Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Picomolar concentrations of lead stimulate brain protein kinase C

Abstract

Recent growth studies in children suggest that there is no threshold for adverse effects from the universal exposure to inorganic lead1. The biochemical mechanisms mediating low-level toxicity are unclear, but in several biological systems, lead alters calcium-mediated cellular processes2,3 and may mimic calcium in binding to regulatory proteins4. Here we present evidence that lead stimulates diacylglycerol-activated calcium and phospholipid-dependent protein kinase, protein kinase C, partially purified from rat brain. Picomolar concentrations of lead are equivalent to micromolar calcium in kinase activation, so this regulatory enzyme is sensitive to the lead levels expected from current environmental exposure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schwartz, J., Angle, C. & Pitcher, H. Pediatrics 77, 281–288 (1986).

    CAS  PubMed  Google Scholar 

  2. Pounds, J. G. Neurotoxicology 5, 295–332 (1984).

    CAS  PubMed  Google Scholar 

  3. Simons, T. J. B. Br. med. Bull. 42, 431–434 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Habermann, E., Crowell, K. & Janicki, P. Archs Toxicol. 54, 61–70 (1983).

    Article  CAS  Google Scholar 

  5. Landrigan, P. J. & Graef, J. W. Pediatrics 79, 582–583 (1987).

    CAS  PubMed  Google Scholar 

  6. Klein, R. Adv. Pediatr. 24, 103–132 (1977).

    CAS  PubMed  Google Scholar 

  7. Needleman, H. L. et al. New Engl. J. Med. 300, 689–695 (1979).

    Article  CAS  PubMed  Google Scholar 

  8. Needleman, J. L. & Landrigan, P. J. A. Rev. Public Health 2, 277–298 (1981).

    Article  CAS  Google Scholar 

  9. Mahaffey, K. R., Annest, J. L. & Roberts, J. Cew Engl. J. Med. 307, 573–579 (1982).

    Article  CAS  Google Scholar 

  10. Pounds, J. G., Wright, R., Morrison, D. & Casciano, D. A. Tox. appl. Pharmac. 63, 398–401 (1982).

    Google Scholar 

  11. Nishizuka, Y. Science 233, 305–312 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Berridge, M. J. & Irvine, R. F. Nature 312, 315–321 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Takai, Y. et al. J. biol. Chem. 254, 3962–3965 (1979).

    Google Scholar 

  14. Castagna, M. et al. J. biol. Chem. 257, 7847–7851 (1982).

    CAS  PubMed  Google Scholar 

  15. Worley, P. F., Baraban, J. M., De Souza, E. B. & Snyder, S. H. Proc. natn. Acad. Sci. U.S.A. 83, 4053–4057 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Mochly-Rosen, D., Basbaum, A. I. & Koshland, D. E. Proc. natn. Acad. Sci. U.S.A. 84, 4660–4664 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Girard, P. R. Mazzei, G. J., Wood, J. G. & Kuo, J. F. Proc. natn. Acad. Sci. U.S.A. 82, 3030–3034 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Suszkiw, J., Toth, G., Murawsky, M. & Cooper, G. P. Brain Res. 323, 31–46 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Cooper, G. P., Suszkiw, J. B. & Manalis, R. S. Neuloloxicology 5, 247–266 (1984).

    CAS  Google Scholar 

  20. Inoue, M., Kishimoto, A., Takai, Y. & Nishizuka, Y. J. biol. Chem. 252, 7610–7616 (1977).

    CAS  PubMed  Google Scholar 

  21. Siegel, G. J., Iyengar, S. & Fogt, S. K. J. biol. Chem. 255, 3935–3943 (1980).

    CAS  PubMed  Google Scholar 

  22. Silbergeld, E. K., Fales, J. T. & Goldenberg, A. M. Nature 247, 49–59 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Pounds, J. G., Morrison, D., Wright, R., Casciano, D. A. & Shaddock, J. G. Tox. appl. Pharmaca. 63, 402–408 (1982).

    Article  CAS  Google Scholar 

  24. Goldstein, G. W. & Ar, D. Life Sci. 33, 101–106 (1983).

    Article  Google Scholar 

  25. Lin-Fu, J. S. New Engl. J. Med. 286, 702–710 (1972).

    Article  CAS  PubMed  Google Scholar 

  26. Angle, C. R. & Mclntyre, M. S. Adv. Pediatr. 29, 3–32 (1982).

    CAS  PubMed  Google Scholar 

  27. Clarkson, T. W. & Kench,-J, E. Biochem. J. 69, 432–436 (1958).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wallenstein, S., Zucker, C. L. & Fleiss, J. L. Circulation Res. 47, 1–9 (1980).

    Article  CAS  PubMed  Google Scholar 

  29. Bradford, M. M. Analyt. Biochem. 72, 248–254 (1976).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markovac, J., Goldstein, G. Picomolar concentrations of lead stimulate brain protein kinase C. Nature 334, 71–73 (1988). https://doi.org/10.1038/334071a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334071a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing