporine microemulsion formulation (Sigmasporin Microral) in stable renal transplant patients maintained on Sandimmun Neoral. Transplantation proceedings 2008;**40**(7):2252-57
- 28. Carnahan W, Cooper TY. Neoral-to-Gengraf conversion in renal transplant recipients. Transplantation proceedings 2003;**35**(4):1308-13
- 29. David-Neto E, Kakehashi E, Alves CF, et al. Bioequivalence of a new cyclosporine a formulation to Neoral. Therapeutic drug monitoring 2004;**26**(1):53-57
- 30. Diarra DA, Riegersperger M, Saemann MD, et al. Maintenance immunosuppressive therapy and generic cyclosporine A use in adult renal transplantation: a single center analysis. Kidney international.Supplement 2010(115):S8-11
- 31. Durlik M, Rauch C, Thyroff-Friesinger U, et al. Comparison of peak and trough level monitoring of cyclosporine treatment using two modern cyclosporine preparations. Transplantation proceedings 2003;**35**(4):1304-07
- 32. Fradette C, Lavigne J, Waters D, et al. The utility of the population approach applied to bioequivalence in patients: comparison of 2 formulations of cyclosporine. Therapeutic drug monitoring 2005;**27**(5):592-600
- 33. Hibberd AD, Trevillian PR, Roger SD, et al. Assessment of the bioequivalence of a generic cyclosporine A by a randomized controlled trial in stable renal recipients. Transplantation 2006;**81**(5):711-17
- 34. Kahn D, Muller E, Pascoe M. Safe conversion to cicloral, a generic cylosporine, in both stable and de novo renal transplant recipients. Saudi journal of kidney diseases and transplantation : an official publication of the Saudi Center for Organ Transplantation, Saudi Arabia 2010;**21**(3):426-32
- 35. Kim SC, Han DJ. Neoplanta as a new microemulsion formula of cyclosporine in renal transplantation: comparative study with Neoral for efficacy and safety. Transplantation proceedings 1998;**30**(7):3547-48
- 36. Kraeuter M, Helmschrott M, Erbel C, et al. Conversion to generic cyclosporine A in stable chronic patients after heart transplantation. Drug design, development and therapy 2013;7:1421-26
- 37. Leet A, Richardson M, Senior JA, et al. A bioavailability study of cyclosporine: comparison of Neoral versus Cysporin in stable heart transplant recipients.

Page 25 of 69

BMJ

The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation 2009; 28 (9):894-98
38. Masri MA, Haberal M, Rizvi A, et al. The pharmacokinetics of equoral versus
neoral in stable renal transplant patients: a multinational multicenter study.
Transplantation proceedings 2004; 36 (1):80-83
39. Masri MA, Haberal M, Rizvi A, et al. Switchability of neoral and equoral according
to Food and Drug Administration rules and regulations. Transplantation
proceedings 2005; 37 (7):2988-93
40. Pamugas GEP, Danguilan RA, Lamban AB, et al. Safety and efficacy of generic
cyclosporine arpimune in Filipino low-risk primary kidney transplant
recipients. Transplantation proceedings 2012; 44 (1):101-08
41. Perlik F, Masri MA, Rost M, et al. Pharmacokinetic conversion study of a new cyclosporine formulation in stable adult renal transplant recipients.
Biomedical papers of the Medical Faculty of the University Palacky, Olomouc,
Czechoslovakia 2005; 149 (2):309-13
42. Qazi YA, Forrest A, Tornatore K, et al. The clinical impact of 1:1 conversion from
Neoral to a generic cyclosporine (Gengraf) in renal transplant recipients with
stable graft function. Clinical transplantation 2006; 20 (3):313-17
43. Roza A, Tomlanovich S, Merion R, et al. Conversion of stable renal allograft
recipients to a bioequivalent cyclosporine formulation. Transplantation
2002; 74 (7):1013-17
44. Sayyah M, Argani H, Pourmand GR, et al. Pharmacokinetics, efficacy, and safety of Iminoral compared with Neoral in healthy volunteers and renal transplant
recipients. Transplantation proceedings 2007; 39 (4):1214-18
45. Sharma A, Shekhar C, Heer M, et al. Comparison of generic cyclosporine
microemulsion versus neoral in de novo renal transplant recipients managed
by 2-hour postdose monitoring. Transplantation proceedings
2006; 38 (7):2051-53
46. Spasovski G, Masin-Spasovska J, Ivanovski N. Do we have the same clinical
results with Neoral and Equoral treatment in kidney transplant recipients? A
pilot study. Transplant international : official journal of the European Society for Organ Transplantation 2008; 21 (4):392-94
47. Stephan A, Masri MA, Barbari A, et al. A one-year comparative study of Neoral vs
Consupren in de novo renal transplant patients. Transplantation proceedings
1998; 30 (7):3533-34
48. Taber DJ, Baillie GM, Ashcraft EE, et al. Does bioequivalence between modified
cyclosporine formulations translate into equal outcomes? Transplantation
2005; 80 (11):1633-35
49. Talaulikar GS, Gallagher MP, Carney GM, et al. Switchover to generic
cyclosporine in stable renal transplant recipients: a single unit experience. Nephrology (Carlton, Vic.) 2004; 9 (6):418-21
50. Toman J, Spinarova L, Krejci J, et al. Comparison of the efficacy and safety of
Consupren solution and Sandimmun Neoral solution, 50 ml in stable heart
transplant patients. Biomedical papers of the Medical Faculty of the
University Palacky, Olomouc, Czechoslovakia 2002; 146 (2):87-90
25

51. Tsang WK, Wong SH, Chu KH, et al. The pharmacokinetics and bioequivalence of Gengraf and Neoral in stable renal tranplant recipients. Secondary The pharmacokinetics and bioequivalence of Gengraf and Neoral in stable renal tranplant recipients 2003.


- 52. Vitko S, Ferkl M. Interchangeability of ciclosporin formulations in stable adult renal transplant recipients: comparison of Equoral and Neoral capsules in an international, multicenter, randomized, open-label trial. Kidney international.Supplement 2010(115):S12-S16
- 53. First MR, Alloway R, Schroeder TJ. Development of Sang-35: a cyclosporine formulation bioequivalent to Neoral. Clinical transplantation 1998;**12**(6):518-24
- 54. Fisher RA, Pan SH, Rossi SJ, et al. Pharmacokinetic comparison of two cyclosporine A formulations, SangCya (Sang-35) and Neoral, in stable adult liver transplant recipients. Transplantation proceedings 1999;**31**(1-2):394-
- 55. Gaston R, Alloway RR, Gaber AO, et al. Pharmacokinetic and safety evaluation of SangCya vs Neoral or Sandimmune in stable renal transplant recipients. Transplantation proceedings 1999;**31**(1-2):326-27
- 56. Masri MA, Barbari A, Stephan A, et al. Cyclosporine pharmacokinetics in stable renal transplant patients: effect of formulation Sandimmun versus Consupren versus Neoral. Transplantation proceedings 1996;**28**(3):1318-20
- 57. Khatami SM, Taheri S, Azmandian J, et al. One-Year Multicenter Double-Blind Randomized Clinical Trial on the Efficacy and Safety of Generic Cyclosporine (Iminoral) in De Novo Kidney Transplant Recipients. Exp Clin Transplant 2013 doi: 10.6002/ect.2013.0139[published Online First: Epub Date]].
- 58. Alloway RR, Sadaka B, Trofe-Clark J, et al. A randomized pharmacokinetic study of generic tacrolimus versus reference tacrolimus in kidney transplant recipients. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 2012;**12**(10):2825-31
- 59. Connor A, Prowse A, MacPhee I, et al. Generic tacrolimus in renal transplantation: trough blood concentration as a surrogate for drug exposure. Transplantation 2012;**93**(12):e45-e46
- 60. Dhungel V, Colvin-Adams M, Eckman PM. Short-term outcomes in heart transplant recipients treated with generic tacrolimus. Secondary Short-term outcomes in heart transplant recipients treated with generic tacrolimus 2012.
- 61. Heavner MS, Tichy EM, Yazdi M, et al. Clinical outcomes associated with conversion from brand-name to generic tacrolimus in hospitalized kidney transplant recipients. American journal of health-system pharmacy : AJHP : official journal of the American Society of Health-System Pharmacists 2013;**70**(17):1507-12
- 62. Marfo K, Aitken S, Akalin E. Clinical outcomes after conversion from brand-name tacrolimus (prograf) to a generic formulation in renal transplant recipients: a retrospective cohort study. P & T : a peer-reviewed journal for formulary management 2013;**38**(8):484-88

1	
2	
3	63. Min SI, Ha J, Kim YS, et al. Therapeutic equivalence and pharmacokinetics of
4	generic tacrolimus formulation in de novo kidney transplant patients.
5 6	Nephrology, dialysis, transplantation : official publication of the European
7	
8	Dialysis and Transplant Association - European Renal Association
9	2013; 28 (12):3110-19
10	64. Rosenborg S, Nordstrom A, Almquist T, et al. Systematic conversion to generic
11	tacrolimus in stable kidney transplant patients. Secondary Systematic
12	conversion to generic tacrolimus in stable kidney transplant patients 2013.
13	65. Spence MM, Nguyen LM, Hui RL, et al. Evaluation of clinical and safety outcomes
14	associated with conversion from brand-name to generic tacrolimus in
15	
16	transplant recipients enrolled in an integrated health care system.
17	Pharmacotherapy 2012; 32 (11):981-87
18	66. Yu YD, Lee SG, Joh JW, et al. Results of a phase 4 trial of Tacrobell in liver
19	transplantation patients: a multicenter study in South Korea. Hepato-
20	gastroenterology 2012; 59 (114):357-63
21	67. McDevitt-Potter LM, Sadaka B, Tichy EM, et al. A multicenter experience with
22	generic tacrolimus conversion. Transplantation 2011; 92 (6):653-57
23 24	68. Momper JD, Ridenour TA, Schonder KS, et al. The impact of conversion from
24 25	
26	prograf to generic tacrolimus in liver and kidney transplant recipients with
27	stable graft function. American journal of transplantation : official journal of
28	the American Society of Transplantation and the American Society of
29	Transplant Surgeons 2011; 11 (9):1861-67
30	69. Robertsen I, Asberg A, Ingero AO, et al. Use of Generic Tacrolimus in Elderly
31	Renal Transplant Recipients: Precaution Is Needed. Transplantation 2014
32	doi: 10.1097/TP.000000000000384[published Online First: Epub Date]].
33	70. Abdallah TB, Ounissi M, Cherif M, et al. The role of generics in kidney transplant:
34	
35	mycophenolate mofetil 500 versus mycophenolate: 2-year results.
36	Experimental and clinical transplantation : official journal of the Middle East
37 38	Society for Organ Transplantation 2010;8(4):292-96
39	71. Namgoong JM, Hwang S, Ahn CS, et al. A pilot study on the safety and efficacy of
40	generic mycophenolate agent as conversion maintenance therapy in stable
41	liver transplant recipients. Transplantation proceedings 2013;45(8):3035-37
42	72. Rutkowski B, Bzoma B, Debska-Slizien A, et al. Immunosuppressive regimens
43	containing generic mycophenolate mofetil (Myfenax) in de novo renal
44	transplant recipientspreliminary results of 6-month observation. Annals of
45	
46	transplantation : quarterly of the Polish Transplantation Society
47	2011; 16 (4):74-80
48	73. Sunder-Plassmann G, Reinke P, Rath T, et al. Comparative pharmacokinetic study
49	of two mycophenolate mofetil formulations in stable kidney transplant
50 51	recipients. Transplant international : official journal of the European Society
51 52	for Organ Transplantation 2012;25(6):680-86
52 53	74. Danguilan RA, Lamban AB, Luna CA, et al. Pilot study on the efficacy and safety of
54	generic mycophenolate mofetil (Mycept) compared with Cellcept among
55	
56	incident low-risk primary kidney transplant recipients. Transplant Proc
57	2014; 46 (2):415-7 doi: 10.1016/j.transproceed.2013.11.116[published
58	Online First: Epub Date] .
59	27
60	27

