Skip to main content
Log in

Variation in biochemical and pharmacological properties of Indian cobra (Naja naja naja) venom due to geographical distribution

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Indian cobra (Naja naja naja) venom obtained from three different geographical regions was studied in terms of electrophoretic pattern, biochemical and pharmacological activities. SDS-PAGE banding pattern revealed significant variation in the protein constituents of the three regional venoms. The eastern venom showed highest indirect hemolysis and hyaluronidase activity. In contrast, western and southern venoms were rich in proteolytic activity. All the three regional venoms were devoid of p-tosyl-L-arginine methyl ester hydrolysing activity. The eastern venom was found to be most lethal among the three regional venoms. The lethal potency varied as eastern > western > southern regional venoms. In addition, all the three regional venoms showed marked variations in their ability to induce symptoms/signs of neurotoxicity, myotoxicity, edema and effect on plasma coagulation process. Polyclonal antiserum prepared against the venom of eastern region cross-reacted with both southern and western regional venoms, but varied in the extent of cross-reactivity by ouchterlony immunodiffusion and ELISA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chipppaux JP, Williams, White J: Snake venom variability: Methods of study, results and interpretation. Toxicon 29: 1279–1303, 1991

    Google Scholar 

  2. Sasa M: Diet and snake venom variation: Can local selection alone explain intraspecific venom variation? Toxicon 37: 249–252, 1999

    Google Scholar 

  3. Iddon D, Hommel M, Theakston RDG: Characterization of a monoclonal antibody capable of neutralising the haemorrhagic activity of West African Echis carinatus (carpet viper) venom. Toxicon 26: 167–179, 1988

    Google Scholar 

  4. Otero R, Nunez V, Osorio RG, Gutierrez JM, Giraldo CA, Posado LE: Ability of six Latin American antivenoms to neutralize the venom of Mapana equis (Bothrops atrox) from Antioquia and Choco (Colombia) Toxicon 33: 809–815, 1995

    Google Scholar 

  5. Goncalves JM: Estudos sobre venenos de serpentes brasilevias: 11 Crotalus terrificus crotaminicus, sulspecie biologia. An Acad Brasileria ciencias 28: 365–367, 1956

    Google Scholar 

  6. Silveira US, Diniz MRV, Santos SM: Distribua geographica das serpentes crotalus durisus variedade crotamina positivo nos estados de Mato Grrosso do sul. Mem Inst Butantan 52: 68, 1990

    Google Scholar 

  7. Oguiura N, Camarago ME, da Silva ARP, Harton DSPQ: Quantification of crotamine, a small basic myotoxin, in South American rattle snake (Crotalus durissus terrificus) venom by enzyme linked immunosorbent assay with Parallel-lines analysis. Toxicon 38: 443–448, 2000

    Google Scholar 

  8. Minton SA, Weinstein SA: Geographic and ontogenic variation in venom of the Western diamond back rattle snake (Crotalus atrox). Toxicon 24: 71–80, 1986

    Google Scholar 

  9. Glenn JL, Straight RC: Intergradation of two different venom populations of the Mojave rattle snake (Crotalus scutulatus scutulatus) in Arizona. Toxicon 27, 411–418, 1989

    Google Scholar 

  10. Reisfield RA, Lewis UJ, Williams DE: Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature 195: 281–283, 1962

    Google Scholar 

  11. Lomonte B, Carmona E: Individual expression patterns of myotoxin, isoforms in the venom of the snake Bothrops asper. Comp Biochem Physiol 102B: 325–329, 1992

    Google Scholar 

  12. Yang CC, Chang LS, Wu FS: Venom constituents of Notechis scutatus scutatus (Australian Tiger snake) from different geographic regions. Toxicon 29: 1337–1344, 1991

    Google Scholar 

  13. Taborska E: Intraspecies variability of the venom of Echis carinatus. Physiol Bohemoslov 20: 307, 1971

    Google Scholar 

  14. Daltry JC, Ponnudurai G, Shin CK, Tan N-H, Thorpe RS, Wuster W: Electrophoretic profiles and biological activities: intra specific variation in the venom of the Malayan pit viper (Calloselasma Rhodostoma). Toxicon 34: 67–69, 1996

    Google Scholar 

  15. Jayanthi GP, Gowda TV: Geographical variation in India in the composition and lethal potency of Russell's viper (Vipera russelli) venom. Toxicon 26: 257–264, 1988

