Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Prostate cancer: is it time to expand the research focus to early-life exposures?

An Erratum to this article was published on 12 April 2013

This article has been updated

Abstract

Although the contribution of lifestyle and environment (non-genetic factors) to prostate carcinogenesis is indicated by international variation in prostate cancer occurrence and migration studies, no conclusive modifiable risk factors have yet been identified. One possible reason for this may be the dearth of epidemiological research on exposures experienced early in life, when the immature prostate may be more susceptible to carcinogenic exposures. In this Opinion article, we summarize the rationale for studying early-life exposures, describe the small body of early-life research and its associated challenges, and point to solutions for future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prostate development and pathology across the life span.
Figure 2: Meta-analysis of the relationship between height and prostate cancer risk.
Figure 3: The association between early-adulthood BMI and prostate cancer risk.
Figure 4: Bacterial isolates in non-sexually active and sexually active adolescent boys.
Figure 5: Epidemiological analyses of suspected dietary risk factors and prostate cancer.
Figure 6: Future directions for early-life aetiological studies of prostate cancer.

Similar content being viewed by others

Change history

  • 12 April 2013

    In Figure 1, parts a and b, the text annotation should have read "No studies of prostate lesions" and "No evidence of prostate lesions", respectively. This has been corrected online.

References

  1. American Cancer Society. Global Cancer Facts & Figures 2nd edn (American Cancer Society, 2011).

  2. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 62, 10–29 (2012).

    Article  PubMed  Google Scholar 

  3. Gronberg, H. Prostate cancer epidemiology. Lancet 361, 859–864 (2003).

    Article  PubMed  Google Scholar 

  4. Kim, S. T. et al. Prostate cancer risk-associated variants reported from genome-wide association studies: meta-analysis and their contribution to genetic variation. Prostate 70, 1729–1738 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hsing, A. W., Tsao, L. & Devesa, S. S. International trends and patterns of prostate cancer incidence and mortality. Int. J. Cancer 85, 60–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Lippman, S. M. et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 301, 39–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Gaziano, J. M. et al. Vitamins E and C in the prevention of prostate and total cancer in men: the Physicians' Health Study II randomized controlled trial. JAMA 301, 52–62 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Humphrey, P. A. in Prostate Pathology 2–29 (American Society for Clinical Pathology, 2003).

    Google Scholar 

  9. Marshall, W. A. & Tanner, J. M. in Human Growth: Postnatal Growth, Neurobiology (eds Falkner, F. & Tanner, J. M.) 171–209 (Plennum, 1986).

    Book  Google Scholar 

  10. Ross, R. et al. Serum testosterone levels in healthy young black and white men. J. Natl Cancer Inst. 76, 45–48 (1986).

    CAS  PubMed  Google Scholar 

  11. Rotkin, I. D. Studies in the epidemiology of prostatic cancer: expanded sampling. Cancer Treat. Rep. 61, 173–180 (1977).

    CAS  PubMed  Google Scholar 

  12. Andersson, S. O. et al. Early life risk factors for prostate cancer: a population-based case-control study in Sweden. Cancer Epidemiol. Biomarkers Prev. 4, 187–192 (1995).

    CAS  PubMed  Google Scholar 

  13. Chodosh, L. A. et al. Mammary gland development, reproductive history, and breast cancer risk. Cancer Res 59, 1765s–1772s (1999).

    CAS  Google Scholar 

  14. United Nations Scientific Committee on the Effects of Atomic Radiation. Effects of Ionizing Radiation. UNSCEAR 2006 Report. Vol 1 (2008).

  15. Radiation Effects Research Foundation. A Cooperative Japan-US Research Organization. [online] (2012).

  16. Diamandis, E. P. & Yu, H. Does prostate cancer start at puberty? J. Clin. Lab. Anal. 10, 468–469 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Gardner, W. A. Jr & Culberson, D. E. Atrophy and proliferation in the young adult prostate. J. Urol. 137, 53–56 (1987).

    Article  PubMed  Google Scholar 

  18. De Marzo, A. M. et al. Inflammation in prostate carcinogenesis. Nature Rev. Cancer 7, 256–269 (2007).

    Article  CAS  Google Scholar 

  19. Jackson, M. A. et al. Factors involved in the high incidence of prostatic cancer among American blacks. Prog. Clin. Biol. Res. 53, 111–132 (1981).

    CAS  PubMed  Google Scholar 

  20. Sakr, W. A., Haas, G. P., Cassin, B. F., Pontes, J. E. & Crissman, J. D. The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients. J. Urol. 150, 379–385 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Sakr, W. A. et al. High grade prostatic intraepithelial neoplasia (HGPIN) and prostatic adenocarcinoma between the ages of 20-69: an autopsy study of 249 cases. In Vivo 8, 439–443 (1994).