75. Videla C, Godoy C. Converting to a generic formulation of mycophenolate mofetil in stable kidney transplant recipients: 1 year of drug surveillance and outcome. Transplantation proceedings 2007;**39**(3):602-05

- 76. Trofe-Clark J, Gabardi S, McDevitt-Potter L, et al. Immunosuppression, generic drugs and the FDA. Am J Transplant 2012;**12**(3):792-3; author reply 94 doi: 10.1111/j.1600-6143.2011.03875.x[published Online First: Epub Date]].
- 77. Allard JF, MC. Is it ethical to prescribe generic immunosuppressive drugs to renal transplant patients. Canadian Journal of Kidney Health and Disease 2014;1(23)
- 78. Meredith P. Bioequivalence and other unresolved issues in generic drug substitution. Clin Ther 2003;**25**(11):2875-90 Control to Review Only

BMJ

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
10
18
2 3 4 5 6 7 8 9 10 11 21 31 4 15 16 17 8 19 20 12 23 4 25 6 7 8 9 10 11 21 31 4 15 16 17 18 19 20 12 22 32 4 25 6 27 28 29 30 11 32 33 43 53 63 73 83 9 10 10 10 10 10 10 10 10 10 10 10 10 10
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
34 25
30
30
37
38
39
40
41
42
43
44
45
46
47
48
49
5 0
51
52
52 53
54
55
56
57
FO

60

kidney studies

1

Neoral	No of	No of	Point estimate	I^2	Meets FDA	Meets	Meets HC
	Studies	patients	(pooled 90%	(%)	criteria	EMA	criteria
		-	CI)			criteria	
AUC: kidney	2	60	0.93	0			
RCTs			(0.89 to 0.98)		Yes	No	No
AUC: non	7	251	1.00	0			
randomized			(0.98 to 1.02)		Yes	Yes	Yes
interventional							
kidney studies							
Cmax: kidney	2	60	0.90	0	Yes	No	Yes
RCT's			(0.85 to 1.02)				
Cmax: non	7	251	0.98	0	Yes	Yes	Yes
randomized			(0.95 to 1.01)				
interventional							

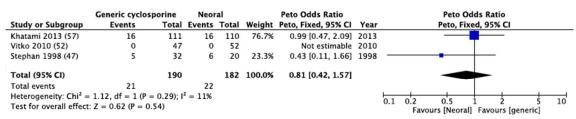
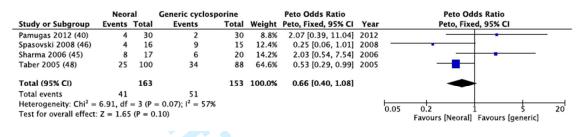

Table 1a: Neoral meta-analysis of bioequivalence (Cmax and AUC mean ratios)

Table 1b: Neoral meta-analysis of bioequivalence (Cmax and AUC mean ratios)


Prograf	No of	No of	Point estimate	I^2	Meets	Meets	Meets HC
-	Studies	patients	(pooled 90%	(%)	FDA	EMA	criteria
			CI)		criteria	criteria	
AUC:	3	222	1.09	76	Yes	No	No
kidney RCTs			(1.00 to 1.20)				
Cmax:	3	222	1.24	89	No	No	No
kidney			(1.02 to 1.50)				
RCT's							
AUC	, area unde	n concentra r the curve ed controlle					

BMJ

Figure 2a: Neoral acute rejection kidney RCT's

Figure 2b: Neoral acute rejection kidney observational studies

Figure 3: Prograf acute rejection kidney observational studies

	Prog	raf	Gene	ric		Peto Odds Ratio		1	Peto Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	Peto, Fixed, 95% CI	Year	Pe	eto, Fixed, 95% CI	
Heavner 2013 (61)	1	42	0	36	6.2%	6.41 [0.13, 326.59]	2013			
Marfo 2013 (62)	0	33	1	73	5.3%	0.23 [0.00, 16.13]	2013	· ·		
Connor 2012 (59)	8	48	9	51	88.5%	0.93 [0.33, 2.64]	2012	-		
Total (95% CI)		123		160	100.0%	0.98 [0.37, 2.60]				
Total events	9		10							
Heterogeneity: Chi ² =	1.32, df	= 2 (P	= 0.52);	$I^2 = 0\%$	5			0.05 0.2	<u>i</u>	20
Test for overall effect	Z = 0.02	5 (P = 0)	0.96)						Prograf] Favours [Generic]	

Figure 4: Cellcept acute rejection kidney observational studies

	Cellce	pt	Generic Mycophene	olic acid		Peto Odds Ratio		Peto Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	Peto, Fixed, 95% CI	Year	Peto, Fixed, 95% Cl
Danguilan 2014 (74)	1	20	3	20	65.7%	0.34 [0.04, 2.60]	2014	
Rutkowski 2011 (72)	1	15	1	15	34.3%	1.00 [0.06, 16.79]	2011	
Total (95% CI)		35		35	100.0%	0.49 [0.09, 2.56]		
Total events	2		4					
Heterogeneity: Chi ² =	0.37, df =	= 1 (P =	= 0.54); l ² = 0%					0.05 0.2 1 5 20
Test for overall effect:	Z = 0.84	(P=0.	.40)					0.05 0.2 1 S 20 Favours [Cellcept] Favours [Generic]

Supplementary Tables

Table 1a: Neoral study characteristics

Study, year	Country	Study Design	Transplant organ	Inclusion Criteria	Exclusion Criteria	Generic	Number of patients (total)	Mean age (Total study or B/G)
Khatami, 2013 ³⁷	Iran	Randomized parallel group	Kidney	Incident adult transplants	Hyperoxaluria Primary focal segmental glomerulosclerosis History of malignancy in the last 5 years Re-transplant PRA >25%	Iminoral	221	38.1 (12.6)/39.3 (13.2)
Vitko, 2010 ⁵²	Czech Republic	Randomized parallel group	Kidney	Transplanted between 1 and 10 years prior to enrollment Stable graft function No rejection in the last 6 months Stable dose of cyclosporine	None specified	Equoral	99	43.4 (11.6)/ 41.1 (12.5)
Qazi, 2006 ⁴²	USA	Randomized parallel group (10% to Neoral and 90% to Gengraf) Before/after comparisons in Gengraf arm	Kidney	At least 6 months post transplant Stable graft function Stable cyclosporine levels	None specified	Gengraf	82	47.5 (5)
Hibberd, 2006 ³³	Australia	Randomized cross over trial	Kidney	Stable transplant recipients At least 6 months post transplant	None specified	Cysporin	28	53 (10)
David-Neto, 2004 ²⁹	Brazil	Randomized cross over trial	Kidney	Stable prevalent transplants Age 18-60 Stable cyclosporine dose	History of active cancer	Zinograf-ME	18	44.7 (12)
First, 1998 ⁵³	USA	Randomized cross over trial	Kidney	Body weight between 45 to 155 kg	Multi-organ transplants Unstable medical	Sang-35	32	Not reported

Page 33 of 69

				>6 months post	problems			
				transplant Stable allograft	-			
				function				
				No rejection				
				episodes in the last				
				6 months				
				No recent change				
				in cyclosporine				
K: 100035	C 4 K		IZ. 1	dose	NI	N I (40	40 (11 0)/ 27 2
Kim, 1998 ³⁵	South Korea	Randomized	Kidney	Incident living donor transplants	None specified	Neoplanta	40	40 (11.9)/ 37.2 (9.3)
		parallel group trial		Adults				(9.5)
Stephan, 199847	USA	Randomized	Kidney	Incident	None specified	Consupren	36	Not reported
Stephan, 1990	0.011	parallel group trial	Reality	transplants	Tone specifica	consupren	50	Not reported
Masri, 1996 ⁵⁶	Lebanon	Randomized	Kidney	Prevalent	None specified	Consupren	44	33/32
		parallel group trial		transplants	- · · · · · · · · · · · · · · ·			
				Unstable				
				Sandimmune				
				pharmacokinetics				
				and Cmax <400				
				ng/ml				
				Tmax >3.5 hrs				
				Broad Cmax				
				Unstable serum				
				creatinine (>10% variation over 3				
				measurements)				
Fisher, 1999 ⁵⁴	USA	Randomized cross	Liver	Stable liver and	None specified	SangCya	26	52 (10)
1 151101, 19999	0.511	over trial	Liver	renal function	rione specifica	Sungeyu	20	52 (10)
				More than 1 year				
				post transplant				
Leet, 2009 ³⁷	Australia	Randomized cross	Heart	At least 15 months	Comorbidities	Cysporin	16	60.06 (8.45)
		over trial		post transplant	Sirolimus use			
				Stable dose of				
				cyclosporine				
				Stable renal function				
				No rejection in the				
				last 6 months				
Toman, 2002 ⁵⁰	Czech Republic	Randomized	Heart	At least 6 months	None specified	Consupren	10	51.2 (12)/ 49.8
· ·····, ····		parallel group trial		post transplant		r		(10)
				Clinically stable				
				Stable				
				cyclosporine				
	1	1		levels	1	1	1	1

https://mc.manuscriptcentral.com/bmj

Page	34	of	69
------	----	----	----

				No significant infection				
Al Wakeel, 2008 ²⁷	Saudi Arabia/Middle East	Interventional before/after	Kidney	Minimum transplant age of 6 months Stable graft function	None specified	Sigmasporin Microral	42	37.9 (11.1)
Al Wakeel, 2008 ²⁶	Saudi Arabia/Middle East	Interventional before/after	Kidney	Minimum transplant age of 6 months Stable graft function	None specified	Sigmasporin Microral	75	38.9 (10.7)
Sayyah, 2007 ⁴⁴	Iran	Interventional before/after	Kidney	Clinically stable for at least 2 months	Severe infections Liver dysfunction Malignancy	Iminoral	41	40.12 (13.37)
Masri, 2005 ³⁹	Turkey, Lebanon, Pakistan	Interventional before/after	Kidney	Prevalent transplants First transplant No rejection in the past 6 months	Any of the following within 14 days of study entry: myocardial infarction, condition that might compromise GI tract, liver or kidney function, condition that might influence cyclosporine pharmacokinetics	Equoral	70	33
Fradette, 2005 ³²	Canada	Interventional before/after	Kidney	At least 6 months post transplant Stable graft function	None specified	Pliva	37	49.2
Perlik, 2005 ⁴¹	Czech Republic	Interventional before/after	Kidney	Stable transplant recipients No rejection in the past 6 months	Significant co- morbidities Interacting medications	Equoral	70	Males: 35.3 Females: 34.7
Talaulikar, 2004 ⁴⁹	Australia	Interventional before/after	Kidney	More than 3 months post transplant	Liver disease Instability of graft function Change of Neoral dose in the last 3 months	Cysporin	40	49.8 (11.4)
Masri, 2004 ³⁸	Turkey, Pakistan, Lebanon, Czech Republic	Interventional before/after	Kidney	First renal transplant No rejection in the	Hepatic dysfunction CMV infection in	Equoral	Not reported	Not reported

BMJ

Page 35 of 69

BMJ

1 2	
2 3 4 5 6	
5 6	
7 8 0	
9 10 11	
12 13	
14 15	
16 17	
18 19	
20 21	
22 23	
24 25 26	
27 28	
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	
31 32	
32 33 34 35 36 37 38	
35 36	
37 38 39	
39 40 41	
42 43	
44 45	
46 47	
48 ⊿9	

				last 6 months Stable graft	the last 6 months			
Durlik, 2003 ³¹	Poland	Interventional before/after	Kidney	function At least 6 months post first renal transplant Stable graft function On Neoral for at least 3 months Age 18 to 65 years	None specified	Cicloral	42	42.5
Tsang, 2003 ⁵¹	Hong Kong	Interventional before/after	Kidney	At least 3 months post transplant On a stable dose of Neoral No interacting medications Stable graft function Age 18-65 years	Conditions or drugs that would alter cyclosporine metabolism and clearance Pregnancy	Gengraf	20	48.4 (10.7)
Roza, 2002 ⁴³	USA	Interventional before/after	Kidney	At least 6 months post transplant Medically stable	Significant medical issues Taking drugs that influenced cyclosporine metabolism Pregnancy	Gengraf	50	49.8 (11.4)
Gaston, 1999 ⁵⁵	USA	Interventional before/after	Kidney	Stable adult transplant recipients	None specified	SangCya	32	Not reported
Pamugas, 2012 ⁴⁰	Philippines	Prospective cohort	Kidney	Age 18-65 years Living donor PRA <10% Incident transplants	CMV positive donor to CMV negative recipient Pulmonary TB Treatment with medications known to interact with cyclosporine	Arpimune	60	38.3 (9.3)/ 36.4 (6
Diarra, 2010 ³⁰	Austria	Before/after	Kidney	Stable graft function Prevalent transplants	None specified	Equoral	59	54 (16)
Kahn, 2010 ³⁴	South Africa	Retrospective cohort with historical controls	Kidney	Prevalent transplants: stable graft function	None specified	Cicloral	Incident transplant: 49 Prevalent	Incident transplants: 39.5/ 41.9

5 5 45075ki, 2000		cohort	Traitey	donor recipients Neoral: 2003 Equoral: 2006	Trone specifica	Equorar
Sharma, 2006 ⁴⁵	India	Prospective cohort	Kidney	Incident transplants from November 2003 to March 2005	None specified	Arpimune
Taber, 2005 ⁴⁸	USA	Retrospective cohort	Kidney	Incident transplants Neoral group: Transplanted between January 1999 and May 2001 Gengraf group: transplanted between May 2001 and July 2002	Graft failure within 14 days post transplant Incomplete data collection	Gengraf
Carnahan, 2003 ²⁸	USA	Prospective before/after	Kidney	Prevalent transplants	Already taking another generic preparation	Gengraf
Kraeuter, 2013 ³⁶	Germany	Retrospective before/after	Heart	Clinically stable adult chronic transplant patients transplanted from 1989 to 2009	No rejection episodes at the time of conversion Lack of patient adherence Multi-organ transplants	Equoral

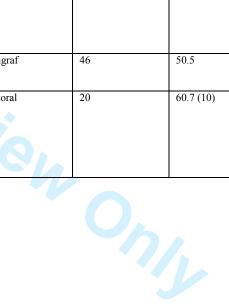
Kidney

(incident

transplants)

before/after

(prevalent transplants)


Retrospective

Retrospective

B/G: B=Brand name; G= Generic

Spasovski, 200846

Macedonia

transplants: 117

Prevalent

specified

(7.6)

(9.8)

48.7/ 51.2

transplants: Not

38.6 (5.1)/ 39.6

28.1 (9.5)/ 30.55

Incident living

None specified

Equoral

Table 1b: Prograf study characteristics

Study, year	Country	Study Design	Transplant organ	Inclusion Criteria	Exclusion Criteria	Generic	Number of patients (total)	Mean age (Total study or B/G)
Robertsen, 2014 ⁶⁹	Norway	Randomized cross over trial	Kidney	Incident transplants 60 years of age or older	None specified	Tacni	25	69 (60-78)*
Min, 2013 ⁶³	South Korea	Randomized parallel group trial followed by a crossover trial at 6 months in a subset of patients	Kidney	Adult incident transplant patients (living or deceased)	Kidney from donors after cardiac death Infection Liver disease Previous non renal transplant Malignancy within 5 years	Tacrobell	126	45.6 (12.4) / 47 (12.7)
Alloway, 2012 ⁵⁸	USA	Randomized cross over trial	Kidney	At least 6 months post transplant On a stable dose of tacrolimus	None specified	Sandoz	71	52 (12.5)
Rosenborg, 2014 ⁶⁴	Sweden	Interventional before/after	Kidney	Stable renal function Inclusion from January to December 2012	New transplants Active neoplasm	Sandoz	67	57.6 (11)

McDevitt-Potter, 2011 ⁶⁷	USA	Interventional before/after	Liver, Kidney, multiorgan	On a stable tacrolimus dose Prevalent transplants	Changing tacrolimus trough target Non adherent with monitoring On a mixture of generic and brand products	Sandoz	70 Liver n=28 Kidney n=27 Multiorgan n=5	52 (12)
Heavner, 2013 ⁶¹	USA	Retrospective cohort	Kidney	Prograf group: admission to hospital from October to December 2009 Generic group: admission from December 2009 to February 2009	Transplant within 90 days of admission New initiation of tacrolimus	Sandoz	78	51 / 54
Marfo, 2013 ⁶²	USA	Retrospective before/after and retrospective cohort	Kidney	Switched from brand-name to generic between 2009 and 2010	Less than 3 months post transplant	Any generic	Before/after: 73 Cohort: 106	51 (16) / 54 (13)
Connor, 2012 ⁵⁹	United Kingdom	Retrospective cohort	Kidney	Incident transplant patients Prograf: Transplanted between November 2009 and November 2010 Generic: Transplanted between November 2010 and 2011	None specified	Adoport	99	52 / 57*
Momper, 2011 ⁶⁸	USA	Retrospective before/after	Liver, kidney	Liver: at least 6 months post transplant Kidney: at least 3 months post transplant Conversion between August	Non adherent with drug level monitoring Co-prescribed interacting medications	Sandoz	103 Liver: 48 Kidney: 55	Liver: 60.6 (10.9) Kidney: 49.9 (15.1)

Page 39 of 69

				2009 to April 2010				
	0/25							
Spence, 2012 ⁶⁵	USA	Retrospective before/after	Liver, kidney, heart	Clinically stable with conversion to generic between October 1 st to December 31 st , 2010	None specified	Sandoz	Liver: 29 Kidney: 193 Heart: 12	54 (12.9)
Yu, 2012 ⁶⁶	South Korea	Prospective cohort with historical controls	Liver	Incident transplants	Over age 65 Severe infection	Tacrobell	117	51.2 (4.8)/ 48 (6.9)
Dhungel, 2013 ⁶⁰	USA	Retrospective cohort with historical controls	Heart	Incident transplants	None specified	Generic not specified	65	50.9 (16.5)/ 5 (10.2)
B/G: B=Brand name *Median (range)	; G= Generic				1.61	10,		
							0,	

Table 1c: Cellcept study characteristics

Study, year	Country	Study Design	Transplant organ	Inclusion Criteria	Exclusion Criteria	Generic	Number of patients (total)	Mean age (Total study or B/G)
Sunder-Plassmann, 2012 ⁷³	Multi-centre, International	Randomized cross over trial	Kidney	At least 12 months post transplant Stable renal function	None specified	Myfenax	43	50.7 (13.5)
Abdallah, 2010 ⁷⁰	Tunisia	Randomized parallel group trial	Kidney	All incident transplants between January 2007 and December 2008	None specified	Mycophenolate mofetil 500 (Medis, Tunisia)	18	33.3 (11.7)/ 36.3 (7.1)
Videla, 2007 ⁷⁵	Chile	Interventional before/after	Kidney	Stable renal function	None specified	Linfonex	5	Not reported
Danguilan, 2014 ⁷⁴	Philippines	Prospective cohort with historical controls	Kidney	18-65 years of age Incident transplants Primary kidney transplant from a living donor PRA <10%	None specified	Mycept	56	Not reported 90% of patients between the ages 20-40
Rutkowski, 2011 ⁷²	Poland	Cohort	Kidney	Incident transplants from April 2009 to January 2011 (partner kidneys)	None specified	Myfenax	15	49/54.1

South Korea	Prospective before/after	Liver	Transplant 2 years or more before the study with stable function	None specified	Myconol	53	55.9 (7.1)
	00	71:3					

Page 42 of 69

Table 2: Quality assessment of non-randomized studies

Study	Comparise		Method used to form	Retrospective (R) or	Confounding considered in the study design or	Did the study have a	Outo	come of acute rej	ection	Outcome of drug levels/bioequivalence			
	Between two or more groups of participants	Within the same group of participants over time	intervention groups	prospective (P) study design	analysis	protocol?*	Pre- specified objective	Measured	Analyzed**	Pre- specified objective	Measured	Analyzed	
Al Wakeel 2008 ²⁷	N	Y	Action of researchers	Р	N	Y	Ν	N	Ν	Y	Y	Y	
Al Wakeel 2008 ²⁶	N	Y	Action of researchers	Р	N	Y	Y	Y	Ν	Y	Y	Y	
Sayyah, 200744	N	Y	Action of researchers	Р	N	Probably yes	N	N	N	Y	Y	Y	
Masri, 2005 ³⁹		Y	Action of researchers	Р	N	Probably yes	N	N	N	Y	Y	Y	
Fradette, 2005 ³²	N	Y	Action of researchers	Р	Y Multivariable regression	Probably yes	Ν	Ν	Ν	Y	Y	Y	
Perlik, 2005 ⁴¹	N	Y	Action of researchers	Р	N	Y	Ν	Ν	Ν	Y	Y	Y	
Talaulikar, 2004 ⁴⁹	N	Y	Action of researchers	Р	Ν	Y	Ν	Ν	Ν	Y	Y	Y	
Masri, 2004 ³⁸	Ν	Y	Action of researchers	Р	Ν	Y	Ν	Ν	Ν	Y	Y	Y	
Durlik, 2003 ³¹	Ν	Y	Action of researchers	Р	Ν	Y	Ν	Ν	Ν	Y	Y	Y	
Tsang, 2003 ⁵¹	Ν	Y	Action of researchers	Р	Ν	Probably yes	Y	Y	Ν	Y	Y	Y	
Roza, 2002 ⁴³	N	Y	Action of researchers	Р	Ν	Y	Y	Y	Ν	Y	Y	Y	
Gaston, 199955	N	Y	Action of researchers	Р	Ν	Probably yes	Y	Y	N	Y	Y	Y	
Pamugas, 2012 ⁴⁰	Y	N	Unclear	Р	Y Matching on age, sex, primary renal disease, number of DR mismatches	Probably yes	Y	Y	N	Y	Y	Y	
Diarra 2010 ³⁰	N	Y	Healthcare decision makers and participant preferences	Unclear	N	Probably no	N	N	N	Y	Y	Y	
Kahn, 2010 Incident	Y	N	Time differences	R	Ν	Probably yes	Ν	Y	N	Y	Y	Y	

Page 43 of 69

Prevalent transplants sub- study ³⁴ Spasovski, 2008 ⁴⁶ Sharma, 2006 ⁴⁵ Taber, 2005 ⁴⁸	N Y Y Y N	Y N N N Y	healthcare decision makers Time differences and healthcare decision makers Time differences Unclear Time differences Healthcare decision	R R P R R P	N Y Matching on age, gender and body weight Y Matching on age and sex No differences in other key baseline characteristics Y No differences in baseline characteristics N N	Probably yes Probably no Probably no Y Probably yes	N Y Y Y Y	Y Y Y Y Y	N Y Y Y N	Y Y Y Y N Y	Y Y Y Y N Y	
Kahn, 2010 I Prevalent I transplants sub- study ³⁴ Spasovski, I 2008 ⁴⁶ I Sharma, 2006 ⁴⁵ I Taber, 2005 ⁴⁸ I Carnahan, I	Y Y Y Y	N N N	decision makers Time differences and healthcare decision makers Time differences Unclear Time differences Healthcare decision	R P R	Y Matching on age, gender and body weight Y Matching on age and sex No differences in other key baseline characteristics Y No differences in baseline characteristics	Probably no Probably no Y	Y Y Y	Y Y Y	Y Y Y	Y Y N	Y Y N	
Prevalent transplants sub- study ³⁴ Spasovski, 2008 ⁴⁶ Sharma, 2006 ⁴⁵ Taber, 2005 ⁴⁸	Y Y Y Y	N N N	makersTimedifferencesandhealthcaredecisionmakersTimedifferencesUnclearTimedifferencesHealthcaredecision	R P R	Y Matching on age, gender and body weight Y Matching on age and sex No differences in other key baseline characteristics Y No differences in baseline characteristics	Probably no Probably no Y	Y Y Y	Y Y Y	Y Y Y	Y Y N	Y Y N	
Prevalent transplants sub- study ³⁴ Spasovski, 2008 ⁴⁶ Sharma, 2006 ⁴⁵ Taber, 2005 ⁴⁸	Y Y Y Y	N N N	Time differences and healthcare decision makers Time differences Unclear Time differences Healthcare decision	R P R	Y Matching on age, gender and body weight Y Matching on age and sex No differences in other key baseline characteristics Y No differences in baseline characteristics	Probably no Probably no Y	Y Y Y	Y Y Y	Y Y Y	Y Y N	Y Y N	
Prevalent transplants sub- study ³⁴ Spasovski, 2008 ⁴⁶ Sharma, 2006 ⁴⁵ Taber, 2005 ⁴⁸	Y Y Y	N N	and healthcare decision makers Time differences Unclear Time differences Healthcare decision	P R	Matching on age, gender and body weightYMatching on age and sex No differences in other key baseline characteristicsYNo differences in baseline characteristics	Probably no Probably no Y	Y Y Y	Y Y Y	Y Y Y	Y N	Y Y N	
study ³⁴ Spasovski, 2008 ⁴⁶ Sharma, 2006 ⁴⁵ Taber, 2005 ⁴⁸	Y Y Y	N N	and healthcare decision makers Time differences Unclear Time differences Healthcare decision	P R	Matching on age, gender and body weightYMatching on age and sex No differences in other key baseline characteristicsYNo differences in baseline characteristics	Probably no Y	Y Y Y	Y Y Y	Y Y Y	Y N	Y	
study ³⁴ Spasovski, 2008 ⁴⁶ Sharma, 2006 ⁴⁵ Taber, 2005 ⁴⁸	Y Y Y	N N	decision makers Time differences Unclear Time differences Healthcare decision	P R	Matching on age, gender and body weightYMatching on age and sex No differences in other key baseline characteristicsYNo differences in baseline characteristics	Probably no Y	Y Y Y	Y Y Y	Y Y Y	Y N	Y	
Spasovski, 2008 ⁴⁶ Sharma, 2006 ⁴⁵ Taber, 2005 ⁴⁸	Y Y Y	N N	decision makers Time differences Unclear Time differences Healthcare decision	P R	Matching on age, gender and body weightYMatching on age and sex No differences in other key baseline characteristicsYNo differences in baseline characteristics	Probably no Y	Y Y Y	Y Y Y	Y Y Y	Y N	Y	
2008 ⁴⁶ Sharma, 2006 ⁴⁵	Y Y Y	N N	Time differences Unclear Time differences Healthcare decision	P R	Matching on age, gender and body weightYMatching on age and sex No differences in other key baseline characteristicsYNo differences in baseline characteristics	Probably no Y	Y Y Y	Y Y Y	Y Y Y	Y N	Y	
2008 ⁴⁶ Sharma, 2006 ⁴⁵	Y Y Y	N N	differences Unclear Time differences Healthcare decision	P R	Matching on age, gender and body weightYMatching on age and sex No differences in other key baseline characteristicsYNo differences in baseline characteristics	Probably no Y	Y Y Y	Y Y Y	Y Y Y	Y N	Y	
2008 ⁴⁶ Sharma, 2006 ⁴⁵	Y	N	Unclear Time differences Healthcare decision	R	and body weight Y Matching on age and sex No differences in other key baseline characteristics Y No differences in baseline characteristics	Y	Y	Y	Y	N	N	
Taber, 2005 ⁴⁸	Y	N	Time differences Healthcare decision	R	Y Matching on age and sex No differences in other key baseline characteristics Y No differences in baseline characteristics	Y	Y	Y	Y	N	N	
Taber, 2005 ⁴⁸	Y	N	Time differences Healthcare decision	R	Matching on age and sex No differences in other key baseline characteristics Y No differences in baseline characteristics	Y	Y	Y	Y	N	N	
Carnahan, 1			differences Healthcare decision		No differences in other key baseline characteristics Y No differences in baseline characteristics							-
Carnahan, 1			differences Healthcare decision		key baseline characteristics Y No differences in baseline characteristics							
Carnahan, 1			differences Healthcare decision		characteristics Y No differences in baseline characteristics							
Carnahan, 1			differences Healthcare decision		Y No differences in baseline characteristics							
Carnahan, 1			differences Healthcare decision		No differences in baseline characteristics							
Carnahan, 1 2003 ²⁸	N	Y	Healthcare decision	P	baseline characteristics	Probably yes	Y	Y	N	Y	Y	-
Carnahan, 1 2003 ²⁸	N	Y	decision	Р		Probably yes	Y	Y	N	Y	Y	\dashv
Carnahan, 2003 ²⁸	N	Y	decision	Р	N	Probably yes	Y	Ŷ	N	Y	Y	1
2003-	,	1						•	1	1	1	
	,		makers	1		1						1
	I	1 1	(Medical									ĺ
	I	1 1	centre									
	I	1 1	formulary									1
	I	·	changes)									
	N	Y	Participant	R	N	Probably yes	Y	Y	Y	Y	Y	-
2013 ³⁶		[*]	preferences			1100.00.9 9	· _	•	•	•	1	
Rosenborg, 1	N	Y	Healthcare	Р	Y	Probably yes	Y	Y	Ν	Y	Y	
2014 ⁶⁴		1 1	decision	-	To account for dose			-		-	Ť	
	I	1 1	makers		adjustments drug levels							
	I	1 1			were normalized for							
	!	<u>ا</u> ا			dose							
Mcdevitt-	Ν	Y	Healthcare	Р	Ν	Probably yes	Y	Y	Ν	Y	Y	ļ
Potter, 2011 ⁶⁷	I	·	decision									ļ
	I	·	makers,									ļ
	I	·	location									ļ
	I	1 1	differences									ļ
	I	·	and									ļ
	I	·	participant									ł
	<u> </u>	<u>↓ </u>	preferences	TT. 1	- x T	* 7	*7	*7		NT.	Y	
Heavner, 2013 ⁶¹	Y	Ν	Time	Unclear	Ν	Y	Y	Y	Ν	Y	Ŷ	ł
	Y	Y	differences Retail	R	N	Y	Y	Y	N	Y	Y	

1 2 3 4	
5 6 7 8 9	
10 11 12 13 14	
$2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 21 \\ 22 \\ 24 \\ 25 \\ 27 \\ 28 \\ 9 \\ 30 \\ 12 \\ 33 \\ 34 \\ 35 \\ 6 \\ 78 \\ 32 \\ 33 \\ 34 \\ 35 \\ 6 \\ 78 \\ 32 \\ 33 \\ 34 \\ 35 \\ 6 \\ 78 \\ 32 \\ 31 \\ 32 \\ 34 \\ 35 \\ 6 \\ 78 \\ 32 \\ 31 \\ 32 \\ 34 \\ 35 \\ 6 \\ 78 \\ 30 \\ 34 \\ 35 \\ 6 \\ 78 \\ 30 \\ 35 \\ 37 \\ 30 \\ 35 \\ 35 \\ 37 \\ 30 \\ 35 \\ 37 \\ 30 \\ 35 \\ 35 \\ 37 \\ 30 \\ 35 \\ 35 \\ 37 \\ 30 \\ 35 \\ 35 \\ 35 \\ 37 \\ 30 \\ 35 \\ 35 \\ 35 \\ 35 \\ 35 \\ 35 \\ 35$	
20 21 22 23 24	
25 26 27 28	
29 30 31 32 33	
34 35 36 37 38	
39 40 41 42 43	
44 45 46 47	
48	

			pharmacy									
			switch									
Connor, 2012 ⁵⁹	Y	N	Healthcare decision makers and time differences (program switch due to cost)	R	Y Matching on immunosuppression and deceased vs living donor	Probably no	Y	Y	Y	Y	Y	Y
Momper, 2011 ⁶⁸	N	Y	Unclear	R	Y Multivariable regression	Probably yes	Y	Y	N	Y	Y	Y
Spence, 2012 ⁶⁵	N	Y	Healthcare decision makers	R	N	Y	Y	Y	N	Y	Y	Y
Yu, 2012 ⁶⁶	Y	N	Time and location differences (historical controls)	P (generic group) R (brand name group)	Y Matching on age, disease type, gender, liver disease severity, graft to recipient weight ratio	Probably yes	Y	Y	Y	Y	Y	Y
Dhungel, 2013 ⁶⁰	Y	Ν	Time differences (historical controls)	R	N	Probably no	Y	Y	Y	Y	Y	Y
Videla, 2007 ⁷⁵	N	Y	Action of researchers	Р	N	Probably yes	N	N	N	Y	Y	Y
Danguilan, 2014 ⁷⁴	Y	N	Time differences (historical controls)	P (generic group) R (brand name group)	Y Matching on age, gender, PRA and HLA typing	Probably yes	Y	Y	Y	Y	Y	Y
Rutkowski, 2011 ⁷²	Y	N	Unclear	Unclear	Y Matched based on donor (partner kidneys)	Probably no	Y	Y	Y	Y	Y	N
Namgoong, 2013 ⁷¹	N	Y	Healthcare decision makers and time differences (program was switching from trade name to generic)	Р	N	Probably yes	Y	Y	N	Y	Y	Y

*Did the study have a protocol? An answer of probably yes was given if the methods specified that the study received REB or IRB approval or if the study was interventional, but it was not specifically stated that the study had a protocol. An answer of probably no was given if there was no specific statement about REB/IRB approval or a protocol and the study was observational.

