Semin Liver Dis 2011; 31(2): 128-146
DOI: 10.1055/s-0031-1276643
© Thieme Medical Publishers

Genetics of Alcoholic and Nonalcoholic Fatty Liver Disease

Quentin M. Anstee1 , Ann K. Daly1 , Christopher P. Day1
  • 1Liver Research Group, Institute of Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne, United Kingdom
Further Information

Publication History

Publication Date:
02 May 2011 (online)

ABSTRACT

Excess alcohol consumption with consequent alcoholic liver disease (ALD) and metabolic syndrome-related nonalcoholic fatty liver disease (NAFLD) are recognized as the most common causes of liver dysfunction worldwide. However, although the majority of heavy drinkers and individuals with obesity/insulin resistance will develop steatosis, only a minority progress to steatohepatitis, fibrosis, and cirrhosis. Both ALD and NAFLD are best considered complex disease traits where subtle interpatient genetic variations and environment interact to produce disease phenotype and determine disease progression. A decade after the sequencing of the human genome, the development of technologies to support the comprehensive study of genomic variation has begun to provide new insights into the modifier genes that contribute to this interpatient variation. Here we review the current status of the field with particular focus on advances from recent genome-wide association studies and their translation into a better mechanistic understanding of pathogenesis.

REFERENCES

  • 1 Wilfred de Alwis N M, Day C P. Genetics of alcoholic liver disease and nonalcoholic fatty liver disease.  Semin Liver Dis. 2007;  27 (1) 44-54
  • 2 Anstee Q M, Goldin R D. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research.  Int J Exp Pathol. 2006;  87 (1) 1-16
  • 3 Sanyal A J. American Gastroenterological Association . AGA technical review on nonalcoholic fatty liver disease.  Gastroenterology. 2002;  123 (5) 1705-1725
  • 4 Marchesini G, Brizi M, Morselli-Labate A M et al.. Association of nonalcoholic fatty liver disease with insulin resistance.  Am J Med. 1999;  107 (5) 450-455
  • 5 Powell E E, Cooksley W G, Hanson R, Searle J, Halliday J W, Powell L W. The natural history of nonalcoholic steatohepatitis: a follow-up study of forty-two patients for up to 21 years.  Hepatology. 1990;  11 (1) 74-80
  • 6 Day C P. Pathogenesis of steatohepatitis.  Best Pract Res Clin Gastroenterol. 2002;  16 (5) 663-678
  • 7 Nagata K, Suzuki H, Sakaguchi S. Common pathogenic mechanism in development progression of liver injury caused by non-alcoholic or alcoholic steatohepatitis.  J Toxicol Sci. 2007;  32 (5) 453-468
  • 8 Yamaguchi K, Yang L, McCall S et al.. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis.  Hepatology. 2007;  45 (6) 1366-1374
  • 9 Malhi H, Gores G J, Lemasters J J. Apoptosis and necrosis in the liver: a tale of two deaths?.  Hepatology. 2006;  43 (2, Suppl 1) S31-S44
  • 10 Anstee Q M, Concas D, Kudo H et al.. Impact of pan-caspase inhibition in animal models of established steatosis and non-alcoholic steatohepatitis.  J Hepatol. 2010;  53 (3) 542-550
  • 11 Farrell G C, Larter C Z, Hou J Y et al.. Apoptosis in experimental NASH is associated with p53 activation and TRAIL receptor expression.  J Gastroenterol Hepatol. 2009;  24 (3) 443-452
  • 12 Iredale J P. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ.  J Clin Invest. 2007;  117 (3) 539-548
  • 13 Mandrekar P, Szabo G. Signalling pathways in alcohol-induced liver inflammation.  J Hepatol. 2009;  50 (6) 1258-1266
  • 14 Hirschhorn J N. Genomewide association studies—illuminating biologic pathways.  N Engl J Med. 2009;  360 (17) 1699-1701
  • 15 International HapMap Consortium . A haplotype map of the human genome.  Nature. 2005;  437 (7063) 1299-1320
  • 16 Frazer K A, Ballinger D G, Cox D R International HapMap Consortium et al. A second generation human haplotype map of over 3.1 million SNPs.  Nature. 2007;  449 (7164) 851-861
  • 17 Manolio T A, Brooks L D, Collins F SA. A HapMap harvest of insights into the genetics of common disease.  J Clin Invest. 2008;  118 (5) 1590-1605
  • 18 Hardy J, Singleton A. Genomewide association studies and human disease.  N Engl J Med. 2009;  360 (17) 1759-1768
  • 19 Wellcome Trust Case Control Consortium . Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.  Nature. 2007;  447 (7145) 661-678
  • 20 McCarthy M I, Hirschhorn J N. Genome-wide association studies: past, present and future.  Hum Mol Genet. 2008;  17 (R2) R100-R101
  • 21 Yuan X, Waterworth D, Perry J R et al.. Population-based genome-wide association studies reveal six loci influencing plasma levels of liver enzymes.  Am J Hum Genet. 2008;  83 (4) 520-528
  • 22 Daly A K, Donaldson P T, Bhatnagar P DILIGEN Study et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin.  Nat Genet. 2009;  41 (7) 816-819
  • 23 Buch S, Schafmayer C, Völzke H et al.. A genome-wide association scan identifies the hepatic cholesterol transporter ABCG8 as a susceptibility factor for human gallstone disease.  Nat Genet. 2007;  39 (8) 995-999
  • 24 Hirschfield G M, Liu X, Xu C et al.. Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants.  N Engl J Med. 2009;  360 (24) 2544-2555
  • 25 Liu X, Invernizzi P, Lu Y et al.. Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis.  Nat Genet. 2010;  42 (8) 658-660
  • 26 Romeo S, Kozlitina J, Xing C et al.. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease.  Nat Genet. 2008;  40 (12) 1461-1465
  • 27 Chalasani N, Guo X, Loomba R Nonalcoholic Steatohepatitis Clinical Research Network et al. Genome-wide association study identifies variants associated with histologic features of nonalcoholic Fatty liver disease.  Gastroenterology. 2010;  139 (5) 1567-1576, 1576 e1-e6
  • 28 Kamatani Y, Wattanapokayakit S, Ochi H et al.. A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians.  Nat Genet. 2009;  41 (5) 591-595
  • 29 Ge D, Fellay J, Thompson A J et al.. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance.  Nature. 2009;  461 (7262) 399-401
  • 30 Suppiah V, Moldovan M, Ahlenstiel G et al.. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy.  Nat Genet. 2009;  41 (10) 1100-1104
  • 31 Miele L, Beale G, Patman G et al.. The Kruppel-like factor 6 genotype is associated with fibrosis in nonalcoholic fatty liver disease.  Gastroenterology. 2008;  135 (1) 282-291 e1
  • 32 Wright M, Goldin R, Hellier S et al.. Factor V Leiden polymorphism and the rate of fibrosis development in chronic hepatitis C virus infection.  Gut. 2003;  52 (8) 1206-1210
  • 33 Nolan P M, Peters J, Strivens M et al.. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse.  Nat Genet. 2000;  25 (4) 440-443
  • 34 Waterston R H, Lindblad-Toh K, Birney E Mouse Genome Sequencing Consortium et al. Initial sequencing and comparative analysis of the mouse genome.  Nature. 2002;  420 (6915) 520-562
  • 35 Frazer K A, Eskin E, Kang H M et al.. A sequence-based variation map of 8.27 million SNPs in inbred mouse strains.  Nature. 2007;  448 (7157) 1050-1053
  • 36 Church C, Lee S, Bagg E A et al.. A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene.  PLoS Genet. 2009;  5 (8) e1000599
  • 37 Fischer J, Koch L, Emmerling C et al.. Inactivation of the FTO gene protects from obesity.  Nature. 2009;  458 (7240) 894-898
  • 38 He S, McPhaul C, Li J Z et al.. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis.  J Biol Chem. 2010;  285 (9) 6706-6715
  • 39 Koteish A, Diehl A M. Animal models of steatosis.  Semin Liver Dis. 2001;  21 (1) 89-104
  • 40 Anstee Q M, Goldin R D, Wright M, Martinelli A, Cox R, Thursz M R. Coagulation status modulates murine hepatic fibrogenesis: implications for the development of novel therapies.  J Thromb Haemost. 2008;  6 (8) 1336-1343
  • 41 Gama Sosa M A, De Gasperi R, Elder G A. Animal transgenesis: an overview.  Brain Struct Funct. 2010;  214 (2-3) 91-109
  • 42 Russell W L, Kelly E M, Hunsicker P R, Bangham J W, Maddux S C, Phipps E L. Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse.  Proc Natl Acad Sci U S A. 1979;  76 (11) 5818-5819
  • 43 Justice M J, Noveroske J K, Weber J S, Zheng B, Bradley A. Mouse ENU mutagenesis.  Hum Mol Genet. 1999;  8 (10) 1955-1963
  • 44 Justice M J. Capitalizing on large-scale mouse mutagenesis screens.  Nat Rev Genet. 2000;  1 (2) 109-115
  • 45 Acevedo-Arozena A, Wells S, Potter P, Kelly M, Cox R D, Brown S D. ENU mutagenesis, a way forward to understand gene function.  Annu Rev Genomics Hum Genet. 2008;  9 49-69
  • 46 Quwailid M M, Hugill A, Dear N et al.. A gene-driven ENU-based approach to generating an allelic series in any gene.  Mamm Genome. 2004;  15 (8) 585-591
  • 47 Coghill E L, Hugill A, Parkinson N et al.. A gene-driven approach to the identification of ENU mutants in the mouse.  Nat Genet. 2002;  30 (3) 255-256