    CAS  PubMed  Google Scholar 

  22. Gu, F. L., Xia, T. L. & Kong, X. T. Preliminary study of the frequency of benign prostatic hyperplasia and prostatic cancer in China. Urology 44, 688–691 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Sanchez-Chapado, M., Olmedilla, G., Cabeza, M., Donat, E. & Ruiz, A. Prevalence of prostate cancer and prostatic intraepithelial neoplasia in Caucasian Mediterranean males: an autopsy study. Prostate 54, 238–247 (2003).

    Article  PubMed  Google Scholar 

  24. Yin, M., Bastacky, S., Chandran, U., Becich, M. J. & Dhir, R. Prevalence of incidental prostate cancer in the general population: a study of healthy organ donors. J. Urol. 179, 892–895 (2008).

    Article  PubMed  Google Scholar 

  25. Humphrey, P. A. in Prostate Pathology 226–257 (American Society for Clinical Pathology, 2003).

    Google Scholar 

  26. Nomura, A. M. & Kolonel, L. N. Prostate cancer: a current perspective. Epidemiol. Rev. 13, 200–227 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Preston, D. M. et al. Prostate-specific antigen levels in young white and black men 20 to 45 years old. Urology 56, 812–816 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Whittemore, A. S., Cirillo, P. M., Feldman, D. & Cohn, B. A. Prostate specific antigen levels in young adulthood predict prostate cancer risk: results from a cohort of Black and White Americans. J. Urol. 174, 872–876 (2005).

    Article  PubMed  Google Scholar 

  29. Oesterling, J. E. Prostate specific antigen: a critical assessment of the most useful tumor marker for adenocarcinoma of the prostate. J. Urol. 145, 907–923 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Lee, Y. S. & Shanmugaratnam, K. Latent prostate carcinoma in Singapore Chinese. Singapore Med. J. 13, 1–6 (1972).

    CAS  PubMed  Google Scholar 

  31. Shiraishi, T. et al. The frequency of latent prostatic carcinoma in young males: the Japanese experience. In Vivo 8, 445–447 (1994).

    CAS  PubMed  Google Scholar 

  32. Miller, G. J., Pfister, S., Xia, T. & Zhau, H. E. Latent carcinomas of the prostate in males from Beijing. J. Urol. 151, A204 (1994).

    Article  Google Scholar 

  33. Magi-Galluzzi, C. et al. The prevalence and extent of autopsy prostate cancer is less in South East Asian men than North American men. J. Urol. 171, 118 (2004).

    Article  Google Scholar 

  34. Soos, G. et al. The prevalence of prostate carcinoma and its precursor in Hungary: an autopsy study. Eur. Urol. 48, 739–744 (2005).

    Article  PubMed  Google Scholar 

  35. Stamatiou, K., Alevizos, A., Agapitos, E. & Sofras, F. Incidence of impalpable carcinoma of the prostate and of non-malignant and precarcinomatous lesions in Greek male population: an autopsy study. Prostate 66, 1319–1328 (2006).

    Article  PubMed  Google Scholar 

  36. Sutcliffe, S. et al. Prostate-specific antigen concentration in young men: new estimates and review of the literature. BJU Int. 110, 1627–1635 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Lilja, H. et al. Prediction of significant prostate cancer diagnosed 20 to 30 years later with a single measure of prostate-specific antigen at or before age 50. Cancer 117, 1210–1219 (2011).

    Article  PubMed  Google Scholar 

  38. Howlader, N. et al. SEER Cancer Statistics Review, 1975–2009 (Vintage 2009 Populations). National Cancer Institute Surveillance Epidemiology and End Results [online] (2012).

    Google Scholar 

  39. Fang, J. et al. Low levels of prostate-specific antigen predict long-term risk of prostate cancer: results from the Baltimore Longitudinal Study of Aging. Urology 58, 411–416 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Antenor, J. A., Han, M., Roehl, K. A., Nadler, R. B. & Catalona, W. J. Relationship between initial prostate specific antigen level and subsequent prostate cancer detection in a longitudinal screening study. J. Urol. 172, 90–93 (2004).

    Article  PubMed  Google Scholar 

  41. Connolly, D., Black, A., Gavin, A., Keane, P. F. & Murray, L. J. Baseline prostate-specific antigen level and risk of prostate cancer and prostate-specific mortality: diagnosis is dependent on the intensity of investigation. Cancer Epidemiol. Biomarkers Prev. 17, 271–278 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Holmstrom, B. et al. Prostate specific antigen for early detection of prostate cancer: longitudinal study. BMJ 339, b3537 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tang, P. et al. Initial prostate specific antigen 1.5 ng/ml or greater in men 50 years old or younger predicts higher prostate cancer risk. J. Urol. 183, 946–950 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Orsted, D. D., Nordestgaard, B. G., Jensen, G. B., Schnohr, P. & Bojesen, S. E. Prostate-specific antigen and long-term prediction of prostate cancer incidence and mortality in the general population. Eur. Urol. 61, 865–874 (2011).

