The impact of surgery on global climate: a carbon footprinting study of operating theatres in three health systems

Lancet Planet Health. 2017 Dec;1(9):e381-e388. doi: 10.1016/S2542-5196(17)30162-6. Epub 2017 Dec 8.

Abstract

Background: Climate change is a major global public health priority. The delivery of health-care services generates considerable greenhouse gas emissions. Operating theatres are a resource-intensive subsector of health care, with high energy demands, consumable throughput, and waste volumes. The environmental impacts of these activities are generally accepted as necessary for the provision of quality care, but have not been examined in detail. In this study, we estimate the carbon footprint of operating theatres in hospitals in three health systems.

Methods: Surgical suites at three academic quaternary-care hospitals were studied over a 1-year period in Canada (Vancouver General Hospital, VGH), the USA (University of Minnesota Medical Center, UMMC), and the UK (John Radcliffe Hospital, JRH). Greenhouse gas emissions were estimated using primary activity data and applicable emissions factors, and reported according to the Greenhouse Gas Protocol.

Findings: Site greenhouse gas evaluations were done between Jan 1 and Dec 31, 2011. The surgical suites studied were found to have annual carbon footprints of 5 187 936 kg of CO2 equivalents (CO2e) at JRH, 4 181 864 kg of CO2e at UMMC, and 3 218 907 kg of CO2e at VGH. On a per unit area basis, JRH had the lowest carbon intensity at 1702 kg CO2e/m2, compared with 1951 kg CO2e/m2 at VGH and 2284 kg CO2e/m2 at UMMC. Based on case volumes at all three sites, VGH had the lowest carbon intensity per operation at 146 kg CO2e per case compared with 173 kg CO2e per case at JRH and 232 kg CO2e per case at UMMC. Anaesthetic gases and energy consumption were the largest sources of greenhouse gas emissions. Preferential use of desflurane resulted in a ten-fold difference in anaesthetic gas emissions between hospitals. Theatres were found to be three to six times more energy-intense than the hospital as a whole, primarily due to heating, ventilation, and air conditioning requirements. Overall, the carbon footprint of surgery in the three countries studied is estimated to be 9·7 million tonnes of CO2e per year.

Interpretation: Operating theatres are an appreciable source of greenhouse gas emissions. Emissions reduction strategies including avoidance of desflurane and occupancy-based ventilation have the potential to lessen the climate impact of surgical services without compromising patient safety.

Funding: None.