Skip to main content
Log in

The Influence of Sex on Pharmacokinetics

  • Leading Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Biologic differences exist between men and women that can result in differences in responses to drugs. Both pharmacokinetic and pharmacodynamic differences between the sexes exist, with more data on pharmacokinetic differences. On average, men are larger than women. Body size differences results in larger distribution volumes and faster total clearance of most medications in men compared to women. Greater body fat in women (until older ages) may increase distribution volumes for lipophilic drugs in women. Total drug absorption does not appear to be significantly affected by sex although absorption rates may be slightly slower in women. Bioavailability after oral drug dosing, for CYP3A substrates in particular, may be somewhat higher in women compared to men. Bioavailability after transdermal drug administration does not appear to be significantly affected by gender; nor does protein binding. Renal processes of glomerular filtration, tubular secretion, and tubular reabsorption appear to be faster in men compared to women whether considered on a mg/kg basis or total body weight basis. Algorithms to estimate glomerular filtration rate incorporate sex as a factor; some also include weight. For hepatic processes, drugs metabolized by Phase I metabolism (oxidation, reduction, and hydrolysis via cytochrome P450’s 1A, 2D6, 2E1), Phase II conjugative metabolism (glucuronidation, conjugation, glucuronyltransferases, methyltransferases, dehydrogenases) and by combined oxidative and conjugation processes are usually cleared faster in men compared to women (mg/kg basis). Metabolism by CYP2C9, CYP2C19, and N-acetyltransferase, appear to be similar in men and women (mg/kg). Clearance of p-glycoprotein substrates appear to be similar in men and women. In contrast, total clearance of a number of CYP3A substrates appear to be mildly or moderately faster (mg/kg) in women compared to men. The clinical significance of reported differences warrants consideration. Clearance reported on a per kg basis directly addresses organ or enzyme clearance. The difference in size between men and women means translating these results to clinical dosage rates should include an adjustment for body size. Unfortunately, this is not standard. Reports of sex differences that persist after considering weight may warrant further dosage adjustments. In addition, investigations are often performed in healthy fasting individuals yet medications are prescribed to patients with confounding influences of disease, co-medications, diet, and social habits. The relative role of sex on pharmacokinetics as compared to genetics, age, disease, social habits and their potential interactions in the clinical setting is not yet fully known but should be routinely considered and further studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV

Similar content being viewed by others

References

  1. Schmucker D, Vesell E. Underrepresentation of women in clinical drag trials. Clin Pharmacol Ther 1993; 54: 11–5

    Article  PubMed  CAS  Google Scholar 

  2. Wizemann TM, Pardue ML, editors. Exploring the biological contributions to human health: does sex matter? Washington, DC: Institute of Medicine, 2001: 267

    Google Scholar 

  3. Harris D, Douglas P. Enrolment of women in cardiovascular clinical trials funded by the National Heart, Lung, and Blood Institute. N Engl J Med 2000; 343(7): 475–80

    Article  PubMed  CAS  Google Scholar 

  4. Frezza M, di Padova C, Pozzato G, et al. High blood alcohol levels in women: the role of gastric alcohol dehydrogenase activity and first pass metabolism. N Engl J Med 1990; 322: 95–9

    Article  PubMed  CAS  Google Scholar 

  5. Seitz H, Egerer G, Simanowski V, et al. Human gastric alcohol dehydrogenase activity: effect of age sex, and alcoholism. Gut 1993; 34: 1433–7

    Article  PubMed  CAS  Google Scholar 

  6. Gorski J, Jones D, Haehner-Daniels B, et al. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther 1998; 64(2): 133–43

    Article  PubMed  CAS  Google Scholar 

  7. Kates R, Keefe D, Schwartz J, et al. Verapamil disposition kinetics in chronic atrial fibrillation. Clin Pharmacol Ther 1981; 30: 44–51

    Article  PubMed  CAS  Google Scholar 

  8. Krecic-Shepard M, Barnas C, Slimko J, et al. Gender-specific effects on verapamil pharmacokinetics and pharmacodynamics in humans. J Clin Pharmacol 2000; 40: 219–30

    Article  PubMed  CAS  Google Scholar 

  9. Ho P, Triggs E, Bourne D, et al. The effects of age and sex on the disposition of acetylsalicyclic acid and its metabolites. Br J Clin Pharmacol 1985; 19: 675–84

    Article  PubMed  CAS  Google Scholar 

  10. Van Horn L, Ballew C, Liu K, et al. Diet, body size, and plasma lipids-lipoproteins in young adults: differences by race and sex. The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Epidemiol 1991; 133: 9–23

    PubMed  Google Scholar 

  11. Dias V, Tendier B, Oparil S, et al. Clinical experience with transdermal clonidine in African-American and Hispanic-American patients with hypertension: evaluation from a 12-week prospective, open label clinical trial in community-based clinics. Am J Ther 1999; 6: 19–24

    Article  PubMed  CAS  Google Scholar 

  12. Roy S, Flynn G. Transdermal delivery of narcotic analgesics: pH, anatomical, and subject influences on cutaneous permeability of fentanyl and sufentanil. Pharm Res 1990; 7: 842–7

    Article  PubMed  CAS  Google Scholar 

  13. Knight V, Yu C, Gilbert B, et al. Estimating the dosage of ribavirin aerosol according to age and other variables. J Infect Dis 1988; 158: 443–7

    Article  PubMed  CAS  Google Scholar 

  14. Kristjansson F. Disposition of alprazolam in human volunteers: differences between genders. Acta Pharm Nord 1991; 3: 249–50

    PubMed  CAS  Google Scholar 

  15. Vahl N, Moller N, Lauritzen T, et al. Metabolic effects and pharmacokinetics of a growth hormone pulse in healthy adults: relation to age, sex, and body composition. J Clin Endorinol Metab 1998; 82: 3612–8

    Article  Google Scholar 

  16. Greenblatt D, Wright C. Clinical pharmacokinetics of alprazolam: therapeutic implications. Clin Pharmacokinet 1993; 24: 453–71

    Article  PubMed  CAS  Google Scholar 

  17. Kirkwood C, Moore A, Hayes P, et al. Influence of menstrual cycle and gender on alprazolam pharmacokinetics. Clin Pharmacol Ther 1991; 50: 404–9

    Article  PubMed  CAS  Google Scholar 

  18. Ammon E, Schafer C, Hofmann U, et al. Disposition and first-pass metabolism of ethanol in humans: is it gastric or hepatic and does it depend on gender. Clin Pharmacol Ther 1996; 59: 503–13

    Article  PubMed  CAS  Google Scholar 

  19. Aarons L, Hopkins K, Rowland M, et al. Route of administration and sex differences in the pharmacokinetics of aspirin, administered as its lysine salt. Pharm Res 1989; 6: 660–6

    Article  PubMed  CAS  Google Scholar 

  20. Schuetz E, Furuya K, Schuetz J. Interindividual variation in expression of P-glycoprotein in normal human liver and secondary hepatic neoplasms. J Pharmacol Exp Ther 1995; 275: 1011–8

    PubMed  CAS  Google Scholar 

  21. Kim R, Leake B, Choo E, et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 2001; 70: 189–99

    Article  PubMed  CAS  Google Scholar 

  22. Johnson P, Milne D, Lykken G. Effects of age and sex on copper absorption, biological half-life, and status in humans. Am J Clin Nutr 1992; 56: 917–25

    PubMed  CAS  Google Scholar 

  23. Cullen K, Koehly L, Anderson C, et al. Gender differences in chronic disease risk behaviors through the transition out of high school. Am J Prev Med 1999; 17(1): 1–7

    Article  PubMed  CAS  Google Scholar 

  24. Smit E, Nieto J, Crespo C, et al. Estimates of animal and plant protein intake in US adults: results from the Third National Health and Nutrition Examination Survey 1988–1991. J Am Diet Assoc 1999; 99: 813–20

    Article  PubMed  CAS  Google Scholar 

  25. Rohatagi S, Calic F, Harding N, et al. Pharmacokinetics, pharmacodynamics, and safety of inhaled cyclosporin A (ADI628) after single and repeated administration in healthy male and female subjects and asthmatic patients. J Clin Pharmacol 2000; 40: 1211–26

    PubMed  CAS  Google Scholar 

  26. Wedel M, Pieters J, Pikaar N, et al. Application of a three-compartment model to a study of the effects of sex, alcohol dose and concentration, exercise and food consumption on the pharmacokinetics of ethanol in healthy volunteers. Alcohol Alcohol 1991; 26: 329–36

    PubMed  CAS  Google Scholar 

  27. Ochs H, Greenblatt D, Divoll M, et al. Diazepam kinetics in relation to age and sex. Pharmacology 1981; 23: 24–30

    Article  PubMed  CAS  Google Scholar 

  28. Greenblatt D, Allen M, Harmatz J, et al. Diazepam disposition determinants. Clin Pharmacol Ther 1980; 27: 301–12

    Article  PubMed  CAS  Google Scholar 

  29. Verbeeck R, Cardinal JA, Wallace S. Effect of age and sex on the plasma binding of acidic and basic drugs. Eur J Clin Pharmacol 1984; 27: 91–7

    PubMed  CAS  Google Scholar 

  30. Piafsky K, Borga O. Plasma protein binding of basic drugs: importance of α1-acid glycoprotein for interindividual variation. Clin Pharmacol Ther 1977; 22: 545–9

    PubMed  CAS  Google Scholar 

  31. Kishino S, Nomura A, Di Z, et al. Alpha-1-acid glycoprotein concentration and the protein binding of disopyramide in healthy subjects. J Clin Pharmacol 1995; 35: 510–4

    PubMed  CAS  Google Scholar 

  32. Walle U, Salle S, Bai S, et al. Stereoselective binding of propranolol to human plasma alpha1-acid glycoprotein albumin. Clin Pharmacol Ther 1983; 34: 718–23

    Article  PubMed  CAS  Google Scholar 

  33. Gilmore D, Gal J, Gerber J, et al. Age and gender influence the stereoselective pharmacokinetics of propranolol. J Pharmacol Exp Ther 1992; 261: 1181–6

    PubMed  CAS  Google Scholar 

  34. Gleichmann W, Bachmann G, Dengler H, et al. Effects of hormonal contraceptives and pregnancy on serum protein pattern. Eur J Clin Pharmacol 1973; 5: 218–25

    Article  CAS  Google Scholar 

  35. Keefe D, Yee Y, Kates R. Verapamil protein binding in patients and in normal subjects. Clin Pharmacol Ther 1981; 29: 21–6

    Article  PubMed  CAS  Google Scholar 

  36. Krecic-Shepard M, Park KK, Slimko J, et al. Gender and race influence clearance of nifedipine, a high affinity cytochrome P450 substrate [abstract]. J Invest Med 1998; 46(7): 289A

    Google Scholar 

  37. Krecic-Shepard M, Park K, Barnas C, et al. Race and sex influence clearance of nifedipine: results of a population study. Clin Pharmacol Ther 2000; 68: 130–42

    Article  PubMed  CAS  Google Scholar 

  38. Wilson K. Sex-related differences in drug disposition in man. Clin Pharmacokinet 1984; 9: 189–202

    Article  PubMed  CAS  Google Scholar 

  39. Beierle I, Meibohm B, Derendorf H. Gender differences in pharmacokinetics and pharmacodynamics. Int J Clin Pharmacol Ther 1999; 37: 529–47

    PubMed  CAS  Google Scholar 

  40. Rowland M, Tozer T. Clinical pharmacokinetics: concepts and applications. 3rd ed. Philadelphia (PA): Williams and Wilkins, 1995

    Google Scholar 

  41. Gross J, Friedman R, Azevedo M, et al. Effects of age and sex on glomerular filtration rate measured by 51Cr-EDTA. Braz J Med Biol Res 1992; 25: 129–34

    PubMed  CAS  Google Scholar 

  42. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16: 31–41

    Article  PubMed  CAS  Google Scholar 

  43. Yukawa E, Mine H, Higuchi S, et al. Digoxin population pharmacokinetics from routine clinical data: role of patient characteristics for estimating dosing regimens. J Pharm Pharmacol 1992; 44: 761–5

    Article  PubMed  CAS  Google Scholar 

  44. Ducharme M, Slaughter R, Edwards D. Vancomycin pharmacokinetics in a patient population: effect of age, gender, and body weight. Ther Drug Monit 1994; 16(5): 513–8

    Article  PubMed  CAS  Google Scholar 

  45. Frame B, Facca B, Nicolau D, et al. Population pharmacokinetics of continuous infusion ceftazidime. Clin Pharmacokinet 1999; 37(4): 343–50

    Article  PubMed  CAS  Google Scholar 

  46. Barbhaiya R, Knupp C, Pittman K. Effects of age and gender on pharmacokinetics of cefepime. Antimicrob Agents Chemother 1992; 36: 1181–5

    Article  PubMed  CAS  Google Scholar 

  47. Reigner BG, Welker H. Factors influencing elimination and distribution of fleroxacin: metaanalysis of individual data from 10 pharmacokinetic studies. Antimicrob Agents Chemother 1996; 40(3): 575–80

    PubMed  CAS  Google Scholar 

  48. Godfrey C, Sweeney K, Miller K, et al. The population pharmacokinetics of long-term methotrexate in rheumatoid arthritis. Br J Clin Pharmacol 1998; 46(4): 369–76

    Article  PubMed  CAS  Google Scholar 

  49. Gaudry S, Sitar D, Smyth D, et al. Gender and age as factors in the inhibition of renal clearance of amantadine by quinine and quinidine. Clin Pharmacol Ther 1993; 54: 23–7

    Article  PubMed  CAS  Google Scholar 

  50. Harris R, Benet L, Schwartz J. Gender effects in pharmacokinetics and pharmacodynamics. Drugs 1995; 50(2): 222–39

    Article  PubMed  CAS  Google Scholar 

  51. Tanaka E. Gender-related differences in pharmacokinetics and their clinical significance. J Clin Pharm Ther 1999; 24: 339–46

    Article  PubMed  CAS  Google Scholar 

  52. Fletcher C, Acosta E, Strykowski J. Gender differences in human pharmacokinetics and pharmacodynamics. J Adolesc Health 1994; 15(8): 619–29

    Article  PubMed  CAS  Google Scholar 

  53. Kalow W, Tang B. Use of caffeine metabolite ratios to explore CYP1A2 and xanthine oxidase ratios. Clin Pharmacol Ther 1991; 50: 508–19

    Article  PubMed  CAS  Google Scholar 

  54. Bock K, Schrenk D, Forster A, et al. The influence of environmental and genetic factors on CYP2D6, CYP1A2 and UDP-glucuronosyltransferases in man using sparteine, caffeine, and paracetamol as probes. Pharmacogenetics 1994; 4(4): 209–18

    Article  PubMed  CAS  Google Scholar 

  55. Relling M, Lin J, Ayers G, et al. Racial and gender differences in N-acetyltransferase, xanthine oxidase, and CYP1A2 activities. Clin Pharmacol Ther 1992; 52: 643–58

    Article  PubMed  CAS  Google Scholar 

  56. Ou-Yang D-S, Huang S-L, Wang W, et al. Phenotypic polymorphism and gender-related differences of CYP1A2 activity in a Chinese population. Br J Clin Pharmacol 2000; 49: 141–51

    Google Scholar 

  57. Kashuba A, Bertino J, Kearns G, et al. Quantitation of three-month intraindividual variability and influence of sex and menstrual cycle phase on CYP1A2, N-acetyltransferease-2, and xanthine oxidase activity determined with caffeine phenotyping. Clin Pharmacol Ther 1998; 63: 540–51

    Article  PubMed  CAS  Google Scholar 

  58. Callaghan J, Bergstrom R, Ptak L, et al. Olanzapine: pharmacokinetic and pharmacodynamic profile. Clin Pharmacokinet 1999; 37(3): 177–93

    Article  PubMed  CAS  Google Scholar 

  59. Lane H-Y, Chang Y-C, Chang W-H, et al. Effects of gender and age on plasma levels of clozapine and its metabolites: analyzed by critical statistics. J Clin Psychiatry 1999; 60(1): 36–40

    Article  PubMed  CAS  Google Scholar 

  60. Bruno R, Vivier N, Montay G, et al. Population pharmacokinetics of riluzole in patients with amyotrophic lateral sclerosis. Clin Pharmacol Ther 1997; 62: 518–26

    Article  PubMed  CAS  Google Scholar 

  61. Miners J, Attwood J, Birkett D. Influence of sex and oral contraceptive steroids on paracetamol metabolism. Br J Clin Pharmacol 1983; 16: 503–9

    Article  PubMed  CAS  Google Scholar 

  62. Kaye C, Nicholls B. Clinical pharmacokinetics of ropinirole. Clin Pharmacokinet 2000; 39(4): 243–54

    Article  PubMed  CAS  Google Scholar 

  63. Bartoli A, Ziaodong S, Gatti G, et al. The influence of ethnic factors and gender on CYP1A2-mediated drug disposition: a comparative study in Caucasian and Chinese subjects using phenacetin as a marker substrate. Ther Drug Monit 1996; 18: 586–91

    Article  PubMed  CAS  Google Scholar 

  64. Xie H-G, Kim R, Wood A, et al. Molecular basis of ethnic differences in drug disposition and response. Annu Rev Pharmacol Toxicol 2001; 41: 815–50

    Article  PubMed  CAS  Google Scholar 

  65. May DG, Porter J, Wilkinson G, et al. Frequency distribution of dapsone N-hydroxylase, a putative probe for P4503A4 activity, in a white population. Clin Pharmacol Ther 1994; 55(5): 492–500

    Article  PubMed  CAS  Google Scholar 

  66. Pollock B, Altieri L, Kirshner M, et al. Debrisoquine hydroxylation phenotyping in geriatric psychopharmacology. Psychopharmacol Bull 1992; 28: 163–8

    PubMed  CAS  Google Scholar 

  67. Labbe L, Sirois C, Pilote S, et al. Effect of gender, sex hormones, time variables, and physiological urinary pH on apparent CYP2D6 activity as assessed by metabolic ratios of marker substrates. Pharmacogenetics 2000; 10(5): 425–38

    Article  PubMed  CAS  Google Scholar 

  68. Ronfeld R, Tremaine L, Wilner K. Pharmacokinetics of sertraline and its N-demethyl metabolite in elderly and young male and female volunteers. Clin Pharmacokinet 1997; 32S: 22–30

    Article  Google Scholar 

  69. Abernethy D, Greenblatt D, Shader R. Imipramine and desipramine disposition in the elderly. J Pharmacol Exp Ther 1985; 232: 183–8

    PubMed  CAS  Google Scholar 

  70. Timmer CJ, Sitsen JM, Delbressine LP. Clinical pharmacokinetics of mirtazapine. Clin Pharmacokinet 2000; 38(6): 461–74

    Article  PubMed  CAS  Google Scholar 

  71. Walle T, Byington R, Furberg C, et al. Biologic determinants of propranolol disposition: results from 1308 patients in the beta-blocker heart attack trial. Clin Pharmacol Ther 1985; 38: 509–18

    Article  PubMed  CAS  Google Scholar 

  72. Hong-Guang X, Xiu C. Sex differences in pharmacokinetics of oral propranolol in healthy Chinese volunteers. Acta Pharmacologica Sinica 1995; 16(5): 468–70

    Google Scholar 

  73. Gex-Fabry M, Balant-Gorgia A, Balant L, et al. Clomipramine metabolism: model-based analysis of variability factors from drug monitoring data. Clin Pharmacokinet 1990; 19: 241–55

    Article  PubMed  CAS  Google Scholar 

  74. Dahl M, Bertilsson L, Nordin C. Steady-state plasma levels of nortriptyline and its 10-hydroxy metabolite: relationship to the CYP2D6 genotype. Psychopharmacology (Berl) 1996; 123: 315–9

    Article  CAS  Google Scholar 

  75. Tamminga A, Werner J, Oosterhuis B, et al. CYP2D6 and CYP2C19 activity in a large population of Dutch healthy volunteers: indications for oral contraceptive-related gender differences. Eur J Clin Pharmacol 1999; 55: 177–84

    Article  PubMed  CAS  Google Scholar 

  76. Hooper WD, Qing MS. The influence of age and gender on the stereoselective metabolism and pharmacokinetics of mephobarbital in humans. Clin Pharmacol Ther 1990; 48: 633–40

    Article  PubMed  CAS  Google Scholar 

  77. Laine K, Tybring G, Bertilsson L. No sex-related differences but significant inhibition by oral contraceptives of CYP2C19 activity as measured by the probe drugs mephenytoin and omeprazole in healthy Swedish white subjects. Clin Pharmacol Ther 2000; 68: 151–9

    Article  PubMed  CAS  Google Scholar 

  78. Karin Z, Noveck R, McMahon F, et al. Oxaprozin and piroxicam, nonsteroidal antiinflammatory drugs with long half-lives: effect of protein -binding differences on steady-state pharmacokinetics. J Clin Pharmacol 1997; 37: 267–78

    Google Scholar 

  79. Jokubaitis L. Development and pharmacology of fluvastatin. Br J Clin Pract Suppl 1996; 77A: 11–5

    PubMed  CAS  Google Scholar 

  80. Scripture C, Pieper J. Clinical pharmacokinetics of fluvastatin. Clin Pharmacokinet 2001; 40(4): 263–81

    Article  PubMed  CAS  Google Scholar 

  81. Vachharajani N, Shyu W, Smith R, et al. The effects of age and gender on the pharmacokinetics of irbesartan. Br J Clin Pharmacol 1998; 46(6): 611–3

    Article  PubMed  CAS  Google Scholar 

  82. Houghton G, Richens A, Leighton M. Effect of age, height, weight and sex on serum phenytoin concentration in epileptic patients. Br J Clin Pharmacol 1975; 2(3): 251–6

    Article  PubMed  CAS  Google Scholar 

  83. Lucas D, Menez C, Girre C, et al. Cytochrome P450 2E1 genotype and chlorzoxazone metabolism in healthy and alcoholic Caucasian subjects. Pharmacogenetics 1995; 5: 298–304

    Article  PubMed  CAS  Google Scholar 

  84. Kim R, O’shea D, Wilkinson G. Interindividual variability of chlorzoxazone 6-hydroxylation in men and women and its relationship to CYP2E1 genetic polymorphisms. Clin Pharmacol Ther 1995; 57: 645–55

    Article  PubMed  CAS  Google Scholar 

  85. O’shea D, Davis S, Kim R, et al. Effect of fasting and obesity in humans on the 6-hydroxylation of chlorzoxazone: a putative probe of CYP2E1 activity. Clin Pharmacol Ther 1994; 56: 359–67

    Article  PubMed  Google Scholar 

  86. Watkins PB, Murray SA, Winkelman LG, et al. Erythromycin breath test as an assay of glucocorticoid-inducible liver cytochromes P-450. J Clin Invest 1989; 83: 688–97

    Article  PubMed  CAS  Google Scholar 

  87. Thummel KE, O’shea DD, Paine MF, et al. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther 1996; 59: 491–502

    Article  PubMed  CAS  Google Scholar 

  88. Hunt C, Westerkam W, Stave G. Effect of age and gender on the activity of human hepatic CYP3A. Biochem Pharmacol 1992; 44: 275–83

    Article  PubMed  CAS  Google Scholar 

  89. Greenblatt D, Abernethy D, Locniskar A, et al. Effect of age, gender, and obesity on midazolam kinetics. Anesthesiology 1984; 61(1): 27–35

    PubMed  CAS  Google Scholar 

  90. Lew K, Ludwig E, Milad M, et al. Gender-based effects on methylprednisolone pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 1993; 54: 402–14

    Article  PubMed  CAS  Google Scholar 

  91. Krecic-Shepard M, Barnas C, Slimko J, et al. In vivo comparison of putative probes of CYP3A4/5 activity: erythromycin, dextromethorphan, and verapamil. Clin Pharmacol Ther 1999; 66: 40–50

    Article  PubMed  CAS  Google Scholar 

  92. Schwartz J, Capili H, Daugherty J. Aging of women alters S-verapamil pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 1994; 55: 509–17

    Article  PubMed  CAS  Google Scholar 

  93. Hunt C, Strater S, Stave G. Effect of normal aging on the activity of human hepatic cytochrome P450IIE1. Biochem Pharmacol 1990; 40: 1666–9

    Article  PubMed  CAS  Google Scholar 

  94. Krivoruk Y, Kinirons M, Wood A, et al. Metabolism of cytochrome P4503A substrates in vivo administered by the same route: lack of correlation between alfentanil clearance and erythromycin breath test. Clin Pharmacol Ther 1994; 56: 608–14

    Article  PubMed  CAS  Google Scholar 

  95. Hulst L, Fleishaker J, Peters G, et al. Effect of age and gender on tirilazad pharmacokinetics in humans. Clin Pharmacol Ther 1994; 55(4): 378–84

    Article  PubMed  CAS  Google Scholar 

  96. Kahan B, Kramer W, Wideman C, et al. Demographic factors affecting the pharmacokinetics of cyclosporine estimated by radioimmunoassay. Transplantation 1986; 41: 459–64

    Article  PubMed  CAS  Google Scholar 

  97. Kinirons M, O’shea D, Kim R, et al. Failure of erythromycin breath test to correlate with midazolam clearance as a probe of cytochrome P4503A. Clin Pharmacol Ther 1999; 66: 224–31

    Article  PubMed  CAS  Google Scholar 

  98. Fleishaker JC, Pearson PG, Wienkers LC, et al. Biotransformation of tirilazad in humans: 2. Effect of ketoconazole on tirilazad clearance and oral bioavailability. J Pharmacol Exp Ther 1996; 277: 991–8

    PubMed  CAS  Google Scholar 

  99. Fleishaker J, Fiedler-Kelly J, Grasela T. Population pharmacokinetics of tirilazad: effects of weight, gender, concomitant phenytoin, and subarachnoid hemorrhage. Pharm Res 1999; 16(4): 575–83

    Article  PubMed  CAS  Google Scholar 

  100. Yee G, Kennedy M, Storb R, et al. Effect of hepatic dysfunction on oral cyclosporine pharmacokinetics in marrow transplant patients. Blood 1984; 64: 1277–9

    PubMed  CAS  Google Scholar 

  101. Holazo A, Winkler M, Patel I. Effects of age, gender and oral contraceptives on intramuscular midazolam pharmacokinetics. J Clin Pharmacol 1988; 28(11): 1040–5

    PubMed  CAS  Google Scholar 

  102. Gupta S, Atkinson L, Tu T, et al. Age and gender related changes in stereoselective pharmacokinetics and pharmacodynamics of verapamil and norverapamil. Br J Clin Pharmacol 1995; 40(4): 325–31

    Article  PubMed  CAS  Google Scholar 

  103. Fleishaker J, Peters G. Pharmacokinetics of tirilazad and U-89678 in ischemic stroke patients receiving a loading regimen and maintenance regimen of 10 mg/kg/day of tirilazad. J Clin Pharmacol 1996; 36: 809–13

    PubMed  CAS  Google Scholar 

  104. Fleishaker J, Pearson L, Pearson P, et al. Hormonal effects on tirilazad clearance in women: assessment of the role of CYP3A. J Clin Pharmacol 1999; 39: 260–7

    PubMed  CAS  Google Scholar 

  105. Thummel K, Shen D, Podoll T, et al. Use of midazolam as a human cytochrome P450 3A probe: II. Characterization of inter- and intra-individual hepatic CYP3A variability after liver transplantation. J Pharmacol Exp Ther 1994; 271(1): 557–66

    CAS  Google Scholar 

  106. Tsunoda S, Velez R, von Moltke L, et al. Differentiation of intestinal and hepatic cytochrome P4503A activity with use of midazolam as an in vivo probe: effect of ketoconazole. Clin Pharmacol Ther 1999; 66: 461–71

    Article  PubMed  CAS  Google Scholar 

  107. Muck W. Clinical pharmacokinetics of cerivastatin. Clin Pharmacokinet 2000; 39(2): 99–116

    Article  PubMed  CAS  Google Scholar 

  108. Physician’s Desk Reference. 55th ed. Vol. 1. Montvale (NJ): Medical Economics Company Inc, 2001

  109. Anon. Cerivastatin for hypercholesterolemia. Med Lett Drugs Ther 1998; 40: 13–4

    Google Scholar 

  110. Stein E. Cerivastatin in primary hyperlipidemia: a multicenter analysis of efficacy and safety. Am J Cardiol 1998; 82: 40J–6J

    Article  PubMed  CAS  Google Scholar 

  111. Davignon J, Hanefeld M, Nakaya N, et al. Clinical efficacy and safety of cerivastatin: summary of pivotal phase IIb/III studies. Am J Cardiol 1998; 82: 32J–9J

    Article  PubMed  CAS  Google Scholar 

  112. Insull W Jr, Isaacsohn J, Kwiterovich P, et al. Efficacy and safety of cerivastatin 0.8mg in patients with hypercholesterolaemia: the pivotal placebo-controlled clinical trial. Cerivastatin Study Group. J Int Med Res 2000; 2847-68(2): 47–68

    Google Scholar 

  113. Cholesterol-lowering drug demonstrates gender effect [news brief]. J Gender Specific Med 2000; 3(1): 19

    Google Scholar 

  114. Food and Drug Administration. Center for drug evaluation and research: Baycol labelling information [online]. Available from URL: http://www.fda.gov/cder/drug/ [Accessed 2001 May 3]

  115. Anon. FDA approval process still not catching risks of prescription drugs to women. Reuter Medical News, 2001 Dec

  116. Lennard L, Van Loon J, Lilleyman J, et al. Thiopurine pharmacogenetics in leukemia: correlation of erythrocyte thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations. Clin Pharmacol Ther 1987; 41: 18–25

    Article  PubMed  CAS  Google Scholar 

  117. Lennard L, Lilleyman J, Van Loon J, et al. Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet 1990; 336: 225–9

    Article  PubMed  CAS  Google Scholar 

  118. Szumlanski C, Honchel R, Scott M, et al. Human liver thiopurine methyltransferase pharmacogenetics: biochemical properties, liver-erythrocyte correlation and presence of isozymes. Pharmacogenetics 1992; 2: 148–59

    Article  PubMed  CAS  Google Scholar 

  119. Klemetsdal B, Tollefsen E, Loennechen T, et al. Interethnic differences in thiopurine methyltransferase activity. Clin Pharmacol Ther 1992; 51: 24–31

    Article  PubMed  CAS  Google Scholar 

  120. Chessells J, Richards S, Bailey C, et al. Gender and treatment outcome in childhood lymphoblastic leukaemia: report from the MRC UKALL trials. Br J Haematol 1995; 89(2): 364–72

    Article  PubMed  CAS  Google Scholar 

  121. Lennard L, Welch J, Lilleyman J. Thiopurine drugs in the treatment of childhood leukaemia: the influence of inherited thiopurine methyltransferase activity on drug metabolism and cytotoxicity. Br J Clin Pharmacol 1997; 44(5): 455–61

    Article  PubMed  CAS  Google Scholar 

  122. Milano G, Cassuto-Viguier E, Thyss A, et al. Influence of sex and age on fluorouracil clearance. J Clin Oncol 1992; 10: 1171–5

    PubMed  CAS  Google Scholar 

  123. Port R, Daniel B, Ding R, et al. Relative importance of dose, body surface area, sex, and age for 5-fluorouracil clearance. Oncology 1991; 48: 277–81

    Article  PubMed  CAS  Google Scholar 

  124. Zalcberg J, Kerr D, Seymour L, et al. Haematological and non-haematological toxicity after 5-fluorouracil and leucovorin in patients with advanced colorectal cancer is significantly associated with gender, increasing age and cycle number. Eur J Cancer 1998; 34(12): 1871–5

    Article  PubMed  CAS  Google Scholar 

  125. Sloan JA, Loprinzi CL, Novotny PJ, et al. Sex differences in fluorouracil-induced stomatitis. J Clin Oncol 2000; 18: 412–20

    PubMed  CAS  Google Scholar 

  126. Sloan JA, Goldberg RM, Sargent DJ, et al. Women experience greater toxicity with fluorouracil-based chemotherapy for colorectal cancer. J Clin Oncol 2002 20: 1491–8

    Article  PubMed  CAS  Google Scholar 

  127. Lu Z, Zhankg R, Diasio R. Population characteristics of hepatic dihydropyrimidine dehydrogenase activity, a key metabolic enzyme in 5-fluorouracil chemotherapy. Clin Pharmacol Ther 1995; 58(5): 512–22

    Article  PubMed  CAS  Google Scholar 

  128. Dobbs N, Twelves C, Gillies H, et al. Gender affects doxorubicin pharmacokinetics in patients with normal liver biochemistry. Cancer Chemother Pharmacol 1995; 36: 473–6

    Article  PubMed  CAS  Google Scholar 

  129. Boudikova B, Szumlanski C, Maidak B, et al. Human liver catechol-O-methyltransferase pharmacogenetics. Clin Pharmacol Ther 1990; 48: 381–9

    Article  PubMed  CAS  Google Scholar 

  130. Fahndrich E, Coper H, Christ W, et al. Erythrocyte COMT activity in patients with affective disorders. Acta Psychiatr 1980; 61: 427–37

    Article  CAS  Google Scholar 

  131. Floderus Y, Ross S, Wetterberg L. Erythrocyte catechol-O-methyltransferase activity in a Swedish population. Clin Genet 1981; 19: 389–92

    Article  PubMed  CAS  Google Scholar 

  132. Halbreich U, Vital-Herne J, Goldstein S, et al. Sex differences in biological factors putatively related to depression. J Affect Disord 1984; 7: 223–33

    Article  PubMed  CAS  Google Scholar 

  133. Divoll M, Greenblatt D, Harmatz J, et al. Effect of age and gender on disposition of temazepam. J Pharm Sci 1981; 70: 1104–7

    Article  PubMed  CAS  Google Scholar 

  134. Greenblatt D, Divoll M, Harmatz J, et al. Oxazepam kinetics: effects of age and sex. J Pharmacol Exp Ther 1980; 215: 86–91

    PubMed  CAS  Google Scholar 

  135. Walle T, Walle U, Cowart T, et al. Pathway-selective sex differences in the metabolic clearance of propranolol in human subjects. Clin Pharmacol Ther 1989; 46: 257–63

    Article  PubMed  CAS  Google Scholar 

  136. Johnson J, Akers W, Herring V, et al. Gender differences in labetalol kinetics: importance of determining stereoisomer kinetics for racemic drugs. Pharmacotherapy 2000; 20(6): 622–8

    Article  PubMed  CAS  Google Scholar 

  137. Miners J, Robson R, Birkett D. Gender and oral contraceptive steroids as determinants of drug glucuronidation: effects on clofibric acid elimination. Br J Clin Pharmacol 1984; 18: 240–3

    Article  PubMed  CAS  Google Scholar 

  138. Greenblatt D, Abernethy D, Matlis R, et al. Absorption and disposition of ibuprofen in the elderly. Arthritis Rheum 1984; 27: 1066–9

    Article  PubMed  CAS  Google Scholar 

  139. Divoll M, Abernethy D, Ameer B, et al. Acetaminophen kinetics in the elderly. Clin Pharmacol Ther 1982; 31: 151–6

    Article  PubMed  CAS  Google Scholar 

  140. Abernethy D, Divoll M, Greenblatt D. Obesity, sex, and acetaminophen disposition. Clin Pharmacol Ther 1982; 31: 151–6

    Article  PubMed  Google Scholar 

  141. Macdonald J, Herman R, Verbeeck R. Sex-difference and the effects of smoking and oral contraceptive steroids on the kinetics of diflunisal. Eur J Clin Pharmacol 1990; 38: 175–9

    PubMed  CAS  Google Scholar 

  142. de Vos JW, Geerlings P, van den Brink W, et al. Pharmacokinetics of methadone and its primary metabolite in 20 opiate addicts. Eur J Clin Pharmacol 1995; 48: 361–6

    Article  PubMed  Google Scholar 

  143. Cummins CL, Wu C-Y, Benet LZ. Sex-related differences in the clearance of cytochrome P450 3A4 substrates may be caused by P-glycoprotein [commentary]. Clin Pharmacol Ther 2002; 72: 474–89

    Article  PubMed  CAS  Google Scholar 

  144. Meibohm B, Beierle I, Derendorf H. How important are gender differences in pharmacokinetics? Clin Pharmacokinet 2002; 41: 329–42

    Article  PubMed  CAS  Google Scholar 

  145. Loebstein R, Lalkin A, Koren G. Pharmacokinetic changes during pregnancy and their clinical relevance. Clin Pharmacokinet 1997; 33(5): 328–43

    Article  PubMed  CAS  Google Scholar 

  146. Chandramouli N, Rodgers G. Management of thrombosis in women with antiphospholipid syndrome. Clin Obstet Gynecol 2001; 44: 36–47

    Article  PubMed  CAS  Google Scholar 

  147. Kashuba A, Nafziger A. Physiological changes during the menstrual cycle and their effects on the pharmacokinetics and pharmacodynamics of drugs. Clin Pharmacokinet 1998; 34(3): 203–18

    Article  PubMed  CAS  Google Scholar 

  148. Ricci M, Toscano D, Mattingly C, et al. Estrogen receptor reduces CYP1A1 induction in cultured human endometrial cells. J Biol Chem 1999; 274(6): 3430–8

    Article  PubMed  CAS  Google Scholar 

  149. Fazio A. Oral contraceptive drug interactions: important considerations. South Med J 1991; 84: 997–1002

    Article  PubMed  CAS  Google Scholar 

  150. Back D, Orme M. Pharmacokinetic drug interactions with oral contraceptives. Clin Pharmacokinet 1990; 18: 472–84

    Article  PubMed  CAS  Google Scholar 

  151. Crawford P, Chadwick DJ, Martin C, et al. The interaction of phenytoin and carbamazepine with combined oral contraceptive steroids. Br J Clin Pharmacol 1990; 30: 892–6

    Article  PubMed  CAS  Google Scholar 

  152. Shapiro B, Agrawal A, Pampori N. Gender differences in drug metabolism regulated by growth hormone. Int J Biochem Cell Biol 1995; 27(1): 9–20

    Article  PubMed  CAS  Google Scholar 

  153. Teichmann A. Influence of oral contraceptives on drug therapy. Am J Obstet Gynecol 1990; 163: 2208–13

    PubMed  CAS  Google Scholar 

  154. Rasmussen B, Brosen K. Determination of urinary metabolites of caffeine, for the assessment of cytochrome 4501A2, xanthine oxidase, and N-acetyltransferase activity in humans. Ther Drug Monit 1996; 18(3): 254–62

    Article  PubMed  CAS  Google Scholar 

  155. Weisberg E. Interactions between oral contraceptives and antifungals/antibacterials: is contraceptive failure the result? Clin Pharmacokinet 1999; 36(5): 309–13

    Article  PubMed  CAS  Google Scholar 

  156. Gorski J, Wang Z, Haehner-Daniesl B, et al. The effect of hormone replacement therapy on CYP3A activity. Clin Pharmacol Ther 2000; 68: 412–7

    Article  PubMed  CAS  Google Scholar 

  157. Christy N, Shaver J. Estrogens and the kidney. Kidney Int 1974; 6: 366–76

    Article  PubMed  CAS  Google Scholar 

  158. Chen M-L, Lee S-C, Ng M-J, et al. Pharmacokinetic analysis of bioequivalence trials: implications for sex-related issues in clinical pharmacology and biopharmaceutics. Clin Pharmacol Ther 2000; 68: 510–21

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by PHRA National Institute on Aging: RO1 AG 15982 and by the Institute of Aging and Jewish Home of San Francisco, California. The author has no conflicts of interest directly relevant to this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janice B. Schwartz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, J.B. The Influence of Sex on Pharmacokinetics. Clin Pharmacokinet 42, 107–121 (2003). https://doi.org/10.2165/00003088-200342020-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200342020-00001

Keywords

Navigation