    Google Scholar 

  16. Tsai IH, Lu PJ, Su JC: Two types of Russell's viper revealed by variation in Phospholipases A2 from venom of the subspecies. Toxicon 34: 99–109, 1996

    Google Scholar 

  17. Prasad NB, Uma B, Bhat SKG, Gowda TV: Comparative characterisation of Russell's viper (Daboia/Vipera russelli) venoms from different regions of Indian peninsula. Biochim Biophys Acta 1428: 121–136, 1999

    Google Scholar 

  18. Jadhav SS, Kapre SV: Antivenom production in India. In: AT Tu (ed), Handbook of Natural Toxins 5. Marcel Dekker, 1991, pp 583–610

  19. Sujit M: Snake bite in India and its management. J Indian Med Assoc 85: 129–131, 1987

    Google Scholar 

  20. Mukarjee AK, Maitry RC: The composition of Naja naja venom samples from three districts of West Bengal, India. Comp Biochem Physiol. 119A: 621–627, 1998

    Google Scholar 

  21. Rudrammaji LMS, Gowda TV: Purification and characterization of three acidic, cytotoxic phospholipase A2 fron Indian cobra (Naja naja naja) venom. Toxicon 36: 921–932, 1998

    Google Scholar 

  22. Laemmili VK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685, 1970

    Google Scholar 

  23. Meril CR, Donau ML, Goldman D: A rapid sensitive silver stain for polypeptide in polyacrylamide gels. Analyt Biochim 110: 201–207, 1981

    Google Scholar 

  24. Bhat MK, Gowda TV: Purification and characterization of a myotoxic phospholipase A2 from Indian cobra (Naja naja naja) venom. Toxicon 27: 861–873, 1989

    Google Scholar 

  25. Satake M, Murata Y, Suzuki T: Studies on snake venoms XIII. Chromatographic separation and properties of three proteinases from Agkistrodon halys blomhoffii venom. J Biochem 53: 483–497, 1963

    Google Scholar 

  26. Hummell BCW: A modified spectrophotometer determination of chymotrypsin, trypsin and thrombin. Can J Biochem Physiol 37: 1393–1399, 1959

    Google Scholar 

  27. Reissig JL, Stromonger JL, Helvir LF: A modified colorimetric method for the estimation on N-acetylamine sugar. J Biol Chem 217: 959–966, 1955

    Google Scholar 

  28. Cevallos MA, Navarro-Duque C, Varela-Julia M, Alagon AC: Molecular mass determination and assay of venom hyaluronidases by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Toxicon 30: 925–930, 1992

    Google Scholar 

  29. Green MR, Pastewka JV, Peacock AC: Differential staining of phospho proteins on polyacrylamide gels with a cationic carbocyanin dye. Analyt Biochem 56: 43–51, 1973

    Google Scholar 

  30. Boman HG, Kaletta U: Chromatography of rattlesnake: A separation of three phosphodiesterases. Biochim Biophys Acta 24: 619–623, 1957

    Google Scholar 

  31. Meier J, Theakston RDG: Approximate LD50 determination of snake venom using eight to ten experimental animals. Toxicon 24: 395–401, 1986

    Google Scholar 

  32. King JC: Practical Clinical Enzymology. D. Von Nostrand, London, 1965

    Google Scholar 

  33. Huges BP: A method for the estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clin Chim Acta 7: 597–603, 1962

    Google Scholar 

  34. Quick AJ: Prothrombin time (one stage procedure). In: Lea, Febiger (2nd edit). Haemorrhagic Diseases and Thrombosis. Philadelphia, PA, 1996, pp 391–395

  35. Yamakawa M, Nozaki M, Hokoma Z: Fractionation of Sakishima-habu (Trimeresurus elegans) venom and lethal haemorrhagic and edema forming activity of the fractions. In: A Oshsaka, K Hayashi, Y Sawai (eds). Animal, Plant and Microbial-Toxins 1. Plenum Press, NewYork, 1976, p 97

    Google Scholar 

  36. Vishwanath BS, Kini RM, Gowda TV: Characterization of three edematic inducing phospholipaseA2 enzymes from habu (Trimeresurus flavoviridis) venom and their interaction with the alkaloid aristolochic acid. Toxicon 25: 501–515, 1987

    Google Scholar 

  37. Kondo H, Kondo S, Itezawa H, Murata R, Ohasaka A: Studies on the quantitative method from determination of haemorrhagic activity of Habu snake venom. Jpn J Med Sci Biol 13: 43, 1969

    Google Scholar 

  38. William CA, Chase MW: Qualitative analysis of antigen-antibody reaction in the gel. Academic Press, New York, 1971, pp 118–179

    Google Scholar 

  39. Middlebrook JL: Preparation and characterization of monoclonal antibodies against Pseudexin. Toxicon 29: 359–370, 1991

    Google Scholar 

  40. Rosenberg P: The relationship between enzymatic activity and pharmacological properties of phospholipase in natural poisons. In: JB Harris (ed), Natural Toxins. Animal, Plant and Microbial. Oxford University Press, Oxford, 1986, pp 129–174

    Google Scholar 

  41. Osorio E, Castro VR, Vernon LP: Hemolytic activity of thionin from Pyrularia pubera nuts and snake venom toxins from Naja naja species: Pyrularia thionin and snake venom cardiotoxin compete for the same membrane site. Toxicon 27: 511–517, 1989

    Google Scholar 

  42. Condrea E, Mammon Z, Aloof S, De varies A: Susceptibility of erythrocyte lysis by snake venom cardiotoxins. Biochim Biophys Acta 84: 365–375, 1964

    Google Scholar 

  43. Abraham IL, Visser L: Kinetics of erythrocyte lysis by snake venom cardiotoxins. Biochim Biophys Acta 498: 143–153, 1977

    Google Scholar 

  44. Zusman N, Miklas TM, Graves T, Dambach GE, Hudson RA: On the interaction of cobra venom protein cardiotoxins with erythrocytes. Biochim Biophys Res Commun 124: 629–636, 1984

    Google Scholar 

  45. Khole V, Khole V, Sadikov ES, Ya Yukelson L: Hemolytic property of membrane-active polypeptides from the venom of Central Asian Cobra (Naja naja oxiana Eichwald). Ind J Biochim Biophys 19: 309–313, 1982

    Google Scholar 

  46. Harvey AL, Hiden RC, Khader F: Effect of phospholipase A on actions of cobra venom cardiotoxins on erythrocytes and skeletal muscle. Biochim Biophys Acta 728: 215–223, 1983

    Google Scholar 

  47. Lankish PG, Lotte Lege, Oldigs HD, Vogt W: Binding of phospholipase A to the direct lytic factor revealed by the interaction of Ca2+ with the hemolytic effect. Biochim Biophys Acta 239: 267–272, 1971

    Google Scholar 

  48. Glenn JL, Straight RC, Wolf MC, Hardy DL: Geographical variation in Crotalus scutulatus scutulatus (Mojave rattle snake) venom properties. Toxicon 21: 119–130, 1983

    Google Scholar 

  49. Nakar O, Michael O, Elazar Kochva: Isolation and characterization of a proteolytic factor from the venom of Vipera Palastinae. Toxicon 24: 293–304, 1986

    Google Scholar 

  50. Tu AT, Hendon RR: Characterization of Lizard venom hyaluronidase and evidence for its action as spreading factor. Comp Biochem Physiol 76B: 377–383, 1983

    Google Scholar 

  51. Frost GJ, Csoka T, Stern R: The hyaluronidases: A chemical, Biological and clinical overview. Trends Glycosci Glycotechnol 8: 419–434, 1996

    Google Scholar 

  52. Mebs D: Myotoxic and neurotoxic phospholipases A2 isolated from cobra venoms: Neutralization by polyvalent antivenoms. Toxicon 24: 1001–1008, 1986

    Google Scholar 

  53. Fry BG: Structure-function properties of venom components from Australian elapids. Toxicon. 37: 11–32, 1999

    Google Scholar 

  54. Meier J: Individual and age-dependent variations in the venom of the fer-de-lance (Bothrops atrox). Toxicon 24: 41–46, 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kemparaju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shashidharamurthy, R., Jagadeesha, D., Girish, K. et al. Variation in biochemical and pharmacological properties of Indian cobra (Naja naja naja) venom due to geographical distribution. Mol Cell Biochem 229, 93–101 (2002). https://doi.org/10.1023/A:1017972511272

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017972511272

Navigation