  • 48 Frayling T M, Timpson N J, Weedon M N et al.. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity.  Science. 2007;  316 (5826) 889-894
  • 49 Grant B F, Dawson D A, Stinson F S, Chou S P, Dufour M C, Pickering R P. The 12-month prevalence and trends in DSM-IV alcohol abuse and dependence: United States, 1991-1992 and 2001-2002.  Drug Alcohol Depend. 2004;  74 (3) 223-234
  • 50 Cotton N S. The familial incidence of alcoholism: a review.  J Stud Alcohol. 1979;  40 (1) 89-116
  • 51 Enoch M A. The role of GABA(A) receptors in the development of alcoholism.  Pharmacol Biochem Behav. 2008;  90 (1) 95-104
  • 52 Goldman D, Oroszi G, Ducci F. The genetics of addictions: uncovering the genes.  Nat Rev Genet. 2005;  6 (7) 521-532
  • 53 McCarthy M I, Hirschhorn J N. Genome-wide association studies: potential next steps on a genetic journey.  Hum Mol Genet. 2008;  17 (R2) R156-R165
  • 54 Barnard E A, Skolnick P, Olsen R W et al.. International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function.  Pharmacol Rev. 1998;  50 (2) 291-313
  • 55 Long J C, Knowler W C, Hanson R L et al.. Evidence for genetic linkage to alcohol dependence on chromosomes 4 and 11 from an autosome-wide scan in an American Indian population.  Am J Med Genet. 1998;  81 (3) 216-221
  • 56 Williams J T, Begleiter H, Porjesz B et al.. Joint multipoint linkage analysis of multivariate qualitative and quantitative traits. II. Alcoholism and event-related potentials.  Am J Hum Genet. 1999;  65 (4) 1148-1160
  • 57 Reich T, Edenberg H J, Goate A et al.. Genome-wide search for genes affecting the risk for alcohol dependence.  Am J Med Genet. 1998;  81 (3) 207-215
  • 58 Porjesz B, Almasy L, Edenberg H J et al.. Linkage disequilibrium between the beta frequency of the human EEG and a GABAA receptor gene locus.  Proc Natl Acad Sci U S A. 2002;  99 (6) 3729-3733
  • 59 Zinn-Justin A, Abel L. Genome search for alcohol dependence using the weighted pairwise correlation linkage method: interesting findings on chromosome 4.  Genet Epidemiol. 1999;  17 (Suppl 1) S421-S426
  • 60 Ghosh S, Begleiter H, Porjesz B et al.. Linkage mapping of beta 2 EEG waves via non-parametric regression.  Am J Med Genet B Neuropsychiatr Genet. 2003;  118B (1) 66-71
  • 61 Edenberg H J, Dick D M, Xuei X et al.. Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations.  Am J Hum Genet. 2004;  74 (4) 705-714
  • 62 Agrawal A, Edenberg H J, Foroud T et al.. Association of GABRA2 with drug dependence in the collaborative study of the genetics of alcoholism sample.  Behav Genet. 2006;  36 (5) 640-650
  • 63 Covault J, Gelernter J, Hesselbrock V, Nellissery M, Kranzler H R. Allelic and haplotypic association of GABRA2 with alcohol dependence.  Am J Med Genet B Neuropsychiatr Genet. 2004;  129B (1) 104-109
  • 64 Lappalainen J, Krupitsky E, Remizov M et al.. Association between alcoholism and gamma-amino butyric acid alpha2 receptor subtype in a Russian population.  Alcohol Clin Exp Res. 2005;  29 (4) 493-498
  • 65 Fehr C, Sander T, Tadic A et al.. Confirmation of association of the GABRA2 gene with alcohol dependence by subtype-specific analysis.  Psychiatr Genet. 2006;  16 (1) 9-17
  • 66 Bauer L O, Covault J, Harel O et al.. Variation in GABRA2 predicts drinking behavior in project MATCH subjects.  Alcohol Clin Exp Res. 2007;  31 (11) 1780-1787
  • 67 Pierucci-Lagha A, Covault J, Feinn R et al.. GABRA2 alleles moderate the subjective effects of alcohol, which are attenuated by finasteride.  Neuropsychopharmacology. 2005;  30 (6) 1193-1203
  • 68 Parsian A, Zhang Z H. Human chromosomes 11p15 and 4p12 and alcohol dependence: possible association with the GABRB1 gene.  Am J Med Genet. 1999;  88 (5) 533-538
  • 69 Song J, Koller D L, Foroud T et al.. Association of GABA(A) receptors and alcohol dependence and the effects of genetic imprinting.  Am J Med Genet B Neuropsychiatr Genet. 2003;  117B (1) 39-45
  • 70 Enoch M A, Schwartz L S, White K V, Albaugh B, Goldman D. Linkage of GABRB1 to alcoholism and low voltage ALPHA EEG in two independent populations.  Alcohol Clin Exp Res. 2005;  29 (5) 132a
  • 71 Knapp S, Hosie A M, Anstee Q M et al.. Identification of a model of alcohol preference and its similarity to human alcoholism.  Hepatology. 2008;  48 (4) 398A-399A
  • 72 Dick D M, Bierut L J. The genetics of alcohol dependence.  Curr Psychiatry Rep. 2006;  8 (2) 151-157