    Article  PubMed  Google Scholar 

  45. Kuller, L. H., Thomas, A., Grandits, G. & Neaton, J. D. Elevated prostate-specific antigen levels up to 25 years prior to death from prostate cancer. Cancer Epidemiol. Biomarkers Prev. 13, 373–377 (2004).

    PubMed  Google Scholar 

  46. Breslow, N. et al. Latent carcinoma of prostate at autopsy in seven areas. The International Agency for Research on Cancer, Lyons, France. Int. J. Cancer 20, 680–688 (1977).

    Article  CAS  PubMed  Google Scholar 

  47. Yatani, R. et al. Geographic pathology of latent prostatic carcinoma. Int. J. Cancer 29, 611–616 (1982).

    Article  CAS  PubMed  Google Scholar 

  48. Billis, A. Latent carcinoma and atypical lesions of prostate. An autopsy study. Urology 28, 324–329 (1986).

    Article  CAS  PubMed  Google Scholar 

  49. Miller, G. J. in Advanced Therapy of Prostate Disease (eds Resnick, M. I. & Thompson, I. M.) 18–27 (B. C. Decker, 2000).

    Google Scholar 

  50. Whittemore, A. S., Keller, J. B. & Betensky, R. Low-grade, latent prostate cancer volume: predictor of clinical cancer incidence? J. Natl Cancer Inst. 83, 1231–1235 (1991).

    Article  CAS  PubMed  Google Scholar 

  51. Polednak, A. P. College athletics, body size, and cancer mortality. Cancer 38, 382–387 (1976).

    Article  CAS  PubMed  Google Scholar 

  52. Whittemore, A. S., Paffenbarger, R. S. Jr., Anderson, K. & Lee, J. E. Early precursors of urogenital cancers in former college men. J. Urol. 132, 1256–1261 (1984).

    Article  CAS  PubMed  Google Scholar 

  53. Engeland, A., Tretli, S. & Bjorge, T. Height, body mass index, and prostate cancer: a follow-up of 950000 Norwegian men. Br. J. Cancer 89, 1237–1242 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Galobardes, B., Davey Smith, G., Jeffreys, M., Kinra, S. & McCarron, P. Acne in adolescence and cause-specific mortality: lower coronary heart disease but higher prostate cancer mortality: the Glasgow Alumni Cohort Study. Am. J. Epidemiol. 161, 1094–1101 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. van der Pols, J. C. et al. Childhood dairy intake and adult cancer risk: 65-y follow-up of the Boyd Orr cohort. Am. J. Clin. Nutr. 86, 1722–1729 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Locke, F. B. & King, H. Cancer mortality risk among Japanese in the United States. J. Natl Cancer Inst. 65, 1149–1156 (1980).

    CAS  PubMed  Google Scholar 

  57. King, H. & Locke, F. B. Cancer mortality among Chinese in the United States. J. Natl Cancer Inst. 65, 1141–1148 (1980).

    CAS  PubMed  Google Scholar 

  58. Kolonel, L. N. Cancer patterns of four ethnic groups in Hawaii. J. Natl Cancer Inst. 65, 1127–1139 (1980).

    CAS  PubMed  Google Scholar 

  59. Severson, R. K., Nomura, A. M., Grove, J. S. & Stemmermann, G. N. A prospective study of demographics, diet, and prostate cancer among men of Japanese ancestry in Hawaii. Cancer Res. 49, 1857–1860 (1989).

    CAS  PubMed  Google Scholar 

  60. Singh, G. K. & Miller, B. A. Health, life expectancy, and mortality patterns among immigrant populations in the United States. Can. J. Public Health 95, I14–121 (2004).

    PubMed  PubMed Central  Google Scholar 

  61. Parkin, D. M. et al. Cancer in Jewish migrants to Israel. Int. J. Cancer 45, 614–621 (1990).

    Article  CAS  PubMed  Google Scholar 

  62. Tyczynski, J., Tarkowski, W., Parkin, D. M. & Zatonski, W. Cancer mortality among Polish migrants to Australia. Eur J Cancer 30A, 478–484 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Whittemore, A. S. et al. Prostate cancer in relation to diet, physical activity, and body size in blacks, whites, and Asians in the United States and Canada. J. Natl Cancer Inst. 87, 652–661 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. McCredie, M., Williams, S. & Coates, M. Cancer mortality in East and Southeast Asian migrants to New South Wales, Australia, 1975–1995. Br. J. Cancer 79, 1277–1282 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Beiki, O., Ekbom, A., Allebeck, P. & Moradi, T. Risk of prostate cancer among Swedish-born and foreign-born men in Sweden, 1961–2004. Int. J. Cancer 124, 1941–1953 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Armstrong, B. K., Woodings, T. L., Stenhouse, N. S. & McCall, M. G. Mortality from Cancer in Migrants to Australia, 1962 to 1971. (The University of Western Australia, 1983).

    Google Scholar 

  67. Shimizu, H. et al. Cancers of the prostate and breast among Japanese and white immigrants in Los Angeles County. Br. J. Cancer 63, 963–966 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. McCredie, M., Williams, S. & Coates, M. Cancer mortality in migrants from the British Isles and continental Europe to New South Wales, Australia, 1975–1995. Int. J. Cancer 83, 179–185 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Gunnell, D. et al. Height, leg length, and cancer risk: a systematic review. Epidemiol. Rev. 23, 313–342 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Norgan, N. G. & Cameron, N. The accuracy of body weight and height recall in middle-aged men. Int. J. Obes. Relat. Metab. Disord. 24, 1695–1698 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. MacInnis, R. J. & English, D. R. Body size and composition and prostate cancer risk: systematic review and meta-regression analysis. Cancer Causes Control 17, 989–1003 (2006).

    Article  PubMed  Google Scholar 

  72. Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832–838 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Roddam, A. W., Allen, N. E., Appleby, P. & Key, T. J. Endogenous sex hormones and prostate cancer: a collaborative analysis of 18 prospective studies. J. Natl Cancer Inst. 100, 170–183 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Tsai, C. J. et al. Sex steroid hormones in young manhood and the risk of subsequent prostate cancer: a longitudinal study in African-Americans and Caucasians (United States). Cancer Causes Control 17, 1237–1244 (2006).

    Article  PubMed  Google Scholar 

  75. Gupta, D., Rager, K., Attanasio, A., Klemm, W. & Eichner, M. Sex steroid hormones during multiphase pubertal developments. J. Steroid Biochem. 6, 859–868 (1975).

    Article  CAS  PubMed  Google Scholar 

  76. Gapstur, S. M. et al. Serum androgen concentrations in young men: a longitudinal analysis of associations with age, obesity, and race. The CARDIA male hormone study. Cancer Epidemiol. Biomarkers Prev. 11, 1041–1047 (2002).

    CAS  PubMed  Google Scholar 

  77. Lolis, M. S., Bowe, W. P. & Shalita, A. R. Acne and systemic disease. Med. Clin. North Am. 93, 1161–1181 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Udry, J. R., Billy, J. O., Morris, N. M., Groff, T. R. & Raj, M. H. Serum androgenic hormones motivate sexual behavior in adolescent boys. Fertil. Steril. 43, 90–94 (1985).

    Article  CAS  PubMed  Google Scholar 

  79. Knussmann, R., Christiansen, K. & Couwenbergs, C. Relations between sex hormone levels and sexual behavior in men. Arch. Sex. Behav. 15, 429–445 (1986).

    Article  CAS  PubMed  Google Scholar 

  80. Mantzoros, C. S., Georgiadis, E. I. & Trichopoulos, D. Contribution of dihydrotestosterone to male sexual behaviour. BMJ 310, 1289–1291 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Herbst, K. L. & Bhasin, S. Testosterone action on skeletal muscle. Curr. Opin. Clin. Nutr. Metab. Care 7, 271–277 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Giles, G. G. et al. Early growth, adult body size and prostate cancer risk. Int. J. Cancer 103, 241–245 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Lightfoot, N. et al. Medical history, sexual, and maturational factors and prostate cancer risk. Ann. Epidemiol. 14, 655–662 (2004).

    Article  PubMed  Google Scholar 

  84. Sutcliffe, S., Giovannucci, E., Isaacs, W. B., Willett, W. C. & Platz, E. A. Acne and risk of prostate cancer. Int. J. Cancer 121, 2688–2692 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Oishi, K. et al. A case-control study of prostatic cancer in Kyoto, Japan: sexual risk factors. Prostate 17, 269–279 (1990).

    Article  CAS  PubMed  Google Scholar 

  86. Hsieh, C. C. et al. Risk factors for prostate cancer: a case-control study in Greece. Int. J. Cancer 80, 699–703 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Giles, G. G. et al. Sexual factors and prostate cancer. BJU Int. 92, 211–216 (2003).

    CAS  Google Scholar 

  88. Leitzmann, M. F., Platz, E. A., Stampfer, M. J., Willett, W. C. & Giovannucci, E. Ejaculation frequency and subsequent risk of prostate cancer. JAMA 291, 1578–1586 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Isaacs, J. T. Prostatic structure and function in relation to the etiology of prostatic cancer. Prostate 4, 351–366 (1983).

    Article  CAS  PubMed  Google Scholar 

  90. Liu, X., Rybicki, B. A., Casey, G. & Witte, J. S. Relationship between body size and prostate cancer in a sibling based case-control study. J. Urol. 174, 2169–2173 (2005).

    Article  PubMed  Google Scholar 

  91. Dal Maso, L. et al. Prostate cancer and body size at different ages: an Italian multicentre case-control study. Br. J. Cancer 90, 2176–2180 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Barba, M. et al. Indicators of sexual and somatic development and adolescent body size in relation to prostate cancer risk: results from a case-control study. Urology 72, 183–187 (2008).

    Article  PubMed  Google Scholar 

  93. Jeffreys, M., Smith, G. D., Martin, R. M., Frankel, S. & Gunnell, D. Childhood body mass index and later cancer risk: a 50-year follow-up of the Boyd Orr study. Int. J. Cancer 112, 348–351 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Ilic, M., Vlajinac, H. & Marinkovic, J. Case-control study of risk factors for prostate cancer. Br. J. Cancer 74, 1682–1686 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Robinson, W. R., Poole, C. & Godley, P. A. Systematic review of prostate cancer's association with body size in childhood and young adulthood. Cancer Causes Control 19, 793–803 (2008).

    Article  PubMed  Google Scholar 

  96. Cox, B., Sneyd, M. J., Paul, C. & Skegg, D. C. Risk factors for prostate cancer: a national case-control study. Int. J. Cancer 119, 1690–1694 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Bassett, J. K. et al. Weight change and prostate cancer incidence and mortality. Int. J. Cancer 131, 1711–1719 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Robinson, W. R., Stevens, J., Gammon, M. D. & John, E. M. Obesity before age 30 years and risk of advanced prostate cancer. Am. J. Epidemiol. 161, 1107–1114 (2005).

    Article  PubMed  Google Scholar 

  99. Freedland, S. J. & Platz, E. A. Obesity and prostate cancer: making sense out of apparently conflicting data. Epidemiol. Rev. 29, 88–97 (2007).

    Article  PubMed  Google Scholar 

  100. Giovannucci, E., Rimm, E. B., Stampfer, M. J., Colditz, G. A. & Willett, W. C. Height, body weight, and risk of prostate cancer. Cancer Epidemiol. Biomarkers Prev. 6, 557–563 (1997).

    CAS  PubMed  Google Scholar 

  101. Rhoads, G. G. & Kagan, A. The relation of coronary disease, stroke, and mortality to weight in youth and in middle age. Lancet 1, 492–495 (1983).

    Article  CAS  PubMed  Google Scholar 

  102. Casey, V. A. et al. Long-term memory of body weight and past weight satisfaction: a longitudinal follow-up study. Am. J. Clin. Nutr. 53, 1493–1498 (1991).

    Article  CAS  PubMed  Google Scholar 

  103. Tamakoshi, K. et al. The accuracy of long-term recall of past body weight in Japanese adult men. Int. J. Obes Relat. Metab. Disord. 27, 247–252 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Casey, V. A. et al. Accuracy of recall by middle-aged participants in a longitudinal study of their body size and indices of maturation earlier in life. Ann. Hum. Biol. 18, 155–166 (1991).

    Article  CAS  PubMed  Google Scholar 

  105. Gilger, J. W., Geary, D. C. & Eisele, L. M. Reliability and validity of retrospective self-reports of the age of pubertal onset using twin, sibling, and college student data. Adolescence 26, 41–53 (1991).

    CAS  PubMed  Google Scholar 

  106. Mishina, T., Watanabe, H., Araki, H. & Nakao, M. Epidemiological study of prostatic cancer by matched-pair analysis. Prostate 6, 423–436 (1985).

    Article  CAS  PubMed  Google Scholar 

  107. Fincham, S. M., Hill, G. B., Hanson, J. & Wijayasinghe, C. Epidemiology of prostatic cancer: a case-control study. Prostate 17, 189–206 (1990).

    Article  CAS  PubMed  Google Scholar 

  108. Hayes, R. B. et al. Physical characteristics and factors related to sexual development and behaviour and the risk for prostatic cancer. Eur. J. Cancer Prev. 1, 239–245 (1992).

    Article  CAS  PubMed  Google Scholar 

  109. Habel, L. A., Van Den Eeden, S. K. & Friedman, G. D. Body size, age at shaving initiation, and prostate cancer in a large, multiracial cohort. Prostate 43, 136–143 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Rosenblatt, K. A., Wicklund, K. G. & Stanford, J. L. Sexual factors and the risk of prostate cancer. Am. J. Epidemiol. 153, 1152–1158 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Sutcliffe, S. Sexually transmitted infections and risk of prostate cancer: review of historical and emerging hypotheses. Future Oncol. 6, 1289–1311 (2010).

    Article  PubMed  Google Scholar 

  112. Dennis, L. K. & Dawson, D. V. Meta-analysis of measures of sexual activity and prostate cancer. Epidemiology 13, 72–79 (2002).

    Article  PubMed  Google Scholar 

  113. Larke, N. Male circumcision, HIV and sexually transmitted infections: a review. Br. J. Nurs. 19, 629–634 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wynder, E. L., Mabuchi, K. & Whitmore, W. F. Jr. Epidemiology of cancer of the prostate. Cancer 28, 344–360 (1971).

    Article  CAS  PubMed  Google Scholar 

  115. Mandel, J. S. & Schuman, L. M. Sexual factors and prostatic cancer: results from a case-control study. J. Gerontol. 42, 259–264 (1987).

    Article  CAS  PubMed  Google Scholar 

  116. Wright, J. L., Lin, D. W. & Stanford, J. L. Circumcision and the risk of prostate cancer. Cancer 118, 4437–4443 (2012).

    Article  PubMed  Google Scholar 

  117. Ewings, P. & Bowie, C. A case-control study of cancer of the prostate in Somerset and east Devon. Br. J. Cancer 74, 661–666 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ross, R. K., Shimizu, H., Paganini-Hill, A., Honda, G. & Henderson, B. E. Case-control studies of prostate cancer in blacks and whites in southern California. J. Natl Cancer Inst. 78, 869–874 (1987).

    CAS  PubMed  Google Scholar 

  119. Ravich, A. & Ravich, R. A. Prophylaxis of cancer of the prostate, penis, and cervix by circumcision. N. Y. State J. Med. 51, 1519–1520 (1951).

    CAS  PubMed  Google Scholar 

  120. Apt, A. Circumcision and prostatic cancer. Acta Med. Scand. 178, 493–504 (1965).

    Article  CAS  PubMed  Google Scholar 

  121. Centers for Disease Control and Prevention. Sexually Transmitted Disease Surveillance 2010. (US Department of Health and Human Services, 2011).

  122. Urbanek, C. et al. Detection of antibodies directed at M. hyorhinis p37 in the serum of men with newly diagnosed prostate cancer. BMC Cancer 11, 233 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Barykova, Y. A. et al. Association of Mycoplasma hominis infection with prostate cancer. Oncotarget 2, 289–297 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hrbacek, J. et al. Serum antibodies against genitourinary infectious agents in prostate cancer and benign prostate hyperplasia patients: a case-control study. BMC Cancer 11, 53 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Whittemore, A. S., Paffenbarger, R. S. Jr., Anderson, K. & Lee, J. E. Early precursors of site-specific cancers in college men and women. J. Natl Cancer Inst. 74, 43–51 (1985).

    CAS  PubMed  Google Scholar 

  126. Shannon, B. A., Garrett, K. L. & Cohen, R. J. Links between Propionibacterium acnes and prostate cancer. Future Oncol. 2, 225–232 (2006).

    Article  PubMed  Google Scholar 

  127. Sfanos, K. S. et al. A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate 68, 306–320 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Chambers, C. V. et al. Microflora of the urethra in adolescent boys: relationships to sexual activity and nongonococcal urethritis. J. Pediatr. 110, 314–321 (1987).

    Article  CAS  PubMed  Google Scholar 

  129. International Agency for Research on Cancer. IARC Handbook of Cancer Prevention Volume 6: Weight control and physical activity. (WHO, 2002).

  130. Villeneuve, P. J., Johnson, K. C., Kreiger, N. & Mao, Y. Risk factors for prostate cancer: results from the Canadian National Enhanced Cancer Surveillance System. The Canadian Cancer Registries Epidemiology Research Group. Cancer Causes Control 10, 355–367 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Lacey, J. V. Jr et al. Prostate cancer, benign prostatic hyperplasia and physical activity in Shanghai, China. Int. J. Epidemiol. 30, 341–349 (2001).

    Article  PubMed  Google Scholar 

  132. Friedenreich, C. M., McGregor, S. E., Courneya, K. S., Angyalfi, S. J. & Elliott, F. G. Case-control study of lifetime total physical activity and prostate cancer risk. Am. J. Epidemiol. 159, 740–749 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Pierotti, B. et al. Lifetime physical activity and prostate cancer risk. Int. J. Cancer 114, 639–642 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Littman, A. J., Kristal, A. R. & White, E. Recreational physical activity and prostate cancer risk (United States). Cancer Causes Control 17, 831–841 (2006).

    Article  PubMed  Google Scholar 

  135. Darlington, G. A., Kreiger, N., Lightfoot, N., Purdham, J. & Sass-Kortsak, A. Prostate cancer risk and diet, recreational physical activity and cigarette smoking. Chronic Dis. Can. 27, 145–153 (2007).

    PubMed  Google Scholar 

  136. Wiklund, F. et al. Lifetime total physical activity and prostate cancer risk: a population-based case-control study in Sweden. Eur. J. Epidemiol. 23, 739–746 (2008).

    Article  PubMed  Google Scholar 

  137. Krishnadasan, A., Kennedy, N., Zhao, Y., Morgenstern, H. & Ritz, B. Nested case-control study of occupational physical activity and prostate cancer among workers using a job exposure matrix. Cancer Causes Control 19, 107–114 (2008).

    Article  PubMed  Google Scholar 

  138. Moore, S. C. et al. Age-specific physical activity and prostate cancer risk among white men and black men. Cancer 115, 5060–5070 (2009).

    Article  PubMed  Google Scholar 

  139. Liu, Y. et al. Does physical activity reduce the risk of prostate cancer? A systematic review and meta-analysis. Eur. Urol. 60, 1029–1044 (2011).

    Article  PubMed  Google Scholar 

  140. Kriska, A. M. et al. The assessment of historical physical activity and its relation to adult bone parameters. Am. J. Epidemiol. 127, 1053–1063 (1988).

    Article  CAS  PubMed  Google Scholar 

  141. Chasan-Taber, L. et al. Reproducibility of a self-administered lifetime physical activity questionnaire among female college alumnae. Am. J. Epidemiol. 155, 282–289 (2002).

    Article  PubMed  Google Scholar 

  142. Friedenreich, C. M., Courneya, K. S. & Bryant, H. E. The lifetime total physical activity questionnaire: development and reliability. Med. Sci. Sports Exerc. 30, 266–274 (1998).

    Article  CAS  PubMed  Google Scholar 

  143. Slattery, M. L., Schumacher, M. C., West, D. W., Robison, L. M. & French, T. K. Food-consumption trends between adolescent and adult years and subsequent risk of prostate cancer. Am. J. Clin. Nutr. 52, 752–757 (1990).

    Article  CAS  PubMed  Google Scholar 

  144. Torfadottir, J. E. et al. Milk intake in early life and risk of advanced prostate cancer. Am. J. Epidemiol. 175, 144–153 (2012).

    Article  PubMed  Google Scholar 

  145. Torfadottir, J. E. et al. Rye bread consumption in early life and reduced risk of advanced prostate cancer. Cancer Causes Control 23, 941–950 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Chavarro, J. E. et al. Validity of adolescent diet recall 48 years later. Am. J. Epidemiol. 170, 1563–1570 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Mills, P. K., Beeson, W. L., Phillips, R. L. & Fraser, G. E. Cohort study of diet, lifestyle, and prostate cancer in Adventist men. Cancer 64, 598–604 (1989).

    Article  CAS  PubMed  Google Scholar 

  148. Dirx, M. J., van den Brandt, P. A., Goldbohm, R. A. & Lumey, L. H. Energy restriction in childhood and adolescence and risk of prostate cancer: results from the Netherlands Cohort Study. Am. J. Epidemiol. 154, 530–537 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Luscombe, C. J. et al. Exposure to ultraviolet radiation: association with susceptibility and age at presentation with prostate cancer. Lancet 358, 641–642 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. Bodiwala, D. et al. Prostate cancer risk and exposure to ultraviolet radiation: further support for the protective effect of sunlight. Cancer Lett. 192, 145–149 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Gilbert, R. et al. Life course sun exposure and risk of prostate cancer: population-based nested case-control study and meta-analysis. Int. J. Cancer 125, 1414–1423 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. John, E. M., Schwartz, G. G., Koo, J., Van Den Berg, D. & Ingles, S. A. Sun exposure, vitamin D receptor gene polymorphisms, and risk of advanced prostate cancer. Cancer Res. 65, 5470–5479 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Nair-Shalliker, V. et al. Sun exposure may increase risk of prostate cancer in the high UV environment of New South Wales, Australia: a case-control study. Int J Cancer 131, 2204–2205 (2011).

    Google Scholar 

  154. Freedman, D. M., Dosemeci, M. & McGlynn, K. Sunlight and mortality from breast, ovarian, colon, prostate, and non-melanoma skin cancer: a composite death certificate based case-control study. Occup. Environ. Med. 59, 257–262 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. John, E. M., Koo, J. & Schwartz, G. G. Sun exposure and prostate cancer risk: evidence for a protective effect of early-life exposure. Cancer Epidemiol. Biomarkers Prev. 16, 1283–1286 (2007).

    Article  PubMed  Google Scholar 

  156. Must, A., Phillips, S. M. & Naumova, E. N. Occurrence and timing of childhood overweight and mortality: findings from the Third Harvard Growth Study. J. Pediatr. 160, 743–750 (2012).

    Article  PubMed  Google Scholar 

  157. Mathewson, F. A., Brereton, C. C., Keltie, W. A. & Paul, G. I. The Univeristy of Manitoba follow-up study: a prospective investigation of cardiovascular disease. I. General description-mortality and incidence of coronary heart disease. Can. Med. Assoc. J. 92, 947–953 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Angelsen, A., Falkmer, S., Sandvik, A. K. & Waldum, H. L. Pre- and postnatal testosterone administration induces proliferative epithelial lesions with neuroendocrine differentiation in the dorsal lobe of the rat prostate. Prostate 40, 65–75 (1999).

    Article  CAS  PubMed  Google Scholar 

  159. Suttie, A. et al. A grading scheme for the assessment of proliferative lesions of the mouse prostate in the TRAMP model. Toxicol. Pathol. 31, 31–38 (2003).

    Article  PubMed  Google Scholar 

  160. Suttie, A. W. et al. An investigation of the effects of late-onset dietary restriction on prostate cancer development in the TRAMP mouse. Toxicol. Pathol. 33, 386–397 (2005).

    Article  CAS  PubMed  Google Scholar 

  161. Berkey, C. S. et al. Prospective study of adolescent alcohol consumption and risk of benign breast disease in young women. Pediatrics 125, e1081–e1087 (2010).

    Article  PubMed  Google Scholar 

  162. Nakayama, M. et al. Hypermethylation of the human glutathione S-transferase-pi gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection. Am. J. Pathol. 163, 923–933 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Humphrey, P. A. in Prostate Pathology 182–217 (American Society for Clinical Pathology, 2003).

    Google Scholar 

  164. Hurst, R. et al. Selenium and prostate cancer: systematic review and meta-analysis. Am. J. Clin. Nutr. 96, 111–122 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Huncharek, M., Muscat, J. & Kupelnick, B. Dairy products, dietary calcium and vitamin D intake as risk factors for prostate cancer: a meta-analysis of 26,769 cases from 45 observational studies. Nutr. Cancer 60, 421–441 (2008).

    Article  PubMed  Google Scholar 

  166. Wei, M. Y. & Giovannucci, E. L. Lycopene, tomato products, and prostate cancer incidence: a review and reassessment in the PSA screening era. J. Oncol. 2012, 271063 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Alexander, D. D., Mink, P. J., Cushing, C. A. & Sceurman, B. A review and meta-analysis of prospective studies of red and processed meat intake and prostate cancer. Nutr. J. 9, 50 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Simon, J. A., Chen, Y. H. & Bent, S. The relation of α-linolenic acid to the risk of prostate cancer: a systematic review and meta-analysis. Am J. Clin. Nutr. 89, 1558S–1564S (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank G. L. Andriole, A. M. De Marzo, E. A. Platz and C. G. Sutcliffe for valuable discussion related to this manuscript; P. Humphrey for generous provision of prostate histological images; and A. Ostendorf for assistance preparing figures. This manuscript was funded by the Barnes-Jewish Hospital Foundation. It makes use of data obtained from the Radiation Effects Research Foundation (RERF), Hiroshima and Nagasaki, Japan. RERF is a private, non-profit foundation funded by the Japanese Ministry of Health, Labour and Welfare and the US Department of Energy through the US National Academy of Sciences. The conclusions in this report are those of the authors and do not necessarily reflect the scientific judgment of RERF or its funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siobhan Sutcliffe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Glossary

Case–control studies

Epidemiological studies that compare two groups of individuals: those who have the condition under study (the cases) and those without the condition (the controls). A link between the suspected risk factor and the disease is suggested when the frequency of that risk factor is significantly different between cases and controls.

Cohort studies

Epidemiological studies of people who are divided into those who have or have not been exposed to a suspected risk factor and who are subsequently observed over time for the development of the disease of interest. A link between the suspected risk factor and the disease is indicated when the exposed and unexposed participants have a significantly different frequency of future development of the disease.

Confounding factors

Variables (also known as confounders) that are associated with both an exposure and a disease outcome such that they distort or mask the true effect of exposure in an epidemiological study. For example, alcohol consumption may seem to increase the risk of lung cancer because of confounding by cigarette smoking, a variable that is associated with, but not caused by, alcohol consumption and that is associated with an increased risk of lung cancer.

Correlates

Variables that are related statistically, but not necessarily causally, to another variable. For example, cigarette smoking is a correlate of alcohol consumption.

Ecological evidence

Derived from studies in which groups of people rather than individuals are analysed. Susceptible to ecologic fallacy, whereby the relation observed between variables on a population level may not reflect the relation between variables on an individual level.

Exposures

Variables the causal effects of which are to be estimated. For example, environmental and lifestyle factors, socioeconomic and working conditions, medical treatments and genetic traits.

Markers

Variables (such as height) that may be related causally or non-causally to another variable of interest (such as levels of early-life growth factors). Can be useful for estimating the variable of interest if that variable cannot be measured or assessed directly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutcliffe, S., Colditz, G. Prostate cancer: is it time to expand the research focus to early-life exposures?. Nat Rev Cancer 13, 208–518 (2013). https://doi.org/10.1038/nrc3434

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3434

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing