Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The effects of environmental chemicals on renal function

Key Points

  • Exposure to organic contaminants occurs through normal daily and routine medical procedures, and is ubiquitous among healthy children and adults

  • Exposure to environmental chemicals that can damage the kidney can occur via dietary intake or as a consequence of medical interventions, such as haemodialysis or parenteral nutrition

  • The full impact of persistent exposure to environmental chemicals on renal function has not been addressed in great detail

  • Cross-sectional data from numerous studies worldwide indicate that exposure to organic chemicals can have adverse effects on glomerular filtration rate, albuminuria, blood pressure and serum uric acid concentration

  • Oxidative stress is a contributing factor to the adverse effects of environmental chemicals on cardiorenal function; additional studies are required to clarify the mechanism and long-term effects of environmental chemicals

Abstract

The global incidence of chronic kidney disease (CKD) is increasing among individuals of all ages. Despite advances in proteomics, genomics and metabolomics, there remains a lack of safe and effective drugs to reverse or stabilize renal function in patients with glomerular or tubulointerstitial causes of CKD. Consequently, modifiable risk factors that are associated with a progressive decline in kidney function need to be identified. Numerous reports have documented the adverse effects that occur in response to graded exposure to a wide range of environmental chemicals. This Review summarizes the effects of such chemicals on four aspects of cardiorenal function: albuminuria, glomerular filtration rate, blood pressure and serum uric acid concentration. We focus on compounds that individuals are likely to be exposed to as a consequence of normal consumer activities or medical treatment, namely phthalates, bisphenol A, polyfluorinated alkyl acids, dioxins and furans, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Environmental exposure to these chemicals during everyday life could have adverse consequences on renal function and might contribute to progressive cumulative renal injury over a lifetime. Regulatory efforts should be made to limit individual exposure to environmental chemicals in an attempt to reduce the incidence of cardiorenal disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The integrated effects of environmental chemicals on cardiorenal function.

Similar content being viewed by others

References

  1. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K. & Sutton, D. J. Heavy metal toxicity and the environment. EXS 101, 133–164 (2012).

    PubMed  PubMed Central  Google Scholar 

  2. Malaguarnera, G. et al. Toxic hepatitis in occupational exposure to solvents. World J. Gastroenterol. 18, 2756–2766 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sathyanarayana, S. Phthalates and children's health. Curr. Probl. Pediatr. Adolesc. Health Care 38, 34–49 (2008).

    Article  PubMed  Google Scholar 

  4. Serrano, S. E., Braun, J., Trasande, L., Dills, R. & Sathyanarayana, S. Phthalates and diet: a review of the food monitoring and epidemiology data. Environ. Health 13, 43 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Trasande, L. et al. Phthalates and the diets of US children and adolescents. Environ. Res. 126, 84–90 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Hau, A. K., Kwan, T. H. & Li P. K. Melamine toxicity and the kidney. J. Am. Soc. Nephrol. 20, 245–250 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Skinner, C. G., Thomas, J. D. & Osterloh, J. D. Melamine toxicity. J. Med. Toxicol. 6, 50–55 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gossner, C. M. et al. The melamine incident: implications for international food and feed safety. Environ. Health Perspect. 117, 1803–1808 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guan, N. et al. Melamine-contaminated powdered formula and urolithiasis in young children. N. Engl. J. Med. 360, 1067–1074 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Yang, L. et al. Four years follow-up of 101 children with melamine-related urinary stones. Urolithiasis 41, 265–266 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, C. C. et al. Low exposure to melamine increases the risk of urolithiasis in adults. Kidney Int. 80, 746–752 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Schettler, T. Human exposure to phthalates via consumer products. Int. J. Androl. 29, 134–139 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Fromme, H. et al. Intake of phthalates and di(2-ethylhexyl)adipate: results of the Integrated Exposure Assessment Survey based on duplicate diet samples and biomonitoring data. Environ. Int. 33, 1012–1020 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Tickner, J. A., Schettler, T., Guidotti, T., McCally, M. & Rossi, M. Health risks posed by use of di-2-ethylhexyl phthalate (DEHP) in PVC medical devices: a critical review. Am. J. Ind. Med. 39, 100–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Sathyanarayana, S. et al. Unexpected results in a randomized dietary trial to reduce phthalate and bisphenol A exposures. J. Expo. Sci. Environ. Epidemiol. 23, 378–384 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Rudel, R. A. et al. Food packaging and bisphenol A and bis(2-ethyhexyl) phthalate exposure: findings from a dietary intervention. Environ. Health Perspect. 119, 914–920 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Su, P. H. et al. Exposure to di(2-ethylhexyl) phthalate in premature neonates in a neonatal intensive care unit in Taiwan. Pediatr. Crit. Care Med. 13, 671–677 (2012).