  • 73 Whitfield J B, Nightingale B N, Bucholz K K, Madden P A, Heath A C, Martin N G. ADH genotypes and alcohol use and dependence in Europeans.  Alcohol Clin Exp Res. 1998;  22 (7) 1463-1469
  • 74 McCarver D G, Thomasson H R, Martier S S, Sokol R J, Li T K. Alcohol dehydrogenase-2*3 allele protects against alcohol-related birth defects among African Americans.  J Pharmacol Exp Ther. 1997;  283 (3) 1095-1101
  • 75 Köhnke M D. Approach to the genetics of alcoholism: a review based on pathophysiology.  Biochem Pharmacol. 2008;  75 (1) 160-177
  • 76 Zintzaras E, Stefanidis I, Santos M, Vidal F. Do alcohol-metabolizing enzyme gene polymorphisms increase the risk of alcoholism and alcoholic liver disease?.  Hepatology. 2006;  43 (2) 352-361
  • 77 Harada S, Agarwal D P, Goedde H W, Tagaki S, Ishikawa B. Possible protective role against alcoholism for aldehyde dehydrogenase isozyme deficiency in Japan.  Lancet. 1982;  2 (8302) 827
  • 78 National Diabetes Information Clearing House. US National Diabetes Statistics. Bethesda, MD: National Diabetes Information Clearing House; 2007
  • 79 Beck-Nielsen H, Vaag A, Poulsen P, Gaster M. Metabolic and genetic influence on glucose metabolism in type 2 diabetic subjects—experiences from relatives and twin studies.  Best Pract Res Clin Endocrinol Metab. 2003;  17 (3) 445-467
  • 80 Permutt M A, Wasson J, Cox N. Genetic epidemiology of diabetes.  J Clin Invest. 2005;  115 (6) 1431-1439
  • 81 McCarthy M I, Zeggini E. Genome-wide association studies in type 2 diabetes.  Curr Diab Rep. 2009;  9 (2) 164-171
  • 82 Dongiovanni P, Valenti L, Rametta R et al.. Genetic variants regulating insulin receptor signalling are associated with the severity of liver damage in patients with non-alcoholic fatty liver disease.  Gut. 2010;  59 (2) 267-273
  • 83 Carulli L, Canedi I, Rondinella S et al.. Genetic polymorphisms in non-alcoholic fatty liver disease: interleukin-6-174G/C polymorphism is associated with non-alcoholic steatohepatitis.  Dig Liver Dis. 2009;  41 (11) 823-828
  • 84 Musso G, Gambino R, De Michieli F, Durazzo M, Pagano G, Cassader M. Adiponectin gene polymorphisms modulate acute adiponectin response to dietary fat: possible pathogenetic role in NASH.  Hepatology. 2008;  47 (4) 1167-1177
  • 85 Kotronen A, Yki-Järvinen H, Aminoff A et al.. Genetic variation in the ADIPOR2 gene is associated with liver fat content and its surrogate markers in three independent cohorts.  Eur J Endocrinol. 2009;  160 (4) 593-602
  • 86 Fawcett K A, Barroso I. The genetics of obesity: FTO leads the way.  Trends Genet. 2010;  26 (6) 266-274
  • 87 Ingalls A M, Dickie M M, Snell G D. Obese, a new mutation in the house mouse.  J Hered. 1950;  41 (12) 317-318
  • 88 Hummel K P, Dickie M M, Coleman D L. Diabetes, a new mutation in the mouse.  Science. 1966;  153 (740) 1127-1128
  • 89 Chalasani N, Crabb D W, Cummings O W et al.. Does leptin play a role in the pathogenesis of human nonalcoholic steatohepatitis?.  Am J Gastroenterol. 2003;  98 (12) 2771-2776
  • 90 Kelly M L, Moir L, Jones L et al.. A missense mutation in the non-neural G-protein alpha-subunit isoforms modulates susceptibility to obesity.  Int J Obes (Lond). 2009;  33 (5) 507-518
  • 91 Bradbury M W, Berk P D. Lipid metabolism in hepatic steatosis.  Clin Liver Dis. 2004;  8 (3) 639-671 xi xi
  • 92 Romeo S, Huang-Doran I, Baroni M G, Kotronen A. Unravelling the pathogenesis of fatty liver disease: patatin-like phospholipase domain-containing 3 protein.  Curr Opin Lipidol. 2010;  21 (3) 247-252
  • 93 Zimmermann R, Strauss J G, Haemmerle G et al.. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase.  Science. 2004;  306 (5700) 1383-1386
  • 94 Victor R G, Haley R W, Willett D L Dallas Heart Study Investigators et al. The Dallas Heart Study: a population-based probability sample for the multidisciplinary study of ethnic differences in cardiovascular health.  Am J Cardiol. 2004;  93 (12) 1473-1480
  • 95 Cobbold J F, Anstee Q M, Goldin R D et al.. Phenotyping murine models of non-alcoholic fatty liver disease through metabolic profiling of intact liver tissue.  Clin Sci (Lond). 2009;  116 (5) 403-413
  • 96 Siegelman E S, Rosen M A. Imaging of hepatic steatosis.  Semin Liver Dis. 2001;  21 (1) 71-80
  • 97 Kotronen A, Johansson L E, Johansson L M et al.. A common variant in PNPLA3, which encodes adiponutrin, is associated with liver fat content in humans.  Diabetologia. 2009;  52 (6) 1056-1060