**The outcome of acute rejection was often not analyzed due to a lack of events.

Table 3a: Neoral pharmacokinetic outcomes

7 8 9 10	Study, year, organ	Dose adjust ments allowed (y/n)	One to one dose conver sion (y/n)*	Number of patients with dose adjustme	Time of outcome measurem ent	Dose* (mg/d)		Weight r dose (mg/kg/c	ormalized	Trough lev (ng/ml)	vel (C0)	C2 (ng/ml)		AUC (0-4) (ng/ml)*	* h	AUC (0-12) (ng/ml)* h		Cmax (ng/ml)		Tmax (h)		Cmax mean ratio (90% CI)	AUC mean ratio (90% CI)
12				nts (B/G)§		В	G	В	G	В	G	В	G	В	G	В	G	В	G	В	G	В	G
13 14	Khatami, 2013, kidney ⁵⁷	Y	N/A	Unclear	12 months post transplant			2.8 (1.1)	2.6 (1.1)	152.8 (56.3)	176.1 (81.2)	675.59 (226.2)	725.0 (280.9)										
15 16		Y	Y	Unclear	180 days post randomiza tion	205.64 (85.0)	208.5 (97.6)			130.48 (26.1)	138.08 (32.22)	669.13 (133.83)	669.13 (133.8 3)										
17 18 19		Y	Y	0/13¶	2 weeks post randomiza tion				C	185 (98)	195 (81)												
20	H1bberd, 2006,	Unclear	Y	Unclear	Days 14 and 28											3853.4 (1377.8)	3494.6 (1319.2)	880.9 (368.2)	754.8 (301.4)	1.4 (0.6)	1.9 (0.8)	0.88 (0.8-0.97)	0.93 (0.88- 0.98)
21 22		N	Y	N/A	Day 0 and day 7					156 (81)	160 (78)	734 (229)	708 (225)			3971 (1326)	4020 (1467)	1022 (357)	999 (377)	1.3 (0.3)	1.4 (0.3)	0.977	1.012
23 24	kidney ⁵³	N	Y	N/A	One week											4377 (1579)	4120 (1508)	994 (391)	890 (332)	1.3 (0.4)	1.4 (0.6)	0.93 (0.84- 1.02)	0.95 (0.86- 1.05)
25 26		Y	N/A	Unclear	One month post transplant			6.55 (1.29)	6.85 (1.37)	245 (92.4)	296 (82)			2				1123 (256)	1055 (248)	1.81 (0.39)	1.80 (0.4)		
27 28 29 30 31		Unclear	N/A	Unclear	Unclear when measured Total study duration 4 weeks											6528.3 (1087.6)	7274.2 (1805)	1650 (30.69)	1709.6 (24.9)	1.4 (0.4)	1.4 (0.4)		
32 33		Y	Unclea r	19/18	One week post randomiza tion			3.61 (1.42)	3.79 (1.46)	165.3 (36.4)	158.1 (47.9)						1	795.2 (247)	638.3 (167.9)				
34 35	liver	Unclear	Y	Unclear	Unclear					143 (54)	147 (58)					3572 (1448)	3397 (957)	589 (288)	503 (146)	2.9 (1.6)	3.1 (1.2)	0.93 (0.81- 1.06)	0.99 (0.89- 1.09)
36 37	nour	Unclear	Y	Unclear	14 days on each medication														5			1.30 (1.20- 1.42)Ψ	1.17 (1.11- 1.23)Ψ
38 39 40	Toman, 2002, heart ⁵⁰	Y	Y	11 (4/7)	12 weeks after randomiza tion					148 (34.3)	196.2 (88.5)												

⊿o

Page 47 of 69		

Diarra, 2010, kidney ³⁰	Unclear	Unclea r	Unclear	Pre conversion and 6 months post conversion	152.7 (50.9)	152.0 (52.2)		87.53 (47.44)	81.51 (25.72)												
Al Wakeel, 2008, kidney ²⁷	N	Y	N/A	Pre conversion and 14 days post conversion				117.2 (62.8)	115.6 (62.8)					3778.6 (1610.5)	3634.4 (1419.1)	970.6 (39.7)	898.4 (346.5)	1.6 (0.7)	1.5 (0.7)	0.93 (0.8573- 1.0358)	0.96 (0.9256- 1.0355)
Al Wakeel, 2008, kidney ²⁶	Y	Y	2¶	Pre conversion and 14 days post conversion	0	R		171.1 (103.3)	177.1 (117.1)	760.3 (387.2)	706.5 (275.1)										
Sayyah, 2007, kidney ⁴⁴	Y	Y	0	Pre conversion and 5 days post conversion				235.16 (144.89)	193.17 (99.58)												
Masri, 2005, kidney ³⁹	Unclear	Y	Unclear	14 days pre and post conversion			9	109.8 (14.41)	109.3 (17.26)	680.5 (0.5)	689 (6)			2856	2892	773	743			(0.93- 1.01)	(0.99- 1.06) Only CI reported
Perlik, 2005, kidney ⁴¹	N	Y	N/A	C0 and C2: 2 weeks pre conversion and 3 days post conversion AUC and Cmax: pre conversion and 14 days post conversion				123	114	604	591			3039	3108	725	717			0.99 (0.93- 1.05)	1.02 (0.99- 1.06)
Fradette, 2005, kidney ³²	Unclear	Y	Unclear	14 days pre and post conversion										3354.67 CV% (32.3)	3243.63 CV% (42.3)	841.06 CV% (36)	807.04 CV% (43.1)			0.96 (0.886- 1.061)	0.981 (0.93- 1.036)
Talaulikar, 2004, kidney ⁴⁹	Unclear	Y	Unclear	Pre conversion and 2 weeks post conversion				106 (48- 188)**	98 (33- 200)**	660 (73- 1170)**	736 (106- 1096)* *	1730 (861- 2980)* *	2180 (858- 2750)**	3000 (1490- 5150)**	3840 (1310- 5090)**						1.01 (0.94- 1.1)Ψ
Masri, 2004, kidney ³⁸	Unclear	Y	Unclear	C0 and C2: 7 days apart AUC and Cmax: days 14 and 28				109.8 (14.41)	109.3 (17.26)	680.5 (0.5)	689 (6)			2856	2892	773	743				
Carnahan, 2003, kidney ²⁸	Y	Y	Unclear for the whole group, 2 for subgroup >18	Pre conversion and at least 2 weeks post conversion				139	156												

BMJ

			months post transplan t																			
Durlik, 2003, kidney ³¹	Unclear	Y	Unclear	Pre conversion and 2 weeks post conversion					155 (31)	138 (30)					4421 (647)	3834 (767)						
Tsang, 2003, kidney ⁵¹	Y	Y	0	Days 1 and 8 (Neoral) Days 21 and 28 (generic)	9				127 (50.1)	142.6 (49.1)	728 (220)	913.3 (359.7)	2421 (722)	2637 (846)			1007 (358)	1101.9 (425.6)	1.53 (0.72)	1.8 (0.9)	1.09 (0.97-1.2)	1.09 (0.97 1.2)
Roza, 2002, kidney ⁴³	Y	Y	0	C0: Pre and 2 weeks post conversion AUC, Cmax and Tmax: Days 14 and 28			2		198 (77)	198 (80)					5016 (1648)	5008 (1767)	1247 (405)	1246 (477)	1.5 (0.4)	1.6 (0.5)	0.981 (0.922- 1.044)	0.992 (0.95 1.034
Gaston, 1999, kidney ⁵⁵	N	Y	N/A	Pre conversion and one week post conversion											4377 (1579)	4120 (1508)	994 (391)	890 (332)	1.3 (0.4)	1.4 (0.6)	0.93 (0.84- 1.02)	0.95 (0.80 1.05
Pamugas, 2012, kidney ⁴⁰	Y	N/A	Unclear	AUC (0- 4), Cmax, Tmax: 4 days post transplant Other outcomes: one month post transplant	251.7 (83.5)	275.8 (67.9)					1563.5 (621)	1455.1 (305)	3169.7 (0.356)	3663.1 (0.352)			1152.32	1451.64	2.0 (0.3)	1.87 (0.27)	0.968 (0.900- 1.127)Ψ	0.98 (0.95 1.08
Kahn, 2010, kidney, incident transplants ³⁴	Y	N/A	Unclear	One week post transplant	268	283			192	213												
Kahn, 2010, kidney, stable transplant ³⁴	Y	Y	Unclear	One month pre and post conversion	53 (4)	56 (4)			133 (7)	132 (8)					8							
Spasovski, 2008, kidney ⁴⁶	Y	N/A	Unclear	6 months post transplant	147.8 (29.9)	191.7 (4.1)					793.2 (139.8)	597.7 (93.4)										
Sharma, 2006, kidney ⁴⁵	Y	N/A	Unclear	3 months			5.9 (2.2)	6.2 (1.4)			1342.4 (303.4)	1306.7 (254.4)										
Kraeuter, 2013, heart ³⁶	Y	Y	17	8 months pre and post conversion	140.67 (39.81)	134.58 (41.61)			102.2 (39.6)	79.7 (24.9)								2				

https://mc.manuscriptcentral.com/bmj

1	
2	
3	
4 5	§Reported as total number of dose changes post conversion from brand name to generic or as total number in the brand name group and total number in the generic group (B/G), where B=brand name
6	and G=generic ¶Dose adjustments occurred after measurement of outcome
7	The adjustments occurred after measurement of outcome We mean ratio and 95% confidence interval
8	**median (IQR)
9	CV= coefficient of variation C2= drug level 2 hours after administration
10	AUC= area under the curve
11 12	Cmax= maximum concentration An empty cell indicates that the outcome was not reported
12	The only of the indicates and the outcome was no reported
14	
15	
16	
17	
18	
19 20	
20	
22	
23	
24	
25	
26 27	
28	
29	
30	
31	
32	
33 34	
35	
36	
37	
38	
39 40	
40 41	
42	skepter at state number of dase changes per torversion from brand name to generic or at total number in the brand name group and total number in the generic group (Rici), where R=bhand name no
43	
44	
45	
46	https://mc.manuscriptcentral.com/bmj

Table 3b: Prograf pharmacokinetic outcomes

Study, year,	Dose	One to	Number of	Timing of	Dose		Weight nor	molized	Comos	tration: dose	Trough le	ual	AUC		Cmax		Tmax		Cmax mean	AUC mean	Trough level
Study, year, organ	adjust ments allowed (y/n)	one dose conver sion (y/n)*	Number of patients with dose adjustments (B/G)§	outcome measurements	(mg/d)*		dose (mg/kg/d)	manzed	ratio	(mg/kg/d)	(ng/ml)	vel	AUC (0-12) (ng/ml)*	'n	(ng/ml		(h)		cmax mean ratio (90% CI)	AUC mean ratio (90% CI)	ratio (90% CI)
			× 70		В	G	В	G	В	G	В	G	В	G	В	G	В	G			
Robertsen, 2014, kidney ⁶⁹	N	Y	N/A	6 weeks post transplant and 7-10 days post conversion							6.6 (1.4)	6.6 (1.5)	115 (27)	136 (38)	19.6 (6.3)	30.2 (11.6)	1.4 (0.7)	1.1 (0.5)	1.49 (1.35- 1.65)	1.17 (1.10- 1.24)	0.99 (0.92- 1.06)
Min, 2013, kidney ⁶³	Y	Y	Unclear	6 months			0.086 (0.04)	0.069 (0.03)			6.89 (2.2)	5.65 (1.6)	118.5 (34.2)	106.8 (34.7)	19.6 (7.4)	19.6 (9.5)	1.4 (0.8)	1.0 (0.5)	1.145 (1.012-1.523)	1.098 (0.93-1.38)	
Alloway, 2012, kidney ⁵⁸	N	Y	N/A	Days 14 and 28				(0.05)			7.0 (2.1)	7.3 (1.8)	60 (37.8)	61.8 (40.6)	9.1 (5.5)	9.6 (5.5)	1.9 (1.3)	1.5 (1.1)	1.09 (1.01-1.18)	1.02 (0.97-1.08)	
Rosenberg, 2014, kidney ⁶⁴	Y	Y	(12/8)	4 weeks pre and post conversion							4.8 (4.5- 5.0)Ψ	4.9 (4.6- 5.2)Ψ									
McDevitt- Potter, 2011, kidney, liver, multi- organ ⁶⁷	Y	Y	20 (5/15)¶	Dose: Pre and post conversion Level: 3 most recent levels before conversion compared to first level 4-7 days post conversion	4.4 (3.2)	4.5 (2.9)				D,	5.8 (2.1)	5.9 (2.7)									
Heavner, 2013, kidney ⁶¹	Y	Y	(22/22)	Median level during a hospital admission							7.4	6.2									
Marfo, 2013, kidney ⁶²	N	Y	N/A	90 days pre and post conversion							6.8 (2.2)	6.0 (1.6)									
Connor, 2012, kidney ⁵⁹	Unclear	N/A	Unclear	One month post transplant							9.39 (8.19- 10.75)* *	8.66 (7.93- 9.46)* *			1						
Spence, 2012, kidney, liver, heart ⁶⁵	Y	Unclear	36-all post conversion to generic. Except for dose, outcomes were measured prior to any dose changes.	Dose: Pre conversion compared to last observed dose post conversion (average follow up 206 days) Other outcomes: On average 32 days pre conversion and 22 days post conversion	4.98 (3.37)	4.99 (3.51)					Kidney: 6.79 (1.62) Liver: 6.5 (1.53) Heart: 6.36 (1.74)	Kidney : 6.97 (2.37) Liver: 6.98 (2.14) Heart: 6.73 (1.64)					P	2			Kidney: 1.00 (0.96-1.04) Liver: 1.05 (0.96-1.15) Heart: 1.06 (0.99-1.15)

Momper, 2011, kidney, liver ⁶⁸	Y	Y	43 (kidney and liver not presented separately)	Average pre and post conversion over 50 days			Kidney: 0.087 Liver: 0.039	Kidney : 0.091 Liver: 0.041	Kidne y: 125.3 (92.7) Liver: 184.1 (123.2)	Kidney: 110.4 (79.2) Liver: 154.7 (87.8)							Kidney: (0.904- 0.966 Liver: (0.869- 0.957). Only CI's reported.
Yu, 2012, liver ⁶⁶	Y	N/A	Unclear	Initial dose	5.8 (4.1)	5.1 (3.3)											
Dhungel, 2012, heart ⁶⁰	Y	N/A	Unclear	Mean level over 6 months post transplant							7.9 (1.8)	8.8 (1.8)					

BMJ

All continuous variables are reported as mean and standard deviation (SD) unless otherwise specified

*Listed as N/A (not applicable) if the study was a parallel group trial or cohort study. Dose is only reported for studies that allowed dose adjustments and where values for the trade name and generic groups were reported.

ane to generic or as ... §Reported as total number of dose changes post conversion from trade name to generic or as total number in the brand name group and total number in the generic group (B/G), where B=brand name and G=generic

Dose adjustments occurred after measurement of outcomes

Ψmean and 95% confidence interval

**median (IOR)

CV= coefficient of variation

- AUC= area under the curve
- Cmax= maximum concentration
- An empty cell indicates that the outcome was not reported

Table 3c: Cellcept pharmacokinetic outcomes

Study, year, organ	organ ments allowed (y/n)	One to one dose conver sion	Number of patients with dose	Timing of outcome measurements	Pre dose MPA (μg		AUC (0-3) (µg/ml)* h		AUC (0-6) (µg/ml)* h		AUC (0-12) (μg/ml)* h		Cmax (µg/ml)		Tmax (h)		Cmax mean ratio (90% CI)	AUC mean ratio (0-6) (90% CI)	AUC mean ratio (0-12) (90% CI)
		(y/n)*	changes (B/G)§		В	G	В	G	В	G	В	G	В	G	В	G			
Sunder- Plassman, 2012, kidney ⁷³	Unclear	Unclear	Unclear	Study day 1, 14, 28, 70, 112	2.69 (1.7)	3.00 (2.09)			33.52 (15.13)	31.10 (15.42)	49.85 (20.83)	48.26 (21.22)	16.19 (9.95)	14.31 (8.34)	1.12 (0.75)	1.34 (1.14)	0.873 (0.787- 0.968)	0.923 (0.865- 0.984)	0.959 (0.899- 1.023)
Abdallah, 2010, kidney ⁷⁰	Unclear	N/A	Unclear	Study days 0, 7, 30, 90 and 180			27.76	26.12											
Videla, 2007, kidney ⁷⁵	Unclear	Y	Unclear	Pre conversion and 60 days post conversion	3.36 (1.41)	3.84 (0.62)			22.69 (13.7)	24.81 (6.67)									
Danguilan, 2014, kidney ⁷⁴	N	N/A	0	Unclear			38.21	36.78					7.88	6.92	1.07	1.03			
Rutkowski, 2011, kidney ⁷²	Y	N/A	(11/8)¶	Unclear	7.15	6.70													
Namgoong, 2013, liver ⁷¹	Unclear	Y	Unclear	3 months pre and post conversion	1.71 (0.88)	1.83 (0.91)						0.							

BMJ

All continuous variables are reported as mean and standard deviation (SD) unless otherwise specified

*Listed as N/A (not applicable) if the study was a parallel group trial or cohort study. Dose is only reported for studies that allowed dose adjustments and where values for the trade name and generic groups were reported.

§Reported as total number of dose changes post conversion from trade name to generic or as total number in the brand name group and total number in the generic group (B/G), where B=brand name and G=generic

Pose adjustments occurred after measurement of outcomes

Ψmean and 95% confidence interval

**median (IQR)

CV= coefficient of variation

AUC= area under the curve

Cmax= maximum concentration

MPA= mycophenolic acid

An empty cell indicates that the outcome was not reported

Table 4a: Neoral clinical outcomes

			1		1		
Outcome	Study, year,	Definition of	Trial	Follow up	Number of	Neoral	Generic
	organ	acute rejection	(y/n)	time	patients		
		au			analyzed (B/G)		
Acute Rejection	Khatami, 2013, kidney ⁵⁷	Clinical +/- biopsy	Y	1 year	221 (110/111)	16	16
	Vitko, 2010, kidney ⁵²	Unclear	Y	180 days	99 (52/47)	0	0
	Kim, 1998, kidney ³⁵	Unclear	Y	4 weeks	40 (20/20)	2	1
	Stephan, 1998, kidney ⁴⁷	Unclear	Y (but only 40 were randomized)	1 year	52 (20/32)	6 biopsied 9 presumed	5 biopsied 14 presumed
	Leet, 2009, heart ³⁷	Biopsy proven	Y	4 weeks	16	0	0
	Toman, 2002, heart ⁵⁰	Biopsy proven	Y	12 weeks	11 (6/5)	0	0
	Al Wakeel, 2008, kidney ²⁶	Clinical +/- biopsy	N	6 months	75	8	2
	Sayyah, 2007, kidney ⁴⁴	Unclear	Ν	6 months	41	0	0
	Carnahan, 2003, kidney ²⁸	Unclear	N	Average follow up 18 weeks	41	0	0
	Tsang, 2003, kidney ⁵¹	Unclear	N	4 weeks	20	0	0
	Roza, 2002, kidney ⁴³	Unclear	N	29 days (2 weeks on each)	50	0	0
	Pamugas, 2012, kidney ⁴⁰	Biopsy proven	N	6 months	60 (30/30)	4	2
	Spasovski, 2008, kidney ⁴⁶	Unclear	N	6 months	31 (16/15)	4	9
	Sharma, 2006, kidney ⁴⁵	Biopsy proven	N	1 year	37 (17/20)	8	6
	Taber, 2005, kidney ⁴⁸	Biopsy proven	N	6 months	188 (100/88)	25	34
	Kraeuter, 2013, heart ³⁶	Biopsy proven	N	8 months	20	0	34 0 0 0 0
Graft loss (n)	Khatami, 2013, kidney ⁵⁷		Y	1 year	221 (110/111)	1	0
	Kim, 1998, kidney ³⁵		Y	4 weeks	40 (20/20)	0	0
	Stephan, 1998,		Y	1 year	52 (20/32)	0	0

	kidney47						
	Al Wakeel, 2008, kidney ²⁶		N	6 months	75	0	0
	Pamugas, 2012, kidney ⁴⁰		Ν	6 months	60 (30/30)	0	0
	Sharma, 2006, kidney ⁴⁵		N	1 year	37 (17/20)	1	0
	Toman, 2002, heart ⁵⁰		Y	12 weeks	11 (6/5)	0	0
	Kraeuter, 2013, heart ³⁶	46	Ν	8 months	20	0	0
Death (n)	Khatami, 2013, kidney ⁵⁷		Y	1 year	221 (110/111)	1	1
	Vitko, 2010, kidney ⁵²		Y	180 days	99 (52/47)	1	0
	Stephan, 1998, kidney ⁴⁷		Y	1 year	52 (20/32)	0	0
	Al Wakeel, 2008, kidney ²⁶		N	6 months	75	0	0
	Roza, 2002, kidney ⁴³		Ν	29 days	50	0	0
	Pamugas, 2012, kidney ⁴⁰		N	6 months	60 (30/30)	0	1
	Sharma, 2006, kidney ⁴⁵		Ν	1 year	37 (17/20)	0	0
	Toman, 2002, heart ⁵⁰		Y	12 weeks	11 (6/5)	0	0
	Kraeuter, 2013, heart ³⁶		N	8 months	20	0	0
Infection (n)	Khatami, 2013, kidney ⁵⁷		Y	1 year	221 (110/111)	7	9
	Vitko, 2010, kidney ⁵²		Y	180 days	99 (52/47)	7	7
	Fradette, 2005, kidney ³²		N	35 days	37	2	1
	Pamugas, 2012, kidney ⁴⁰		Ν	6 months	60 (30/30)	8	4
	Toman, 2002, heart ⁵⁰		Y	12 weeks	11 (6/5)	0	1
eGFR (ml/min/1.73m2)	Pamugas, 2012, kidney ⁴⁰		Ν	6 months	60 (30/30)	62.03 (12.1)	74.02 (15.8)
	Kraeuter, 2013, heart ³⁶		N	8 months	20	59.93 (21.98)	59.57 (20.23)
Serum creatinine	Khatami, 2013, kidney ⁵⁷		Y	1 year	221 (110/111)	117.5 (53.0)	4 1 74.02 (15.8) 59.57 (20.23) 107.8 (17.6)

µmol/L)	Qazi, 2006, kidney ⁴²		Y (randomized to switch to generic vs no switch)	4 weeks post randomization	82 (9/73)	153.82 (106.08)	146.74 (43.32)	
	First, 1998, kidney ⁵³		Y	3 weeks	32	123.76 (35.36)	123.76 (35.36)	
	Kim, 1998, kidney ³⁵		Y	1 week	40 (20/20)	118.46 (37.13)	101.66 (15.03)	
	Stephan, 1998, kidney ⁴⁷	0	Y	6 months	52 (20/32)	107.85 (21.22)	106.96 (18.56)	
	Masri, 1996, kidney ⁵⁶	YR	Y	One year post randomization	44 (21/23)	140.56 (35.36)	129.06 (29.17)	
	Diarra, 2010, kidney ³⁰		Ν	1 month	59	165.48 (89.77)	164.48 (89.0)	
	Diarra, 2010, kidney ³⁰		N	3 months	59	165.48 (89.77)	167.82 (100)	
	Diarra, 2010, kidney ³⁰		N	6 months	59	165.48 (89.77)	176.41 (119.43)	
	Al Wakeel, 2008, kidney ²⁶		N	6 months	75	116.1 (29.5)	119.8 (32.1)	
	Sayyah, 2007, kidney ⁴⁴		N	6 months pre and post conversion	41	123.76 (42.4)	118.46 (35.4)	
	Masri, 2005, kidney ³⁹		N	Pre conversion and 7 days post conversion	70	108.73	109.62	
	Masri, 2004, kidney ³⁸		N	21 days	Unclear	108.73	109.62	
	Carnahan, 2003, kidney ²⁸		Ν	2 weeks	41	151.16	148.51	
	Tsang, 2003, kidney ⁵¹		N	2 weeks	20	120.4 (41.3)	118.5 (43.1)	
	Roza, 2002, kidney ⁴³		N	2 weeks	50	115.80 (41.55)	114.04 (38.98)	
	Pamugas, 2012, kidney ⁴⁰		N	6 months	60 (30/30)	108.73 (38.90)	99.01 (22.10)	
	Kahn, 2010, kidney, prevalent transplants ³⁴		N	1 month pre and post conversion	117	142 (6)	135 (5)	0
	Spasovski, 2008, kidney ⁴⁶		N	6 months	31 (16/15)	127.5 (43.5)	155.5 (68.6)	
	Sharma, 2006,		Ν	1 year	37 (17/20)	132.6 (141.44)	123.76 (53.04)]

					BMJ				Page 56 of 69
	kidney ⁴⁵							1	
C	Kraeuter, 2013, heart ³⁶		N	8 months	20	113.15 (29.17)	112.27 (32.71)		
All continuous varia B/G, B=brand name	heart ³⁶	nean and standard o						0	
			http	s://mc.manu	scriptcentral.	com/bmj			

B/G, B=brand name, G=generic

Table 4b: Prograf clinical outcomes

Outcome	Study, year, organ	Definition of acute rejection	Trial	Follow up time	Number of patients analyzed (B/G)	Prograf	Generic	
Acute rejection	Min, 2013, kidney ⁶³	Biopsy proven with clinical evidence	Y	6 months	93 (38/55)	2	2	
	Alloway, 2012, kidney ⁵⁸	Unclear	Y	28 days	71	0	0	
	Rosenborg, 2014, kidney ⁶⁴	Unclear	N	4 weeks	67	0	0	
	McDevitt- Potter, 2011, kidney, liver, multiorgan ⁶⁷	Biopsy proven	N	Unclear	70	0	0	
	Heavner, 2013, kidney ⁶¹	Biopsy proven	N	6 months	78 (42/36)	1	0	
	Marfo, 2013, kidney ⁶²	Biopsy proven	N	1 year	106 (33/73)	0	1	
	Connor, 2012, kidney ⁵⁹	Biopsy proven	N	6 months	99 (48/51)	8	9	
	Spence, 2012, kidney, liver, heart ⁶⁵	Biopsy proven	N	106 days	234	0	0	
	Momper, 2011, kidney, liver ⁶⁸	Unclear	N	Average 50 days	103	0	0	
	Yu, 2012, liver ⁶⁶	Biopsy proven	N	26 weeks	117 (60/57)	5	0	
Acute cellular rejection 1R (mean episodes/ patient day)	Dhungel, 2012, heart ⁶⁰	Biopsy proven	N	6 months	65 (44/21)	0.022 (0.01)	0.023 (0.01)	
Acute cellular rejection 2R (mean episodes/ patient day)	Dhungel, 2012, heart ⁶⁰	Biopsy proven	N	6 months	65 (44/21)	0.0002 (0.001)	0.0011 (0.0025)	
Acute cellular rejection 3R (mean episodes/ patient day)	Dhungel, 2012, heart ⁶⁰	Biopsy proven	N	6 months	65 (44/21)	0.0002 (0.001)	0	
Graft loss	Min, 2013, kidney ⁶³		Y	6 months	93 (38/55)	0	0	

1
2
3
3 4 5 6 7 8
4
5
6
2
1
8
a
10
10
11
12
12
13
14
15
9 10 11 12 13 14 15 16 17 18
16
17
18
10
19
20
21
21
22
23
24
24
19 20 21 22 23 24 25 26 27 28 29 30 21
26
27
27
28
29
20
30
31
32
02
33
34
30 31 32 33 34 35 36 37 38 39
00
36
37
38
50
39
40
41
41
42
43
44
45
46
47
48
10

1

	Alloway, 2012, kidney ⁵⁸		Y	28 days	71 (36/35)	0	0
	Connor, 2012, kidney ⁵⁹			6 months	99 (48/51)	6	8
	Yu, 2012, liver ⁶⁶		N	6 months	117 (60/57)	0	0
Death	Min, 2013, kidney ⁶³		Y	6 months	93 (38/55)	1	0
	Connor, 2012, kidney ⁵⁹	0	N	6 months	99 (48/51)	2	2
	Spence, 2012, kidney, liver, heart ⁶⁵	-6	N	106 days	234	0	0
	Yu, 2012, liver ⁶⁶		N	6 months	117 (60/57)	0	0
	Dhungel, 2012, heart ⁶⁰		N	6 months	65 (44/21)	2	2
Infection	Min, 2013 ⁶³		Y	6 months	126 (63/63)	10	8
	Marfo, 2013, kidney ⁶²		N	90 days	73	10	12
	Connor, 2012, kidney ⁵⁹		N	6 months	99 (48/51)	4**	4**
	Dhungel, 2012, heart ⁶⁰		N	6 months	65 (44/21)	8	1
GFR ml/min/1.73m2)	Min, 2013, kidney ⁶³		Y	6 months	93 (38/55)	66.3 (18.5)	64.4 (16.7)
	Rosenborg, 2014, kidney ⁶⁴		N	4 weeks	67	51 (47-55)#	51 (47-55)#
	Connor, 2012, kidney ⁵⁹		N	6 months	99 (48/51)	54.3 (20.2)	47.4 (15.2)
erum creatinine μmol/L)	Rosenborg, 2014, kidney ⁶⁴		Ν	4 weeks	67	129 (118-140)#	131 (119-143)#
	Marfo, 2013, kidney ⁶²		N	90 days	73	133.48 (48.62)	137.02 (58.34)
	Connor, 2012, kidney ⁵⁹		N	6 months	99 (48/51)	127 (111.8- 157.2)*	112 (96-167)*
	Spence, 2012, kidney, liver, heart ⁶⁵		N	106 days	234	117.57 (42.43)	120.22 (72.49)
	Momper, 2011, kidney ⁶⁸		N	Average 50 days	55	136.14 (68.95)	134.37 (69.84)
	Momper, 2011, liver ⁶⁸		Ν	Average 50 days	48	142.32 (109.62)	144.09 (116.69)

Shridential: For Review Only

Table 4c: Cellcept clinical outcomes

Outcome	Study, year,	Definition of	Trial (y/n)	Follow up	Number of	Cellcept	Generic	
	organ	acute rejection		time	patients analyzed (B/G)			
Acute rejection	Abdallah, 2010, kidney ⁷⁰	Not specified	Y	2 years	18 (10/8)	1	1	
	Danguilan, 2014, kidney ⁷⁴	Not specified	Ν	6 months	40 (20/20)	3	1	
	Rutkowski, 2011, kidney ⁷²	Clinical manifestations or biopsy	N	6 months	30 (15/15)	2-clinical 1-biopsy	3-clinical 1-biopsy	
	Namgoong, 2013, liver ⁷¹	Not specified	N	3 months	47	0	0	
Graft loss	Danguilan, 2014, kidney ⁷⁴		Ň	6 months	40 (20/20)	0	0	
Death	Sunder- Plassmann, 2012, kidney ⁷³		Y	112 days	43	0	0	
	Abdallah, 2010, kidney ⁷⁰		Y	2 years	18 (10/8)	0	0	
	Danguilan, 2014, kidney ⁷⁴		N	6 months	40 (20/20)	0	1	
	Rutkowski, 2011, kidney ⁷²		N	6 months	30 (15/15)	1	1	
Infection	Abdallah, 2010, kidney ⁷⁰		Y	2 years	18 (10/8)	14 (episodes)	9 (episodes)	
	Danguilan, 2014, kidney ⁷⁴		N	6 months	40 (20/20)	3	5	
	Rutkowski, 2011, kidney ⁷²		N	6 months	30 (15/15)	7	7	
eGFR (ml/min/1.73m2)	Rutkowski, 2011, kidney ⁷²		N	6 months	50 (15/15)	58.3	63	
Serum creatinine (µmol/L)	Abdallah, 2010, kidney ⁷⁰		Y	6 months	18 (10/8)	104.48	121.89	
~ /	Abdallah, 2010, kidney ⁷⁰		Y	1 month	18 (10/8)	202.55	131.06	
	Videla, 2007, kidney ⁷⁵		N	Before conversion and 60 days post conversion	Unclear	160 (24.75)	134.37 (15.03)	
	Rutkowski, 2011, kidney ⁷² tables are reported a		N	6 months	30 (15/15)	120.22	114.92	

All continuous variables are reported as mean and standard deviation (SD) unless otherwise specified. B/G, B=brand name, G=generic

Supplementary Figure 2: Neoral serum creatinine kidney RCT's

Study or Subgroup	Mean	Neoral SD	Total		c cyclospo SD		Weight	Mean Difference IV, Random, 95% CI	Year	Mean Difference IV, Random, 95% Cl	
Khatami 2013 (57)	117.5				17.6	111		9.70 [-0.73, 20.13]			
Stephan 1998 (47)	107.85			106.96		32		0.89 [-10.42, 12.20]			
Masri 1996 (56)	140.56	35.36	21	129.06	29.17	23	13.7%	11.50 [-7.76, 30.76]	1996		
Total (95% CI)			151				100.0%	6.45 [-0.67, 13.57]			
Heterogeneity: Tau ² = Test for overall effect				= 2 (P = 0)	0.46); l [*] =	0%				-50 -25 50 Favours [Neoral] Favours [generic]	
										ravours (Neorai) - ravours (generic)	

		BMJ							
	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias): Clinical outcomes	Blinding of outcome assessment (detection bias): Pharmacokinetic outcomes	Incomplete outcome data (attrition bias): Clinical outcomes	Incomplete outcome data (attrition bias): Pharmacokinetic outcomes	Selective reporting (reporting bias)	Other bias
Abdallah 2010 (70)	?	?	•	?	?	?	?	?	
Alloway 2012 (58)	?	?	•	?	?	+	Ŧ	+	•
David-Neto 2004 (29)	+	?	?		?		Ŧ	+	
First 1998 (53)	?	?	?	?	?	+	+	+	
Fisher 1999 (54)	?	?	Ŧ	?	?	?	?	•	+
Hibberd 2006 (33)	?	?	•		?		+	+	
Khatami 2013 (57)	+	Ŧ	Ŧ	?	?	+	Ŧ	+	
Kim 1998 (35)	?	?	?	?	?	?	?	+	
Leet 2009 (37)	?	?	•	?	?	+	+	+	+
Masri 1996 (56)	?	?	?	?	?	?	?	+	
Min 2013 (63)	+	?	•	?	?	•	•	+	
Qazi 2006 (42)	?	?	?	?	?	+	+	+	
Robertsen 2014 (69)	+	+	•		?		+	+	+
Stephan 1998 (47)		?	?	?	?	+	+	+	
Sunder-Plassmann 2012 (73)	?	?	•	?	?	+	+	•	
Toman 2002 (50)	?	?	?	?	?	+	+	+	
Vitko 2019 (52)	nahu	s <mark>cr</mark> ip	tcen	tr <mark>al.</mark> c	o <mark>n/</mark> b	nij	+	+	

Appendix A

Search Strategy

Database: Embase Classic+Embase <1947 to 2014 March 05>, Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations and Ovid MEDLINE(R) <1946 to Present>

- Search Strategy:
- Prograf.ti,ab. (602)
- Cellcept.tw. (2811)
- Myfortic.tw. (520)
- Neoral.tw. (5384)
- gengraf.tw. (160)
- Rapamune.tw. (1507)
- mycophenolic acid delayed release.tw. (0)
- Drugs, Generic/ (12249)
- generic.tw. (61271)
- or/1-9 (76022)
- Tacrolimus/ (63292)
- tacrolimus.tw. (28711)
- Mycophenolic Acid/ or mycophenolate mofetil.tw. (27000)
- Cyclosporine/ (90309)
- (Cyclosporine or Ciclosporin).tw. (62527)
- Sirolimus/ (47640)
- Sirolimus.tw. (14972)
- brand name\$.tw. (3182)
- or/11-18 (214342)
- 10 and 19 (9511)
- .ion .nt\$ or gra. organ transplantation/ or exp heart transplantation/ or exp kidney transplantation/ or liver transplantation/ or exp lung transplantation/ (421784)
- ((organ or kidney or renal or heart or cardiac or liver or hepatic or lung or pulmonary) adj2 (transplant\$ or graft\$)).tw. (366639)
 - 21 or 22 (488772)
 - 20 and 23 (5265)
 - limit 24 to yr="1980 2014" (5259)
 - 25 use prmz (1058) Medline
 - prograf.ti,ab. (602)
 - Cellcept.ti,ab. (481)
 - Myfortic.ti,ab. (171)
 - Neoral.ti,ab. (2205)
 - gengraf.ti,ab. (19)
- Rapamune.ti,ab. (256)
- mycophenolic acid delayed release.ti,ab. (0)
- *generic drug/ (6271)
- generic.tw. (61271)
- or/27-35 (66509)
- tacrolimus/ (63292)
- Tacrolimus.tw. (28711)
- mycophenolic acid 2 morpholinoethyl ester/ (33579)

BMJ

- cyclosporin/ (90309)
- (Cyclosporine or Ciclosporin).tw. (62527)
- Sirolimus.tw. (14972)
- brand name\$.tw. (3182)
- or/37-44 (194781)
- 36 and 45 (4869)
- organ transplantation/ or heart transplantation/ or kidney transplantation/ or liver transplantation/ or lung transplantation/ (401807)
- ((organ or kidney or renal or heart or cardiac or liver or hepatic or lung or pulmonary) adj2 (transplant\$ or graft\$)).tw. (366639)
- 47 or 48 (482876)
- 46 and 49 (2430)
- limit 50 to yr="1980 2014" (2424)
- 51 use emczd (1380) Embase
- 26 or 52 (2438)
- remove duplicates from 53 (1559)

Search was repeated September 4th, 2014

Data abstraction form				
Generic Immunosuppressant	t Review	: Data Abst	traction Form	n
Reviewer's Initials:	Re	ference ID N	lumber	
Lead Author:				
Journal:			Year:	
Language of Publication:	1. Engl	ish	2. Other (sp	ecify)
Country(ies) of Study Origin: _	Le	banon		
Immunosuppressants Compa Trade Name	ared in t	-	• •	fic name of generic
 Prograf Cellcept Neoral 		2	. tacrolimus 2. mycophen 3. cyclospori	
Patients Included in the Stud	у			
<u>Transplant Organ:</u> Lung	Liver	Kidney	Pancreas	Heart
Other:				
New Transplants: yes no				
Pediatric	Adu	lt		
Type of Study Experimental				
 Randomized parallel gro Cross over trial Planned before/after (ie Other: 	e investig	ators switc	hed the drug)	
<u>Observational</u>				

- 2. Cohort, retrospective
- 3. Before/after prospective
- 4. Before/after retrospective
- 5. Other (specify)_____

For before/after studies, was there one to one dose conversion (y/n) _____ Were dose titrations allowed (y/n) _____ Were target drug levels reported in the study?_____

If the study has more than one relevant time period, please record data for both/all

Drug Dosages and Monitoring

If not reported, write n/a

Generic Drug Group

Dose or weight normalized dose (circle one): Mean (SD) or Median (IQR) (circle one)
(time period) p value
(time period) p value
(time period) p value
(record units)
Number of patients requiring a change in dosage:
Dose increased Dose decreased
Drug level: How specifically was drug level reported (ie dose normalized level, trough, C2)?
Mean (SD) or Median (IQR) (circle one)
(time period) p value
(time period) p value
(time period) p value
(record units)

Trade Name Drug Group

2 3 4	Dose or w (circle one	-	alized dose	(circle o	ne): Mea	an (SD) or Me	edian (IQR)
5 6 7 8 9 10 11		(1 (1	time perioo	1)		
12 13 14	Number o	f patients re	equiring a c	change in	dosage:		-
15 16	Drug leve	l: How spec	ifically was	drug lev	el repor	ted?	
17 18 19	Mean (SD)) or Median	(IQR) (cir	cle one <u>)</u>		(;	record units)
20 21 22		(1	time perioc	l)		
23 24		(ti					
25 26 27	(record u	(1 nits)	time period	l)		
28 29 30 31 32 33	Outcomes If more than o the table and						d that data above transplant
34 35							lard Deviation)
36 37 38	Variable	Generic group	Trade Name group	P value	Total	Follow up time	
39 40 41	Subjects enrolled (n)						
42 43 44	Subjects analyzed (n)						
45 46	Men/Women Age						
47 48 49	Acute rejection (n)						
50 51 52	Graft loss (n) Infection (n)						
53 54	Death (n)						

Please report	data for all	continuous	variable	es as Mea	an (+/- Stand	lard Deviation)
Variable	Generic	Trade	Р	Total	Follow	

	group	Name group	value	up time
Subjects				
enrolled (n)				
Subjects				
analyzed (n)				
Men/Women				
Age	-			
Acute rejection				
(n)*				
Graft loss (n)				
Infection (n)				
Death (n)				

*Record how this was defined (ie biopsy proven)

Renal Function

If more than one relevant time period or type of transplant, record that data above the table and fill in one table for each time period and/or type of transplant

Please report data for all continuous variables as Mean (+/- Standard Deviation)

Variable	Generic group	Trade Name group	Follow up time*	P value
Absolute creatinine				
(units)				
Absolute eGFR				

Please report data for all continuous variables as Mean (+/- Standard Deviation)

Variable	Generic	Trade Name	Follow up	P value
	group	group	time	
Absolute creatinine				
(units)				
Absolute eGFR				

For Bioequivalence Studies Only

Please report data for all continuous variables as Mean (+/- Standard Deviation)

Variable	Generic group	Trade Name group	P value
AUC ()*			
C _{max}			
T max			
Co			

1		
2 3		
4	*(record time period)	
5		
6	C _{max} mean ratio (90% CI)	AUC mean ratio (90% CI)
7 8	C ₀ mean ratio (90% CI)	
9	C_0 mean ratio (90% CI)	
10	Quality Assessment	
11	Quality Assessment	
12 13	For DCT's fill out the Coshume Disk of Disc Ass	
14	For RCT's, fill out the Cochrane Risk of Bias Ass	
15	Walls at all aritoria for abcompational studios	
16	Wells et al. criteria for observational studies	
17		
18 19		
20		
21		
22		
23		
24 25		
26		
27		
28		
29		
30 31	Wells et al. criteria for observational studies	
32		
33		
34		
35 36		
37		
38		
39		
40 41		
41 42		
43		
44		
45		
46 47		
48		
49		
50		
51 52		
53		
54		
55		
56 57		
57 58		
59		
60		