    Article  PubMed  Google Scholar 

  18. Kambia, K. et al. Comparative study of the leachability of di(2-ethylhexyl) phthalate and tri(2-ethylhexyl) trimellitate from haemodialysis tubing. Int. J. Pharm. 229, 139–146 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Faouzi, M. A. et al. Exposure of hemodialysis patients to di-2-ethylhexyl phthalate. Int. J. Pharm. 180, 113–121 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Pollack, G. M., Buchanan, J. F., Slaughter, R. L., Kohli, R. K. & Shen, D. D. Circulating concentrations of di(2-ethylhexyl) phthalate and its de-esterified phthalic acid products following plasticizer exposure in patients receiving hemodialysis. Toxicol. Appl. Pharmacol. 79, 257–267 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Wahl, H. G. et al. 4-Heptanone is a metabolite of the plasticizer di(2-ethylhexyl) phthalate (DEHP) in haemodialysis patients. Nephrol. Dial. Transplant. 19, 2576–2583 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Nassberger, L., Arbin, A. & Ostelius, J. Exposure of patients to phthalates from polyvinyl chloride tubes and bags during dialysis. Nephron 45, 286–290 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. Frederiksen, H. et al. Human urinary excretion of non-persistent environmental chemicals: an overview of Danish data collected between 2006 and 2012. Reproduction 147, 555–565 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Tremaine, L. M. & Quebbemann, A. J. The renal handling of terephthalic acid. Toxicol. Appl. Pharmacol. 77, 165–174 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. Frederiksen, H., Skakkebaek, N. E. & Andersson, A. M. Metabolism of phthalates in humans. Mol. Nutr. Food Res. 51, 899–911 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Hauser, R., Meeker, J. D., Park, S., Silva, M. J. & Calafat, A. M. Temporal variability of urinary phthalate metabolite levels in men of reproductive age. Environ. Health Perspect. 112, 1734–1740 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoppin, J. A., Brock, J. W., Davis, B. J. & Baird, D. D. Reproducibility of urinary phthalate metabolites in first morning urine samples. Environ. Health Perspect. 110, 515–518 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mes, J., Coffin, D. E. & Campbell, D. S. Di-n-butyl-and di-2-ethylhexyl phthalate in human adipose tissue. Bull. Environ. Contam. Toxicol. 12, 721–725 (1974).

    Article  CAS  PubMed  Google Scholar 

  29. Trasande, L., Sathyanarayana, S. & Trachtman, H. Dietary phthalates and low-grade albuminuria in US children and adolescents. Clin. J. Am. Soc. Nephrol. 9, 100–109 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Rais-Bahrami, K., Nunez, S., Revenis, M. E., Luban, N. L. & Short, B. L. Follow-up study of adolescents exposed to di(2-ethylhexyl) phthalate (DEHP) as neonates on extracorporeal membrane oxygenation (ECMO) support. Environ. Health Perspect. 112, 1339–1340 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Trasande, L. et al. Urinary phthalates are associated with higher blood pressure in childhood. J. Pediatr. 163, 747–753.e1 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lind, P. M., van Bavel, B., Salihovic, S. & Lind, L. Circulating levels of persistent organic pollutants (POPs) and carotid atherosclerosis in the elderly. Environ. Health Perspect. 120, 38–43 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Posnack, N. G., Lee, N. H., Brown, R. & Sarvazyan, N. Gene expression profiling of DEHP-treated cardiomyocytes reveals potential causes of phthalate arrhythmogenicity. Toxicology 279, 54–64 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Posnack, N. G., Swift, L. M., Kay, M. W., Lee, N. H. & Sarvazyan, N. Phthalate exposure changes the metabolic profile of cardiac muscle cells. Environ. Health Perspect. 120, 1243–1251 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Olsen, L., Lind, L. & Lind, P. M. Associations between circulating levels of bisphenol A and phthalate metabolites and coronary risk in the elderly. Ecotoxicol. Environ. Saf. 80, 179–183 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Olsen, L., Lampa, E., Birkholz, D. A., Lind, L. & Lind, P. M. Circulating levels of bisphenol A (BPA) and phthalates in an elderly population in Sweden, based on the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS). Ecotoxicol. Environ. Saf. 75, 242–248 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Kanno, Y., Okada, H., Kobayashi, T., Takenaka, T. & Suzuki, H. Effects of endocrine disrupting substance on estrogen receptor gene transcription in dialysis patients. Ther. Apher. Dial. 11, 262–265 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Shankar, A. & Teppala, S. Urinary bisphenol A and hypertension in a multiethnic sample of US adults. J. Environ. Public Health 2012, 481641 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. He, Y. et al. Bisphenol A levels in blood and urine in a Chinese population and the personal factors affecting the levels. Environ. Res. 109, 629–633 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Nelson, J. W., Scammell, M. K., Hatch, E. E. & Webster, T. F. Social disparities in exposures to bisphenol A and polyfluoroalkyl chemicals: a cross-sectional study within NHANES 2003–2006. Environ. Health 11, 10 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Murakami, K. et al. Accumulation of bisphenol A in hemodialysis patients. Blood Purif. 25, 290–294 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Gayrard, V. et al. High bioavailability of bisphenol A from sublingual exposure. Environ. Health Perspect. 121, 951–956 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Teeguarden, J. G. et al. 24-hour human urine and serum profiles of bisphenol A: evidence against sublingual absorption following ingestion in soup. Toxicol. Appl. Pharmacol. (2015).

  44. Fenichel, P., Chevalier, N. & Brucker-Davis, F. Bisphenol A: an endocrine and metabolic disruptor. Ann. Endocrinol. (Paris) 74, 211–220 (2013).