  • 98 Sookoian S, Castaño G O, Burgueño A L, Gianotti T F, Rosselli M S, Pirola C J. A nonsynonymous gene variant in the adiponutrin gene is associated with nonalcoholic fatty liver disease severity.  J Lipid Res. 2009;  50 (10) 2111-2116
  • 99 Kantartzis K, Peter A, Machicao F et al.. Dissociation between fatty liver and insulin resistance in humans carrying a variant of the patatin-like phospholipase 3 gene.  Diabetes. 2009;  58 (11) 2616-2623
  • 100 Rotman Y, Koh C, Zmuda J M, Kleiner D E, Liang T J. NASH CRN . The association of genetic variability in patatin-like phospholipase domain-containing protein 3 (PNPLA3) with histological severity of nonalcoholic fatty liver disease.  Hepatology. 2010;  52 (3) 894-903
  • 101 Romeo S, Sentinelli F, Cambuli V M et al.. The 148M allele of the PNPLA3 gene is associated with indices of liver damage early in life.  J Hepatol. 2010;  53 (2) 335-338
  • 102 Valenti L, Alisi A, Galmozzi E et al.. I148M patatin-like phospholipase domain-containing 3 gene variant and severity of pediatric nonalcoholic fatty liver disease.  Hepatology. 2010;  52 (4) 1274-1280
  • 103 Santoro N, Kursawe R, D'Adamo E et al.. A common variant in the patatin-like phospholipase 3 gene (PNPLA3) is associated with fatty liver disease in obese children and adolescents.  Hepatology. 2010;  52 (4) 1281-1290
  • 104 Kollerits B, Coassin S, Kiechl S et al.. A common variant in the adiponutrin gene influences liver enzyme values.  J Med Genet. 2010;  47 (2) 116-119
  • 105 Romeo S, Sentinelli F, Dash S et al.. Morbid obesity exposes the association between PNPLA3 I148M (rs738409) and indices of hepatic injury in individuals of European descent.  Int J Obes (Lond). 2010;  34 (1) 190-194
  • 106 Speliotes E K, Butler J L, Palmer C D, Voight B F, Hirschhorn J N. GIANT Consortium . PNPLA3 variants specifically confer increased risk for histologic nonalcoholic fatty liver disease but not metabolic disease.  Hepatology. 2010;  52 (3) 904-912
  • 107 Tian C, Stokowski R P, Kershenobich D, Ballinger D G, Hinds D A. Variant in PNPLA3 is associated with alcoholic liver disease.  Nat Genet. 2010;  42 (1) 21-23
  • 108 Seth D, Daly A K, Haber P S, Day C P. Patatin-like phospholipase domain containing 3: a case in point linking genetic susceptibility for alcoholic and nonalcoholic liver disease.  Hepatology. 2010;  51 (4) 1463-1465
  • 109 Stickel F, Buch S, Lau K et al.. Genetic variation in the PNPLA3 gene is associated with alcoholic liver injury in Caucasians.  Hepatology. 2010;  53 86-95
  • 110 Huang Y, He S, Li J Z et al.. A feed-forward loop amplifies nutritional regulation of PNPLA3.  Proc Natl Acad Sci U S A. 2010;  107 (17) 7892-7897
  • 111 Wilson P A, Gardner S D, Lambie N M, Commans S A, Crowther D J. Characterization of the human patatin-like phospholipase family.  J Lipid Res. 2006;  47 (9) 1940-1949
  • 112 Hoekstra M, Li Z, Kruijt J K, Van Eck M, Van Berkel T J, Kuiper J. The expression level of non-alcoholic fatty liver disease-related gene PNPLA3 in hepatocytes is highly influenced by hepatic lipid status.  J Hepatol. 2010;  52 (2) 244-251
  • 113 Lake A C, Sun Y, Li J L et al.. Expression, regulation, and triglyceride hydrolase activity of Adiponutrin family members.  J Lipid Res. 2005;  46 (11) 2477-2487
  • 114 Basantani M K, Sitnick M T, Cai L et al.. Pnpla3/Adiponutrin deficiency in mice does not contribute to fatty liver disease or metabolic syndrome.  J Lipid Res. 2011;  52 (2) 318-329
  • 115 Jenkins C M, Mancuso D J, Yan W, Sims H F, Gibson B, Gross R W. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities.  J Biol Chem. 2004;  279 (47) 48968-48975
  • 116 Chen W, Chang B, Li L, Chan L. Patatin-like phospholipase domain-containing 3/adiponutrin deficiency in mice is not associated with fatty liver disease.  Hepatology. 2010;  52 (3) 1134-1142
  • 117 Farrell G C. PNPLeAse get the fats right: does lipogenesis or lipolysis cause NASH?.  Hepatology. 2010;  52 (3) 818-821
  • 118 Lonardo A, Lombardini S, Scaglioni F et al.. Hepatic steatosis and insulin resistance: does etiology make a difference?.  J Hepatol. 2006;  44 (1) 190-196
  • 119 Namikawa C, Shu-Ping Z, Vyselaar J R et al.. Polymorphisms of microsomal triglyceride transfer protein gene and manganese superoxide dismutase gene in non-alcoholic steatohepatitis.  J Hepatol. 2004;  40 (5) 781-786
  • 120 Bernard S, Touzet S, Personne I et al.. Association between microsomal triglyceride transfer protein gene polymorphism and the biological features of liver steatosis in patients with type II diabetes.  Diabetologia. 2000;  43 (8) 995-999
  • 121 Oliveira C P, Stefano J T, Cavaleiro A M et al.. Association of polymorphisms of glutamate-cystein ligase and microsomal triglyceride transfer protein genes in non-alcoholic fatty liver disease.  J Gastroenterol Hepatol. 2010;  25 (2) 357-361
  • 122 Dong H, Wang J, Li C et al.. The phosphatidylethanolamine N-methyltransferase gene V175M single nucleotide polymorphism confers the susceptibility to NASH in Japanese population.  J Hepatol. 2007;  46 (5) 915-920
  • 123 Song J, da Costa K A, Fischer L M et al.. Polymorphism of the PEMT gene and susceptibility to nonalcoholic fatty liver disease (NAFLD).  FASEB J. 2005;  19 (10) 1266-1271
  • 124 Zhou J, Zhai Y, Mu Y et al.. A novel pregnane X receptor-mediated and sterol regulatory element-binding protein-independent lipogenic pathway.  J Biol Chem. 2006;  281 (21) 15013-15020
  • 125 Zhang B, Xie W, Krasowski M D. PXR: a xenobiotic receptor of diverse function implicated in pharmacogenetics.  Pharmacogenomics. 2008;  9 (11) 1695-1709
  • 126 Sookoian S, Castaño G O, Burgueño A L, Gianotti T F, Rosselli M S, Pirola C J. The nuclear receptor PXR gene variants are associated with liver injury in nonalcoholic fatty liver disease.  Pharmacogenet Genomics. 2010;  20 (1) 1-8
  • 127 Petersen K F, Dufour S, Hariri A et al.. Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease.  N Engl J Med. 2010;  362 (12) 1082-1089
  • 128 Musso G, Gambino R, Pacini G, Pagano G, Durazzo M, Cassader M. Transcription factor 7-like 2 polymorphism modulates glucose and lipid homeostasis, adipokine profile, and hepatocyte apoptosis in NASH.  Hepatology. 2009;  49 (2) 426-435
  • 129 Sazci A, Akpinar G, Aygun C, Ergul E, Senturk O, Hulagu S. Association of apolipoprotein E polymorphisms in patients with non-alcoholic steatohepatitis.  Dig Dis Sci. 2008;  53 (12) 3218-3224
  • 130 Demirag M D, Onen H I, Karaoguz M Y et al.. Apolipoprotein E gene polymorphism in nonalcoholic fatty liver disease.  Dig Dis Sci. 2007;  52 (12) 3399-3403
  • 131 Sookoian S, Castaño G, Gianotti T F, Gemma C, Pirola C J. Polymorphisms of MRP2 (ABCC2) are associated with susceptibility to nonalcoholic fatty liver disease.  J Nutr Biochem. 2009;  20 (10) 765-770
  • 132 George D K, Goldwurm S, MacDonald G A et al.. Increased hepatic iron concentration in nonalcoholic steatohepatitis is associated with increased fibrosis.  Gastroenterology. 1998;  114 (2) 311-318
  • 133 Nelson J E, Bhattacharya R, Lindor K D et al.. HFE C282Y mutations are associated with advanced hepatic fibrosis in Caucasians with nonalcoholic steatohepatitis.  Hepatology. 2007;  46 (3) 723-729
  • 134 Bugianesi E, Manzini P, D'Antico S et al.. Relative contribution of iron burden, HFE mutations, and insulin resistance to fibrosis in nonalcoholic fatty liver.  Hepatology. 2004;  39 (1) 179-187
  • 135 Valenti L, Fracanzani A L, Bugianesi E et al.. HFE genotype, parenchymal iron accumulation, and liver fibrosis in patients with nonalcoholic fatty liver disease.  Gastroenterology. 2010;  138 (3) 905-912
  • 136 Raszeja-Wyszomirska J, Kurzawski G, Lawniczak M, Miezynska-Kurtycz J, Lubinski J. Nonalcoholic fatty liver disease and HFE gene mutations: a Polish study.  World J Gastroenterol. 2010;  16 (20) 2531-2536
  • 137 Grove J, Daly A K, Burt A D et al.. Heterozygotes for HFE mutations have no increased risk of advanced alcoholic liver disease.  Gut. 1998;  43 (2) 262-266
  • 138 Nobili V, Daly A K, Al-Serri A, Leathart J B, Day C P. The mitochondrial superoxide dismutase 2 (SOD2) targeting sequence polymorphism is associated with fibrotic NAFLD: consistent evidence from case-control and intra-familial allelic association studies.  Hepatology. 2007;  46 760A
  • 139 Degoul F, Sutton A, Mansouri A et al.. Homozygosity for alanine in the mitochondrial targeting sequence of superoxide dismutase and risk for severe alcoholic liver disease.  Gastroenterology. 2001;  120 (6) 1468-1474
  • 140 Stewart S F, Leathart J B, Chen Y et al.. Valine-alanine manganese superoxide dismutase polymorphism is not associated with alcohol-induced oxidative stress or liver fibrosis.  Hepatology. 2002;  36 (6) 1355-1360
  • 141 Nahon P, Sutton A, Rufat P et al.. Myeloperoxidase and superoxide dismutase 2 polymorphisms comodulate the risk of hepatocellular carcinoma and death in alcoholic cirrhosis.  Hepatology. 2009;  50 (5) 1484-1493
  • 142 Ladero J M, Martínez C, García-Martin E et al.. Polymorphisms of the glutathione S-transferases mu-1 (GSTM1) and theta-1 (GSTT1) and the risk of advanced alcoholic liver disease.  Scand J Gastroenterol. 2005;  40 (3) 348-353
  • 143 Brind A M, Hurlstone A, Edrisinghe D et al.. The role of polymorphisms of glutathione S-transferases GSTM1, M3, P1, T1 and A1 in susceptibility to alcoholic liver disease.  Alcohol Alcohol. 2004;  39 (6) 478-483
  • 144 Hubatsch I, Ridderström M, Mannervik B. Human glutathione transferase A4-4: an alpha class enzyme with high catalytic efficiency in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation.  Biochem J. 1998;  330 (Pt 1) 175-179
  • 145 Guo J, Loke J, Zheng F et al.. Functional linkage of cirrhosis-predictive single nucleotide polymorphisms of Toll-like receptor 4 to hepatic stellate cell responses.  Hepatology. 2009;  49 (3) 960-968
  • 146 Huang H, Shiffman M L, Friedman S et al.. A 7 gene signature identifies the risk of developing cirrhosis in patients with chronic hepatitis C.  Hepatology. 2007;  46 (2) 297-306
  • 147 Spruss A, Kanuri G, Wagnerberger S, Haub S, Bischoff S C, Bergheim I. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice.  Hepatology. 2009;  50 (4) 1094-1104
  • 148 Day C P, Leathart J, McTernan P, Mathew C, Daly A. Genetic evidence for a role of gut flora in the pathogenesis of NASH in humans.  Hepatology. 2006;  44 (suppl 1) 261A
  • 149 Baldini M, Lohman I C, Halonen M, Erickson R P, Holt P G, Martinez F D. A Polymorphism* in the 5′ flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E.  Am J Respir Cell Mol Biol. 1999;  20 (5) 976-983
  • 150 Järveläinen H A, Orpana A, Perola M, Savolainen V T, Karhunen P J, Lindros K O. Promoter polymorphism of the CD14 endotoxin receptor gene as a risk factor for alcoholic liver disease.  Hepatology. 2001;  33 (5) 1148-1153
  • 151 Leathart J B, Day C P, Daly A K. No association between functional SNPs in the endotoxin receptors CD14 and TLR4 and alcoholic liver disease (ALD): is endotoxin important in the pathogenesis of aid in humans?.  Hepatology. 2001;  34 (4) 459a
  • 152 Arbour N C, Lorenz E, Schutte B C et al.. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans.  Nat Genet. 2000;  25 (2) 187-191
  • 153 Grove J, Daly A K, Bassendine M F, Gilvarry E, Day C P. Interleukin 10 promoter region polymorphisms and susceptibility to advanced alcoholic liver disease.  Gut. 2000;  46 (4) 540-545
  • 154 Lazarus R, Klimecki W T, Palmer L J et al.. Single-nucleotide polymorphisms in the interleukin-10 gene: differences in frequencies, linkage disequilibrium patterns, and haplotypes in three United States ethnic groups.  Genomics. 2002;  80 (2) 223-228
  • 155 Takamatsu M, Yamauchi M, Maezawa Y, Saito S, Maeyama S, Uchikoshi T. Genetic polymorphisms of interleukin-1beta in association with the development of alcoholic liver disease in Japanese patients.  Am J Gastroenterol. 2000;  95 (5) 1305-1311
  • 156 McClain C, Hill D, Schmidt J, Diehl A M. Cytokines and alcoholic liver disease.  Semin Liver Dis. 1993;  13 (2) 170-182
  • 157 Grove J, Daly A K, Bassendine M F, Day C P. Association of a tumor necrosis factor promoter polymorphism with susceptibility to alcoholic steatohepatitis.  Hepatology. 1997;  26 (1) 143-146
  • 158 Pastor I J, Laso F J, Romero A, González-Sarmiento R. -238 G> A polymorphism of tumor necrosis factor alpha gene (TNFA) is associated with alcoholic liver cirrhosis in alcoholic Spanish men.  Alcohol Clin Exp Res. 2005;  29 (11) 1928-1931
  • 159 Marcos M, Gómez-Munuera M, Pastor I, González-Sarmiento R, Laso F J. Tumor necrosis factor polymorphisms and alcoholic liver disease: a HuGE review and meta-analysis.  Am J Epidemiol. 2009;  170 (8) 948-956
  • 160 Valenti L, Fracanzani A L, Dongiovanni P et al.. Tumor necrosis factor alpha promoter polymorphisms and insulin resistance in nonalcoholic fatty liver disease.  Gastroenterology. 2002;  122 (2) 274-280
  • 161 Tokushige K, Takakura M, Tsuchiya-Matsushita N, Taniai M, Hashimoto E, Shiratori K. Influence of TNF gene polymorphisms in Japanese patients with NASH and simple steatosis.  J Hepatol. 2007;  46 (6) 1104-1110
  • 162 Bataller R, North K E, Brenner D A. Genetic polymorphisms and the progression of liver fibrosis: a critical appraisal.  Hepatology. 2003;  37 (3) 493-503
  • 163 Papatheodoridis G V, Papakonstantinou E, Andrioti E et al.. Thrombotic risk factors and extent of liver fibrosis in chronic viral hepatitis.  Gut. 2003;  52 (3) 404-409
  • 164 Papatheodoridis G V, Chrysanthos N, Cholongitas E et al.. Thrombotic risk factors and liver histologic lesions in non-alcoholic fatty liver disease.  J Hepatol. 2009;  51 (5) 931-938
  • 165 Anstee Q M, Wright M, Goldin R, Thursz M R. Parenchymal extinction: coagulation and hepatic fibrogenesis.  Clin Liver Dis. 2009;  13 (1) 117-126
  • 166 Martinelli A, Knapp S, Anstee Q et al.. Effect of a thrombin receptor (protease-activated receptor 1, PAR-1) gene polymorphism in chronic hepatitis C liver fibrosis.  J Gastroenterol Hepatol. 2008;  23 (9) 1403-1409
  • 167 Oakley F, Teoh V, Ching-A-Sue G et al.. Angiotensin II activates I kappaB kinase phosphorylation of RelA at Ser 536 to promote myofibroblast survival and liver fibrosis.  Gastroenterology. 2009;  136 (7) 2334-2344 e1
  • 168 Marcos M, Pastor I, González-Sarmiento R, Laso F J. A functional polymorphism of the NFKB1 gene increases the risk for alcoholic liver cirrhosis in patients with alcohol dependence.  Alcohol Clin Exp Res. 2009;  33 (11) 1857-1862
  • 169 Yoneda M, Hotta K, Nozaki Y et al.. Association between angiotensin II type 1 receptor polymorphisms and the occurrence of nonalcoholic fatty liver disease.  Liver Int. 2009;  29 (7) 1078-1085
  • 170 Dixon J B, Bhathal P S, Jonsson J R, Dixon A F, Powell E E, O'Brien P E. Pro-fibrotic polymorphisms predictive of advanced liver fibrosis in the severely obese.  J Hepatol. 2003;  39 (6) 967-971
  • 171 Yokohama S, Yoneda M, Haneda M et al.. Therapeutic efficacy of an angiotensin II receptor antagonist in patients with nonalcoholic steatohepatitis.  Hepatology. 2004;  40 (5) 1222-1225
  • 172 Ratziu V, Lalazar A, Wong L et al.. Zf9, a Kruppel-like transcription factor up-regulated in vivo during early hepatic fibrosis.  Proc Natl Acad Sci U S A. 1998;  95 (16) 9500-9505
  • 173 Stärkel P, Sempoux C, Leclercq I et al.. Oxidative stress, KLF6 and transforming growth factor-beta up-regulation differentiate non-alcoholic steatohepatitis progressing to fibrosis from uncomplicated steatosis in rats.  J Hepatol. 2003;  39 (4) 538-546
  • 174 Narla G, Difeo A, Reeves H L et al.. A germline DNA polymorphism enhances alternative splicing of the KLF6 tumor suppressor gene and is associated with increased prostate cancer risk.  Cancer Res. 2005;  65 (4) 1213-1222
  • 175 Osterreicher C H, Halangk J, Berg T et al.. Evaluation of the transforming growth factor beta1 codon 25 (Arg—> Pro) polymorphism in alcoholic liver disease.  Cytokine. 2008;  42 (1) 18-23
  • 176 Stickel F, Osterreicher C H, Halangk J et al.. No role of matrixmetalloproteinase-3 genetic promoter polymorphism 1171 as a risk factor for cirrhosis in alcoholic liver disease.  Alcohol Clin Exp Res. 2008;  32 (6) 959-965
  • 177 Bashir R, Day C P, James O F, Ogilvie D J, Sykes B, Bassendine M F. No evidence for involvement of type 1 collagen structural genes in ‘genetic predisposition’ to alcoholic cirrhosis.  J Hepatol. 1992;  16 (3) 316-319
  • 178 Sutton A, Nahon P, Pessayre D et al.. Genetic polymorphisms in antioxidant enzymes modulate hepatic iron accumulation and hepatocellular carcinoma development in patients with alcohol-induced cirrhosis.  Cancer Res. 2006;  66 (5) 2844-2852
  • 179 Nahon P, Sutton A, Pessayre D et al.. Genetic dimorphism in superoxide dismutase and susceptibility to alcoholic cirrhosis, hepatocellular carcinoma, and death.  Clin Gastroenterol Hepatol. 2005;  3 (3) 292-298
  • 180 Saffroy R, Pham P, Chiappini F et al.. The MTHFR 677C > T polymorphism is associated with an increased risk of hepatocellular carcinoma in patients with alcoholic cirrhosis.  Carcinogenesis. 2004;  25 (8) 1443-1448
  • 181 Valenti L, Al-Serri A, Daly A K et al.. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease.  Hepatology. 2010;  51 (4) 1209-1217
  • 182 Sazci A, Ergul E, Aygun C, Akpinar G, Senturk O, Hulagu S. Methylenetetrahydrofolate reductase gene polymorphisms in patients with nonalcoholic steatohepatitis (NASH).  Cell Biochem Funct. 2008;  26 (3) 291-296

Christopher P DayM.D. 

Medical Sciences Faculty Office, The Medical School, Newcastle University

Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom

Email: c.p.day@ncl.ac.uk

    >