    Article  CAS  Google Scholar 

  45. Yang, X. & Fisher, J. W. Unraveling bisphenol A pharmacokinetics using physiologically based pharmacokinetic modeling. Front. Pharmacol. 5, 292 (2014).

    PubMed  Google Scholar 

  46. Sakamoto, H., Yokota, H., Kibe, R., Sayama, Y. & Yuasa, A. Excretion of bisphenol A-glucuronide into the small intestine and deconjugation in the cecum of the rat. Biochim. Biophys. Acta. 1573, 171–176 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Stahlhut, R. W., Welshons, W. V. & Swan, S. H. Bisphenol A data in NHANES suggest longer than expected half-life, substantial nonfood exposure, or both. Environ. Health Perspect. 117, 784–789 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Koch, H. M., Kolossa-Gehring, M., Schroter-Kermani, C., Angerer, J. & Bruning, T. Bisphenol A in 24 h urine and plasma samples of the German Environmental Specimen Bank from 1995 to 2009: a retrospective exposure evaluation. J. Expo. Sci. Environ. Epidemiol. 22, 610–616 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Kovacic, P. How safe is bisphenol A? Fundamentals of toxicity: metabolism, electron transfer and oxidative stress. Med. Hypotheses 75, 1–4 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Li, M. et al. Exposure to bisphenol A is associated with low-grade albuminuria in Chinese adults. Kidney Int. 81, 1131–1139 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Trasande, L., Attina, T. M. & Trachtman, H. Bisphenol A exposure is associated with low-grade urinary albumin excretion in children of the United States. Kidney Int. 83, 741–748 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McGinley, E. L. Summary of: dental composite materials and renal function in children. Br. Dent. J. 216, 80–81 (2014).

    Article  PubMed  Google Scholar 

  53. Trachtenberg, F. L., Shrader, P., Barregard, L. & Maserejian, N. N. Dental composite materials and renal function in children. Br. Dent. J. 216, E4 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Olea-Herrero, N. et al. Bisphenol-A induces podocytopathy with proteinuria in mice. J. Cell Physiol. (2014).

  55. You, L. et al. Renal function, bisphenol A, and alkylphenols: results from the National Health and Nutrition Examination Survey (NHANES 2003–2006). Environ. Health Perspect. 119, 527–533 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Ahmadkhaniha, R. et al. Association of urinary bisphenol a concentration with type-2 diabetes mellitus. J. Environ. Health Sci. Eng. 12, 64 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bae, S., Kim, J. H., Lim, Y. H., Park, H. Y. & Hong, Y. C. Associations of bisphenol A exposure with heart rate variability and blood pressure. Hypertension 60, 786–793 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Khalil, N. et al. Bisphenol A and cardiometabolic risk factors in obese children. Sci. Total Environ. 470–471, 726–32 (2014).

    Article  PubMed  CAS  Google Scholar 

  59. Bae, S. & Hong, Y. C. Exposure to bisphenol A from drinking canned beverage increases blood pressure: randomized crossover trial. Hypertension 65, 313–319 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Melzer, D. et al. Urinary bisphenol A concentration and risk of future coronary artery disease in apparently healthy men and women. Circulation 125, 1482–1490 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Shankar, A., Teppala, S. & Sabanayagam, C. Bisphenol A and peripheral arterial disease: results from the NHANES. Environ. Health Perspect. 120, 1297–1300 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  62. LaKind, J. S., Goodman, M. & Naiman, D. Q. Use of NHANES data to link chemical exposures to chronic diseases: a cautionary tale. PLoS ONE 7, e51086 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lind, L. & Lind, P. M. Can persistent organic pollutants and plastic-associated chemicals cause cardiovascular disease? J. Intern. Med. 271, 537–553 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Trudel, D. et al. Estimating Consumer Exposure to PFOS and PFOA. Risk Analysis 28, 251–269 (2008).

    Article  PubMed  Google Scholar 

  65. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicology Profiles [online], (2015).

  66. Calafat, A. M., Wong, L.-Y., Kuklenyik, Z., Reidy, J. A. & Needham, L. L. Polyfluoroalkyl chemicals in the US population: data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and Comparisons with NHANES 1999–2000. Environ. Health Perspect. 115, 1596–1602 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ji, K. et al. Major perfluoroalkyl acid (PFAA) concentrations and influence of food consumption among the general population of Daegu, Korea. Sci. Total Environ. 438, 42–48 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. US Environmental Protection Agency. Long-chain perfluorinated chemicals (PFCs) action plan. [online] (2009).

  69. Wen, L. L., Lin, L. Y., Su, T. C., Chen, P. C. & Lin, C. Y. Association between serum perfluorinated chemicals and thyroid function in U. S. adults: the National Health and Nutrition Examination Survey 2007–2010. J. Clin. Endocrinol. Metab. 98, E1456–E1464 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Glynn, A. et al. Perfluorinated alkyl acids in blood serum from primiparous women in Sweden: serial sampling during pregnancy and nursing, and temporal trends 1996–2010. Environ. Sci. Technol. 46, 9071–9079 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Perez, F. et al. Accumulation of perfluoroalkyl substances in human tissues. Environ. Int. 59, 354–362 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Krafft, M. P. & Riess, J. G. Highly fluorinated amphiphiles and colloidal systems, and their applications in the biomedical field. A contribution. Biochimie 80, 489–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Andersen, M. E. et al. Perfluoroalkyl acids and related chemistries—toxicokinetics and modes of action. Toxicol. Sci. 102, 3–14 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Ohmori, K., Kudo, N., Katayama, K. & Kawashima, Y. Comparison of the toxicokinetics between perfluorocarboxylic acids with different carbon chain length. Toxicology 184, 135–140 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Kudo, N. & Kawashima, Y. Toxicity and toxicokinetics of perfluorooctanoic acid in humans and animals. J. Toxicol. Sci. 28, 49–57 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Seals, R., Bartell, S. M. & Steenland, K. Accumulation and clearance of perfluorooctanoic acid (PFOA) in current and former residents of an exposed community. Environ. Health Perspect. 119, 119–124 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Olsen, G. W. et al. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ. Health Perspect. 115, 1298–1305 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shankar, A., Xiao, J. & Ducatman, A. Perfluoroalkyl chemicals and chronic kidney disease in US adults. Am. J. Epidemiol. 174, 893–900 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Watkins, D. J. et al. Exposure to perfluoroalkyl acids and markers of kidney function among children and adolescents living near a chemical plant. Environ. Health Perspect. 121, 625–630 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Cui, L., Zhou, Q. F., Liao, C. Y., Fu, J. J. & Jiang, G. B. Studies on the toxicological effects of PFOA and PFOS on rats using histological observation and chemical analysis. Arch. Environ. Contam. Toxicol. 56, 338–349 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Geiger, S. D., Xiao, J. & Shankar, A. No association between perfluoroalkyl chemicals and hypertension in children. Integr. Blood Press. Control 7, 1–7 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Shankar, A., Xiao, J. & Ducatman, A. Perfluoroalkyl chemicals and elevated serum uric acid in US adults. Clin. Epidemiol. 3, 251–258 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Geiger, S. D., Xiao, J. & Shankar, A. Positive association between perfluoroalkyl chemicals and hyperuricemia in children. Am. J. Epidemiol. 177, 1255–1262 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  84. US Environmental Protection Agency. EPA's reanalysis of key issues related to dioxin toxicity and response to NAS comments, volume 1. [online] (2012).

  85. Milbrath, M. O. G. et al. Apparent half-lives of dioxins, furans, and polychlorinated biphenyls as a function of age, body fat, smoking status, and breast-feeding. Environ. Health Perspect. 117, 417–425 (2009).

    Article  PubMed  CAS  Google Scholar 

  86. International Agency for Research on Cancer. Chemical agents and related occupations: 2, 3, 7, 8 tetrachlorodibenzo- para-dioxin, 2, 3, 4, 7, 8-pentachlorodibenzofuran, and 3, 3, 4, 4'5-pentachlorobiphenyl. IARC Monogr. Eval. Carcinog. Risks Hum. 100F, 339–378 (2012).

  87. Rocas, M., Jakubauskiene, E. & Kanopka, A. Polymorphism of the aryl-hydrocarbon receptor gene in intron 10 of human cancers. Braz. J. Med. Biol. Res. 44, 1112–1117 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Heid, S. E., Walker, M. K. & Swanson, H. I. Correlation of cardiotoxicity mediated by halogenated aromatic hydrocarbons to aryl hydrocarbon receptor activation. Toxicol. Sci. 61, 187–196 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. McGee, S. P., Konstantinov, A., Stapleton, H. M. & Volz, D. C. Aryl phosphate esters within a major pentaBDE replacement product induce cardiotoxicity in developing zebrafish embryos: potential role of the aryl hydrocarbon receptor. Toxicol. Sci. 133, 144–156 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. van Ede, K. I., Gaisch, K. P., van den Berg, M. & van Duursen, M. B. Differential relative effect potencies of some dioxin-like compounds in human peripheral blood lymphocytes and murine splenic cells. Toxicol. Lett. 226, 43–52 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Kitamura, K. et al. Dioxins in bile in relation to those in the human liver and blood. J. Toxicol. Sci. 26, 327–336 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Antkiewicz, D. S., Peterson, R. E. & Heideman, W. Blocking expression of AHR2 and ARNT1 in zebrafish larvae protects against cardiac toxicity of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Toxicol. Sci. 94, 175–182 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Everett, C. J. & Thompson, O. M. Dioxins, furans and dioxin-like PCBs in human blood: causes or consequences of diabetic nephropathy? Environ. Res. 132, 126–131 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Chang, J. W., Ou, H. Y., Chen, H. L., Su, H. J. & Lee, C. C. Hyperuricemia after exposure to polychlorinated dibenzo-p-dioxins and dibenzofurans near a highly contaminated area. Epidemiology 24, 582–589 (2013).

    Article  PubMed  Google Scholar 

  95. Ha, M. H., Lee, D. H., Son, H. K., Park, S. K. & Jacobs, D. R. Jr. Association between serum concentrations of persistent organic pollutants and prevalence of newly diagnosed hypertension: results from the National Health and Nutrition Examination Survey 1999–2002. J. Hum. Hypertens. 23, 274–286 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Chang, J. W. et al. Interrelationship between exposure to PCDD/Fs and hypertension in metabolic syndrome in Taiwanese living near a highly contaminated area. Chemosphere 81, 1027–1032 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Karouna-Renier, N. K., Rao, K. R., Lanza, J. J., Davis, D. A. & Wilson, P. A. Serum profiles of PCDDs and PCDFs, in individuals near the Escambia Wood Treating Company Superfund site in Pensacola, FL. Chemosphere 69, 1312–1319 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Lee, D. H., Lee, I. K., Porta, M., Steffes, M. & Jacobs, D. R. Jr. Relationship between serum concentrations of persistent organic pollutants and the prevalence of metabolic syndrome among non-diabetic adults: results from the National Health and Nutrition Examination Survey 1999–2002. Diabetologia 50, 1841–1851 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Nakamoto, M. et al. Association between blood levels of PCDDs/PCDFs/dioxin-like PCBs and history of allergic and other diseases in the Japanese population. Int. Arch. Occup. Environ. Health 86, 849–859 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Uemura, H. et al. Prevalence of metabolic syndrome associated with body burden levels of dioxin and related compounds among Japan's general population. Environ. Health Perspect. 117, 568–573 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Kitamura, K. et al. Health effects of chronic exposure to polychlorinated dibenzo-P-dioxins (PCDD), dibenzofurans (PCDF) and coplanar PCB (Co-PCB) of municipal waste incinerator workers. J. Epidemiol. 10, 262–270 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Lee, Y. M., Bae, S. G., Lee, S. H., Jacobs, D. R. Jr & Lee, D. H. Persistent organic pollutants and hyperuricemia in the U.S. general population. Atherosclerosis 230, 1–5 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Agency for Toxic Substances and Disease Registry. Public Health Statement: polycyclic aromatic hydrocarbons (PAHs). [online] (1995).

  104. Fang, G. C., Wu, Y. S., Fu, P. P., Yang, I. L. & Chen, M. H. Polycyclic aromatic hydrocarbons in the ambient air of suburban and industrial regions of central Taiwan. Chemosphere 54, 443–452 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Harvey, R. G., Dai, Q., Ran, C. & Penning, T. M. Synthesis of the o-quinones and other oxidized metabolites of polycyclic aromatic hydrocarbons implicated in carcinogenesis. J. Org. Chem. 69, 2024–2032 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Garcia-Canton, C., Anadon, A. & Meredith, C. Genotoxicity evaluation of individual cigarette smoke toxicants using the in vitro gammaH2AX assay by high content screening. Toxicol. Lett. 223, 81–7 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Tonne, C. C., Whyatt, R. M., Camann, D. E., Perera, F. P. & Kinney, P. L. Predictors of personal polycyclic aromatic hydrocarbon exposures among pregnant minority women in New York City. Environ. Health Perspect. 112, 754–759 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jung, K. H. et al. Time trends of polycyclic aromatic hydrocarbon exposure in New York City from 2001 to 2012: assessed by repeat air and urine samples. Environ. Res. 131, 95–103 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sultana, S. et al. Association of CYP1A1 Gene Polymorphism with Ischemic Stroke in South Indian Population. Trans. Stroke Res. 2, 26–32 (2011).

    Article  Google Scholar 

  110. Nerurkar, P. V. et al. CYP1A1, GSTM1, and GSTP1 genetic polymorphisms and urinary 1-hydroxypyrene excretion in non-occupationally exposed individuals. Cancer Epidemiol. Biomarkers Prev. 9, 1119–1122 (2000).

    CAS  PubMed  Google Scholar 

  111. Tas, S., Buchet, J. P. & Lauwerys, R. Determinants of benzo[a]pyrene diol epoxide adducts to albumin in workers exposed to polycyclic aromatic hydrocarbons. Int. Archives Occup. Environ. Health 66, 343–348 (1994).

    Article  CAS  Google Scholar 

  112. Tuominen, R. et al. Susceptibility factors and DNA adducts in peripheral blood mononuclear cells of aluminium smelter workers exposed to polycyclic aromatic hydrocarbons. Arch. Toxicol. 76, 178–186 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Everett, C. J. et al. Association of urinary polycyclic aromatic hydrocarbons and serum C-reactive protein. Environ. Res. 110, 79–82 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Hansson, G. K., Robertson, A. K. & Soderberg-Naucler, C. Inflammation and atherosclerosis. Annu. Rev. Pathol. 1, 297–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Voice, T. C. et al. Evaluation of the hypothesis that Balkan endemic nephropathy is caused by drinking water exposure to contaminants leaching from Pliocene coal deposits. J. Expo. Sci. Environ. Epidemiol. 16, 515–524 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Stefanovic, V. Balkan endemic nephropathy: a need for novel aetiological approaches. QJM 91, 457–463 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Stefanovic, V., Cukuranovic, R., Miljkovic, S., Marinkovic, D. & Toncheva, D. Fifty years of Balkan endemic nephropathy: challenges of study using epidemiological method. Ren. Fail. 31, 409–418 (2009).

    Article  PubMed  Google Scholar 

  118. Stefanovic, V., Toncheva, D., Atanasova, S. & Polenakovic, M. Etiology of Balkan endemic nephropathy and associated urothelial cancer. Am. J. Nephrol. 26, 1–11 (2006).

    Article  PubMed  Google Scholar 

  119. Jacobs, L. et al. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons. Environ. Res. 117, 60–67 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. McFarland, V. A. & Clarke, J. U. Environmental occurrence, abundance, and potential toxicity of polychlorinated biphenyl congeners: considerations for a congener-specific analysis. Environ. Health Perspect. 81, 225–239 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sjodin, A. et al. Polybrominated diphenyl ethers, polychlorinated biphenyls, and persistent pesticides in serum from the national health and nutrition examination survey: 2003–2008. Environ. Sci. Technol. 48, 753–60 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Kreiss, K. Studies on populations exposed to polychlorinated biphenyls. Environ. Health Perspect. 60, 193–199 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kreiss, K. et al. Association of blood pressure and polychlorinated biphenyl levels. JAMA 245, 2505–2509 (1981).

    Article  CAS  PubMed  Google Scholar 

  124. Agency for Toxic Substances and Disease Registry. Toxicological Profile for Polychlorinated Biphenyls (PCBs). [online] (2000).

  125. Megson, D. et al. Elucidating the structural properties that influence the persistence of PCBs in humans using the National Health and Nutrition Examination Survey (NHANES) dataset. Sci. Total Environ. 461–462, 99–107 (2013).

    Article  PubMed  CAS  Google Scholar 

  126. Ludewig, G., Lehmann, L., Esch, H. & Robertson, L. W. Metabolic activation of PCBs to carcinogens in vivo—a review. Environ. Toxicol. Pharmacol. 25, 241–246 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Baker, E. L. Jr. et al. Metabolic consequences of exposure to polychlorinated biphenyls (PCB) in sewage sludge. Am. J. Epidemiol. 112, 553–563 (1980).

    Article  PubMed  Google Scholar 

  128. Goncharov, A., Bloom, M., Pavuk, M., Birman, I. & Carpenter, D. O. Blood pressure and hypertension in relation to levels of serum polychlorinated biphenyls in residents of Anniston, Alabama. J. Hypertens. 28, 2053–2060 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Goncharov, A., Pavuk, M., Foushee, H. R. & Carpenter, D. O. Blood pressure in relation to concentrations of PCB congeners and chlorinated pesticides. Environ. Health Perspect. 119, 319–325 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Everett, C. J., Mainous, A. G. 3rd, Frithsen, I. L., Player, M. S. & Matheson, E. M. Commentary on the association of polychlorinated biphenyls with hypertension. Environ. Res. 108, 428–429 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Yorita Christensen, K. L. & White, P. A methodological approach to assessing the health impact of environmental chemical mixtures: PCBs and hypertension in the National Health and Nutrition Examination Survey. Int. J. Environ. Res. Public Health 8, 4220–4237 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lind, P. M., Penell, J., Salihovic, S., van Bavel, B. & Lind, L. Circulating levels of p,p'-DDE are related to prevalent hypertension in the elderly. Environ. Res. 129, 27–31 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Sjoberg Lind, Y., Lind, P. M., Salihovic, S., van Bavel, B. & Lind, L. Circulating levels of persistent organic pollutants (POPs) are associated with left ventricular systolic and diastolic dysfunction in the elderly. Environ. Res. 123, 39–45 (2013).

    Article  PubMed  CAS  Google Scholar 

  134. Peters, J. L., Patricia Fabian, M. & Levy, J. I. Combined impact of lead, cadmium, polychlorinated biphenyls and non-chemical risk factors on blood pressure in NHANES. Environ. Res. 132c, 93–99 (2014).

    Article  CAS  Google Scholar 

  135. Valera, B., Ayotte, P., Poirier, P. & Dewailly, E. Associations between plasma persistent organic pollutant levels and blood pressure in Inuit adults from Nunavik. Environ. Int. 59, 282–289 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Valera, B., Jorgensen, M. E., Jeppesen, C. & Bjerregaard, P. Exposure to persistent organic pollutants and risk of hypertension among Inuit from Greenland. Environ. Res. 122, 65–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Imamura, T. et al. Cutaneous symptoms such as acneform eruption and pigmentation are closely associated with blood levels of 2, 3, 4, 7, 8-penta-chlorodibenzofurans in Yusho patients, using data mining analysis. BMC Res. Notes 2, 27 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Correa-Rotter, R., Wesseling, C. & Johnson, R. J. CKD of unknown origin in Central America: the case for a Mesoamerican nephropathy. Am. J. Kidney Dis. 63, 506–520 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Weiner, D. E., McClean, M. D., Kaufman, J. S. & Brooks, D. R. The Central American epidemic of CKD. Clin. J. Am. Soc. Nephrol. 8, 504–511 (2013).

    Article  PubMed  Google Scholar 

  140. Nanayakkara, S. et al. Tubulointerstitial damage as the major pathological lesion in endemic chronic kidney disease among farmers in North Central Province of Sri Lanka. Environ. Health Prev. Med. 17, 213–221 (2012).

    Article  PubMed  Google Scholar 

  141. Jayasumana, C., Gajanayake, R. & Siribaddana, S. Importance of arsenic and pesticides in epidemic chronic kidney disease in Sri Lanka. BMC Nephrol. 15, 124 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Jayatilake, N., Mendis, S., Maheepala, P. & Mehta, F. R. Chronic kidney disease of uncertain aetiology: prevalence and causative factors in a developing country. BMC Nephrol. 14, 180 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Johnson, R. J. et al. Hyperosmolarity drives hypertension and CKD—water and salt revisited. Nat. Rev. Nephrol. 10, 415–420 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Ordunez, P. et al. Chronic kidney disease epidemic in Central America: urgent public health action is needed amid causal uncertainty. PLoS Negl. Trop. Dis. 8, e3019 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ehrlich, S., Calafat, A. M., Humblet, O., Smith, T. & Hauser, R. Handling of thermal receipts as a source of exposure to bisphenol A. JAMA 311, 859–860 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ramirez-Sandoval, J. C. et al. Urinary neutrophil gelatinase-associated lipocalin predicts graft loss after acute kidney injury in kidney transplant. Biomarkers 19, 63–69 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Gluhovschi, G. et al. Familial versus environmental factors in Balkan endemic nephropathy in Mehedinti county, Romania, by means of albuminuria and tubular biomarkers: preliminary study. Ren. Fail. 37, 219–224 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Pickering, J. W. & Endre, Z. H. Acute kidney injury urinary biomarker time-courses. PLoS One 9, e101288 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Sabbisetti, V. S. et al. Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J. Am. Soc. Nephrol. 25, 2177–2186 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Weaver, V. M., Kotchmar, D. J., Fadrowski, J. J. & Silbergeld, E. K. Challenges for environmental epidemiology research: are biomarker concentrations altered by kidney function or urine concentration adjustment? J. Expo. Sci. Environ. Epidemiol. http://dx.doi.org/10.1038/jes.2015.8.

  151. Suliman, M. et al. The reverse epidemiology of plasma total homocysteine as a mortality risk factor is related to the impact of wasting and inflammation. Nephrol. Dial. Transplant. 22, 209–217 (2007).

    Article  PubMed  Google Scholar 

  152. Alberti, K. G. M. M. et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120, 1640–1645 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Singh, U. & Jialal, I. Oxidative stress and atherosclerosis. Pathophysiology 13, 129–142 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Harrison, D., Griendling, K. K., Landmesser, U., Hornig, B. & Drexler, H. Role of oxidative stress in atherosclerosis. Am. J. Cardiol. 91, 7–11 (2003).

    Article  Google Scholar 

  155. Marshall, C. B., Pippin, J. W., Krofft, R. D. & Shankland, S. J. Puromycin aminonucleoside induces oxidant-dependent DNA damage in podocytes in vitro and in vivo. Kidney Int. 70, 1962–1973 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Piwkowska, A., Rogacka, D., Jankowski, M., Kocbuch, K. & Angielski, S. Hydrogen peroxide induces dimerization of protein kinase G type Iα subunits and increases albumin permeability in cultured rat podocytes. J. Cell. Physiol. 227, 1004–1016 (2012).

    Article  CAS  PubMed  Google Scholar 

  157. Barisoni, L., Schnaper, H. W. & Kopp, J. B. A proposed taxonomy for the podocytopathies: a reassessment of the primary nephrotic diseases. Clin. J. Am. Soc. Nephrol. 2, 529–542 (2007).

    Article  PubMed  Google Scholar 

  158. Nath, K. A. Tubulointerstitial changes as a major determinant in the progression of renal damage. Am. J. Kidney Dis. 20, 1–17 (1992).

    Article  CAS  PubMed  Google Scholar 

  159. Everett, C. J., Mainous, A. G. 3rd, Frithsen, I. L., Player, M. S. & Matheson, E. M. Association of polychlorinated biphenyls with hypertension in the 1999–2002 National Health and Nutrition Examination Survey. Environ. Res. 108, 94–97 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. US Environmental Protection Agency. Bisphenol A (BPA) action plan summary. [online], (2013).

  161. Hasselberg, L., Meier, S. & Svardal, A. Effects of alkylphenols on redox status in first spawning Atlantic cod (Gadus morhua). Aquat. Toxicol. 69, 95–105 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Atkinson, A. & Roy, D. In vivo DNA adduct formation by bisphenol A. Environ. Mol. Mutag. 26, 60–66 (1995).

    Article  CAS  Google Scholar 

  163. Hugo, E. R. et al. Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ. Health Perspect. 116, 1642–1647 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Jepsen, K. F., Abildtrup, A. & Larsen, S. T. Monophthalates promote IL-6 and IL-8 production in the human epithelial cell line A549. Toxicol. In Vitro 18, 265–269 (2004).

    Article  CAS  PubMed  Google Scholar 

  165. Gourlay, T., Samartzis, I., Stefanou, D. & Taylor, K. Inflammatory response of rat and human neutrophils exposed to di-(2-ethyl-hexyl)-phthalate-plasticized polyvinyl chloride. Artif. Organs 27, 256–260 (2003).

    Article  CAS  PubMed  Google Scholar 

  166. Ferguson, K. K., Loch-Caruso, R. & Meeker, J. D. Urinary phthalate metabolites in relation to biomarkers of inflammation and oxidative stress: NHANES 1999–2006. Environ. Res. 111, 718–726 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sowers, J. R., Whaley-Connell, A. & Hayden, M.R. The role of overweight and obesity in the cardiorenal syndrome. Cardiorenal Med. 1, 5–12 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Qian, Y. et al. Perfluorooctane sulfonate (PFOS) induces reactive oxygen species (ROS) production in human microvascular endothelial cells: role in endothelial permeability. J. Toxicol. Environ. Res. Health 73, 819–836 (2010).

    Article  CAS  Google Scholar 

  169. Sutton, T. A. et al. Injury of the renal microvascular endothelium alters barrier function after ischemia. Am. J. Physiol. Renal Physiol. 285, F191–F198 (2003).

    Article  CAS  PubMed  Google Scholar 

  170. Albina, M. L. et al. Effects of exposure to BDE-99 on oxidative status of liver and kidney in adult rats. Toxicology 271, 51–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  171. Araujo, J. A., Barajas, B., Kleinman, M. et al. Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circ. Res. 102, 589–596 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Chuang, H.-C., Fan, C.-W., Chen K.-Y., Chang-Chien, G.-P. & Chan, C.-C. Vasoactive alteration and inflammation induced by polycyclic aromatic hydrocarbons and trace metals of vehicle exhaust particles. Toxicol. Lett. 214, 131–136 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. Singh, U. & Jialal, I. Oxidative stress and atherosclerosis. Pathophysiology 13, 129–142 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. Harrison, D., Griendling, K. K., Landmesser, U., Hornig, B. & Drexler H. Role of oxidative stress in atherosclerosis. Am. J. Cardiol. 91, 7–11 (2003).

    Article  Google Scholar 

  175. Barker, D. J., Godfrey, K. M., Osmond, C. & Bull, A. The relation of fetal length, ponderal index and head circumference to blood pressure and the risk of hypertension in adult life. Paediatr. Perinat. Epidemiol. 6, 35–44 (1992).

    Article  CAS  PubMed  Google Scholar 

  176. Barker, D. J., Osmond, C., Forsen, T. J., Kajantie, E. & Eriksson, J. G. Trajectories of growth among children who have coronary events as adults. N. Engl. J. Med. 353, 1802–1809 (2005).

    Article  CAS  PubMed  Google Scholar 

  177. Barker, D. J. The fetal and infant origins of adult disease. BMJ 301, 1111 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Barker, D. J. & Osmond, C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1, 1077–1081 (1986).

    Article  CAS  PubMed  Google Scholar 

  179. Zhang, Y. et al. Phthalate levels and low birth weight: a nested case-control study of chinese newborns. J. Pediatr. 155, 500–504 (2009).

    Article  CAS  PubMed  Google Scholar 

  180. Snijder, C. A. et al. Fetal growth and prenatal exposure to bisphenol A: the generation R study. Environ. Health Perspect. 121, 393–398 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Gascon, M. et al. Prenatal exposure to bisphenol A and phthalates and childhood respiratory tract infections and allergy. J. Allergy Clin. Immunol. (2014).

  182. Whyatt, R. M. et al. Maternal prenatal urinary phthalate metabolite concentrations and child mental, psychomotor, and behavioral development at 3 years of age. Environ. Health Perspect. 120, 290–295 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Perera, F. P. et al. Prenatal polycyclic aromatic hydrocarbon (PAH) exposure and child behavior at age 6–7 years. Environ. Health Perspect. 120, 921–926 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Olsen, G. W., Butenhoff, J. L. & Zobel, L. R. Perfluoroalkyl chemicals and human fetal development: an epidemiologic review with clinical and toxicological perspectives. Reprod. Toxicol. 27, 212–230 (2009).

    Article  CAS  PubMed  Google Scholar 

  185. Schmieder, R. E. et al. Low-grade albuminuria and cardiovascular risk: what is the evidence? Clin. Res. Cardiol. 96, 247–257 (2007).

    Article  CAS  PubMed  Google Scholar 

  186. DeBosch, B. J., Kluth, O., Fujiwara, H., Schurmann, A. & Moley, K. Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter SLC2A9. Nat. Commun. 5, 4642 (2014).

    Article  CAS  PubMed  Google Scholar 

  187. Trasande, L. & Liu, Y. Reducing the staggering costs of environmental disease in children, estimated at $76.6 billion in 2008. Health Aff. (Millwood) 30, 863–70 (2011).

    Article  Google Scholar 

  188. Trasande, L. et al. How developing nations can protect children from hazardous chemical exposures while sustaining economic growth. Health Aff. (Millwood) 30, 2400–2409 (2011).

    Article  Google Scholar 

  189. Trasande, L. Further limiting bisphenol a in food uses could provide health and economic benefits. Health Aff. (Millwood) 33, 316–323 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The preparation of this review was supported in part by an NIH-NIDDK grant (number DK100307) awarded to L.T. and H.T., and an NIH–NIEHS grant (number ES022972) awarded to L.T. The authors would like to thank Judy Chen, Bryn Mawr College, Bryn Mawr, PA, USA for her assistance in finalizing the literature review that was conducted for preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data, provided substantial contribution to discussion of content and contributed equally to writing the article and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Howard Trachtman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Molecular structures of environmental chemicals. (PDF 930 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kataria, A., Trasande, L. & Trachtman, H. The effects of environmental chemicals on renal function. Nat Rev Nephrol 11, 610–625 (2015). https://doi.org/10.1038/nrneph.2015.94

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.94

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing