Skip to main content
Log in

Consilience of genetics and archaeobotany in the entangled history of rice

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

Major leaps forward in understanding rice both in genetics and archaeology have taken place in the past decade or so—with the publication of full draft genomes for indica and japonica rice, on the one hand, and with the spread of systematic flotation and increased recovery of archaeological spikelet bases and other rice remains on early sites in China, India and Southeast Asia. This paper will sketch a framework that coherently integrates the evidence from these burgeoning fields. This framework implies a reticulate framework in the phylogeny of early cultivated rice, with multiple starts of cultivation (two is perhaps not enough) but with the key consolidations of adaptations that must have been spread through hybridisation and therefore long-distance cultural contacts. Archaeobotanical evidence allows us to document the gradual evolutionary process of domestication through rice spikelet bases and grain size change. Separate trends in grain size change can be identified in India and China. The earliest centre of rice domestication was in the Yangtze basin of China, but a largely separate trajectory into rice cultivation can be traced in the Ganges plains of India. Intriguingly, contact-induced hybridisation is indicated for the early development of indica in northern India, ca. 2000 BC. An updated synthesis of the interwoven patterns of the spread of various rice varieties throughout Asia and to Madagascar can be suggested in which rice reached most of its historical range of important cultivation by the Iron Age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams JM, Faure H (1997) Preliminary vegetation maps of the world since the last glacial maximum: an aid to archaeological understanding. J Archaeol Sci 24:623–647

    Google Scholar 

  • Ahn S (2010) The emergence of rice agriculture in Korea: archaeobotanical perspectives. Archaeol Anthropol Sci 2(2). doi:10.1007/s12520-010-0029-9

  • Allaby R (2010) Integrating the processes in the evolutionary system of domestication. J Exp Bot 61:935–944. doi:10.1093/jxb/erp382

    Google Scholar 

  • An Z (1999) The origin and eastward spread or rice-planting culture of China. Wenwu 2:63–70, In Chinese

    Google Scholar 

  • Asouti E, Fuller DQ (2008) Trees and woodlands of South India: archaeological perspectives. Left Coast, Walnut Creel, Retrieved from http://www.amazon.co.uk/Trees-Woodlands-South-India-Archaeological/dp/1598742310

    Google Scholar 

  • Barton H, Paz V (2007) Subterranean diets in the tropical rain forests of Sarawak, Malaysia. In: Denham T, Iriarte J, Vrydaghs L (eds) Rethinking agriculture. Archaeological and ethnoarchaeological perspectives. Left Coast, Walnut Creek, pp 50–77

    Google Scholar 

  • Bellwood P (1997) Prehistory of the Indo-Malaysian Archipelago (Second rev.). University of Hawaii Press, Honolulu

    Google Scholar 

  • Bellwood P (2005) First farmers: the origins of agricultural societies. Blackwell, Oxford

    Google Scholar 

  • Boaretto E, Wu X, Yuan J, Bar-Yosef O, Chu V, Pan Y, Liu K, Cohen D, Jiao T, Li S, Gu H, Goldberg P, Weiner S (2009) Radiocarbon dating of charcoal and bone collagen associated with early pottery at Yuchanyan Cave, Hunan Province, China. Proc Natl Acad Sci 106(24):9595–9600

    Google Scholar 

  • Cai HW, Morishima H (2002) QTL clusters reflect character associations in wild and cultivated rice. Theor Appl Genet 104:1217–1228

    Google Scholar 

  • Caicedo AL, Williamson SH, Hernandez RD, Boyko A, Fiedel-Alon A, York TL, Polato NR, Olsen KM, Nielsen R, McCouch SR, Bustamante CD, Purugganan MD (2007) Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLoS Genetics 3(9):e163. doi:10.1371/journal.pgen.0030163

    Google Scholar 

  • Cappers R (2006) Roman foodprints at Berenike: archaeobotanical evidence of subsistence and trade in the Eastern Desert of Egypt. Costen Institute of Archaeology, UCLA, Los Angeles

    Google Scholar 

  • Chang K (1980) Shang civilization. Yale University Press, New Haven

    Google Scholar 

  • Chen W, Nakamura I, Sato Y, Nakai H (1993) Distribution of deletion type in cpDNA of cultivated and wild rice. Jpn J Genet 68:597–603

    Google Scholar 

  • Costantini L (1979) Plant remains at Pirak. In: Jarrige J, Santoni M (eds) Fouilles de Pirak, vol. 1. Diffusion de Boccard, Paris, pp 326–333

    Google Scholar 

  • Costantini L (1987) Appendix B. Vegetal remains. In: Stacul G (ed) Prehistoric and protohistoric Swat, Pakistan. Instituto Italiano per il Medio ed Estremo Orientale, Rome, pp 155–165

    Google Scholar 

  • Crawford GW, Lee G (2003) Agricultural origins in the Korean Peninsula. Antiquity 77(295):87–95

    Google Scholar 

  • Crawford G, Underhill A, Zhao Z, Lee G, Feinman G, Nicholas L, Luan F, Yu H, Fang H, Cai F (2005) Late Neolithic plant remains from Northern China: preliminary results from Liangchengzhen, Shandong. Curr Anthropol 46(2):309–317

    Google Scholar 

  • Cunniffe J, Osborne CP, Ripley BS, Charles M, Jones G (2008) Response of wild C4 crop progenitors to subambient CO2 highlights a possible role in the origin of agriculture. Glob Chang Biol 14:576–587

    Google Scholar 

  • D'Andrea AC (1999) The dispersal of domesticated plants into north-eastern Japan. In: Gosden C, Hather JG (eds) The prehistory of food. Appetites for change. Routledge, London, pp 166–183

    Google Scholar 

  • Dewar RE, Wright HT (1993) The culture history of Madagascar. J World Prehist 7(4):417–466

    Google Scholar 

  • Doust AN (2007) Architectural evolution and its implications for domestication in grasses. Ann Bot 100(5):941–950

    Google Scholar 

  • Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Google Scholar 

  • Fujio S (2004) The beginning of agriculture in the Japanese islands. In: Society of Archaeological Studies (ed) Cultural diversity and the archaeology of the 21st century. Society of Archaeological Studies, Okayama, pp 62–73

    Google Scholar 

  • Fujiwara H (1993) Research into the history of rice cultivation using plant opal analysis. In: Pearsall DM, Piperno DR (eds) Current research in phytolith analysis: applications in archaeology and palaeoecology. MASCA Research Papers in Science and Archaeology, volume 10. University of Pennsylvania, Philadelphia, pp 160–174

    Google Scholar 

  • Fuller DQ (2002) Fifty years of archaeobotanical studies in India: laying a solid foundation. In: Settar S, Korisettar R, Settar S, Korisettar R (eds) Indian archaeology in retrospect, volume III. Archaeology and interactive disciplines. Manohar, New Delhi, pp 247–364

    Google Scholar 

  • Fuller DQ (2003) An agricultural perspective on Dravidian historical linguistics: archaeological crop packages, livestock and Dravidian crop vocabulary. In: Bellwood P, Renfrew C (eds) Examining the farming/language dispersal hypothesis. Mc Donald Institute for Archaeological Research, Cambridge, pp 191–214

    Google Scholar 

  • Fuller DQ (2006) Agricultural origins and frontiers in South Asia: a working synthesis. J World Prehist 20(1):1–86

    Google Scholar 

  • Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann Bot 100(5):903–924

    Google Scholar 

  • Fuller DQ (2009) Indian archaeobotany watch: Lahuradewa 2008. 25 June 2009 Web-log, retrieved from the internet: http://archaeobotanist.blogspot.com/2009/06/indian-archaeobotany-watch-lahuradewa.html

  • Fuller DQ, Allaby RG (2010) Seed dispersal and crop domestication: shattering, germination and seasonality in evolution under cultivation. In: Østergaard L (ed) Fruit development and seed dispersal, annual plant reviews 38. Wiley-Blackwell, Oxford, pp 238–295

    Google Scholar 

  • Fuller DQ, Boivin NL (2009) Crops, cattle and commensals across the Indian Ocean: current and potential archaeobiological evidence. Étud Océan Indien 42–43:13–46

    Google Scholar 

  • Fuller DQ, Harvey EL (2006) The archaeobotany of Indian pulses: identification, processing and evidence for cultivation. Env Archaeol 11(2):219–246. doi:10.1179/174963106x123232

    Google Scholar 

  • Fuller D, Qin L (2008) Immature rice and its archaeobotanical recognition: a reply to Pan. Antiquity 82(316), on-line. Retrieved from http://antiquity.ac.uk/ProjGall/fuller2/index.html

  • Fuller D, Qin L (2009) Water management and labour in the origins and dispersal of Asian rice. World Archaeol 41(1):88–111

    Google Scholar 

  • Fuller DQ, Zhang H (2007) A preliminary report of the survey archaeobotany of the upper Ying Valley (Henan Province) [in Chinese and English]. In: University and Henan Provincial Institute of Archaeology (ed) Dengfeng wangchenggang yizhi de faxian yu yanjiu (2002–2005) [Archaeological Discovery and Research at the Wangchenggang Site in Dengfeng (2002–2005)] [in Chinese]. Great Elephant, Zhengzhou, pp 916–958

    Google Scholar 

  • Fuller DQ, Harvey E, Qin L (2007) Presumed domestication? Evidence for wild rice cultivation and domestication in the fifth millennium BC of the lower Yangtze region. Antiquity 81:316–331

    Google Scholar 

  • Fuller DQ, Qin L, Zheng Y, Zhao Z, Chen X, Hosoya LA, Sun G (2009) The domestication process and domestication rate in rice: spikelet bases from the Lower Yangtze. Science 323(5921):1607–1610

    Google Scholar 

  • Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch SR (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638

    Google Scholar 

  • Glover IC, Higham CF (1996) New evidence for early rice cultivation in South, Southeast and East Asia. In: Harris DR (ed) The origins and spread of agriculture and pastoralism in Eurasia. UCL, London, pp 413–441

    Google Scholar 

  • Gupta PK, Rustgi S, Kumar N (2006) Genetic and molecular basis of grain size and grain number and its relevance to grain productivity in higher plants. Genome 571:565–571. doi:10.1139/G06-063

    Google Scholar 

  • Hammer K (1984) Das Domestikationssyndrome. Kulterpflanze 32:11–34

    Google Scholar 

  • Harlan JR, De Wet JM, Price EG (1973) Comparative evolution of cereals. Evolution 27:311–325

    Google Scholar 

  • Harvey EL (2006) Early agricultural communities in Northern and Eastern India: an archaeobotanical investigation. Unpublished Ph.D. dissertation, University College London

  • Harvey EL, Fuller D, Pal JN, Gupta MC (2003) Early agriculture of the Neolithic Vindhyas (North Central India). In: Franke-Vogt U, Weisshaar H-J (eds) South Asian archaeology, Proceedings of the seventeenth international conference of the European Association of South Asian Archaeologists (7–11 July 2003, Bonn). Deutches Archaeologisches Institut, Achen, pp 329–334

    Google Scholar 

  • Heiser CB (1988) Aspects of unconscious selection and the evolution of domesticated plants. Euphytica 37:77–81

    Google Scholar 

  • Higham C (2003) Languages and farming dispersals: Austroasiatic languages and rice cultivation. In: Bellwood P, Renfrew C (eds) Examining the farming/language dispersal hypothesis. Mc Donald Institute for Archaeological Research, Cambridge, pp 223–232

    Google Scholar 

  • Higham C, Higham T (2009) A new chronological framework for prehistoric Southeast Asia, based on a Bayesian model from Ban Non Wat. Antiquity 83(319):125–144

    Google Scholar 

  • Ho P-T (1956) Early-ripening rice in Chinese history. Econ Hist Rev 9(2):200–218

    Google Scholar 

  • Ho P-T (1977) The indigenous origins of Chinese agriculture. In: Reed CA (ed) Origins of agriculture. Mouton, The Hague, pp 413–484

    Google Scholar 

  • Horiuchi T, Samy SJ, Phang CC (1971) Grain loss during hand harvesting in the rice cultivation in Kedah, West Malaysia. Tonan Ajia Kinkyu (Southeast Asian Studies) 9(2):220–226

    Google Scholar 

  • Hudson M (2003) Agriculture and language change in the Japanese Islands. In: Bellwood P, Renfrew AC (eds) Examining the farming/language dispersal hypothesis. McDonald Institute for Archaeological Research, Cambridge, pp 311–318

    Google Scholar 

  • HPIAC [=Hunan Provincial Institute of Archaeology and Cultural Relics] (2006) Pengtoushan and Bashidang [in Chinese]. Wenwu, Beijing

    Google Scholar 

  • Huke RE (1982) Agroclimatic and dry-season maps of the South, and Southeast, and East Asia. International Rice Research Institute, Los Banos

    Google Scholar 

  • Imamura K (1996) Prehistoric Japan. New perspectives on insular East Asia. UCL, London

    Google Scholar 

  • Ishikawa R, Sato Y-I, Tang T, Nakamura I (2002) Different maternal origins of Japanese lowland and upland rice populations. Theor Appl Genet 104:976–980

    Google Scholar 

  • Jain S, Jain RK, McCouch SR (2004) Genetic analysis of Indian aromatic and quality rice (Oryza sativa L.) germplasm using panels of fluorescently-labeled microsatellite markers. Theor Appl Genet 109:965–977

    Google Scholar 

  • Jarrige J (1985) Continuity and change in the North Kachi Plain (Baluchistan, Pakistan) at the beginning of the second millennium B.C. In: Schotmans J, Taddei M (eds) South Asian archaeology 1983. Instituto Universitario Orientale, Dipartimento di Studi Asiatici, Naples, pp 35–68

    Google Scholar 

  • Jiang L, Liu L (2006) New evidence for the origins of sedentism and rice domestication in the Lower Yangzi River, China. Antiquity 80:355–361

    Google Scholar 

  • Jin J, Huang W, Gao J, Yang J, Shi M, Zhu M, Luo D, Lin H (2008) Genetic control of rice plant architecture under domestication. Nat Genet 40:1365–1369

    Google Scholar 

  • Kawakami S, Ebana K, Nishikawa T, Sato Y, Vaughan DA, Kadowaki K (2007) Genetic variation in the chloroplast genomes suggest multiple domestication of cultivated Asian rice (Oryza sativa L.). Genome 50:180–187

    Google Scholar 

  • Keally CT (2004) Bad science and the distortion of history: radiocarbon dating in Japanese Archaeology. Sophia Int Rev 26. Accessed on-line (30 March 2010), http://www.t-net.ne.jp/∼keally/Reports/sir2004.html

  • Kim J, Yang D, Nahm W, Yi S, Hong S, Yun H et al (2008) Last Glacial and Holocene fluvial wetland sedimentary stratigraphy: comparison between Soro-ri and Jangheung-ri archeological sites, Korea. Quatern Int 176-177:135–142, Retrieved from http://dx.doi.org/10.1016/j.quaint.2007.05.013

    Google Scholar 

  • Kitano H, Futsuhara Y, Satoh H (1993) Morphological variations in rice cultivars. In: Matsuo T, Hoshikawa K (eds) Science of the rice plant. Volume One. Morphology. Food and Agriculture Policy Research Center, Tokyo, pp 79–88

    Google Scholar 

  • Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M (2006) An SNP caused loss of seed shattering during rice domestication. Science 312(5778):1392–1396

    Google Scholar 

  • Kovach MJ, Sweeney MT, McCouch SR (2007) New insights into the history of rice domestication. Trends Genet 23:578–587

    Google Scholar 

  • Kovach MJ, Calingacion MN, Fitzgerald MA, McCouch SR (2009) The origin and evolution of fragrance in rice (Oryza sativa L.). Proc Natl Acad Sci USA 106(34):14444–14449

    Google Scholar 

  • Kuraku Y (2002) The origin and development of rice cultivation in Japan. In: Yasuda Y (ed) The origins of pottery and agriculture. Lustre, Delhi, pp 312–317

    Google Scholar 

  • Kuzmin YV (2006) Chronology of the earliest pottery in East Asia: progress and pitfalls. Antiquity 80(308):362–371

    Google Scholar 

  • Lee Y, Woo J (2006) La culture du Paleolithique dans la region de Jungwon en Coree. Anthropologie 110(2):175–186, Retrieved from http://www.sciencedirect.com/science/article/B6X0X-4JTRTBR-2/2/94d21c38ae6e2e732a883b8498039a8f

    Google Scholar 

  • Lee G-A, Crawford G, Liu L, Chen X (2007) Plants and people from the early Neolithic to the Shang periods in North China. Proc Natl Acad Sci 104(3):1087–1092

    Google Scholar 

  • Li C, Zhou A, Sang T (2006a) Genetic analysis of the rice domestication syndrome with the wild annual species, Oryza nivara. New Phytol 170(1):185–193

    Google Scholar 

  • Li C, Zhou A, Sang T (2006b) Rice domestication by reducing shattering. Science 311:1936–1939

    Google Scholar 

  • Li X, Dodson J, Zhou X, Zhang H, Masutomoto R (2007) Early cultivated wheat and broadening of agriculture in Neolithic China. Holocene 17:555–560

    Google Scholar 

  • Lin Z, Griffith ME, Li X, Zhu Z, Tan L, Fu Y et al (2007) Origin of seed shattering in rice (Oryza sativa L.). Planta 226:11–20

    Google Scholar 

  • Liu L, Lee G, Jiang L, Zhang J (2007) Evidence for the early beginning (c. 9000 cal. BP) of rice domestication in China: a response. Holocene 17:1059–1068

    Google Scholar 

  • Londo JP, Chiang Y, Hung K, Chiang T, Schaal BA (2006) Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Natl Acad Sci USA 103:9578–9583

    Google Scholar 

  • Lu TLD (2006) The occurrence of cereal cultivation in China. Asian Perspect 45(2):129–158

    Google Scholar 

  • Lu TLD (2009) Prehistoric coexistence: the expansion of farming society from the Yangzi River to Western South China. In: Ikeya K, Ogawa H, Mitchell P (eds) Interactions between hunter–gatherers and farmers: from prehistory to present. National Museum of Ethnology, Osaka, pp 47–52

    Google Scholar 

  • Lu H, Liu Z, Wu N, Berné S, Saito Y, Liu B, Wang L (2002) Rice domestication and climatic change: phytolith evidence from East China. Boreas: An International Journal of Quaternary Research 31(4):378–385

    Google Scholar 

  • Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101:12404–12410

    Google Scholar 

  • McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, Zeller G, Clark RM, Hoen DR, Bureau TE, Stokowski R, Ballinger DG, Frazer KA, Cox DR, Padhukasahasram B, Bustamante CD, Weigel D, Mackill DJ, Bruskiewich RM, Ratsch G, Buell CR, Leung H, Leach JE (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci USA 106(30):12273–12278

    Google Scholar 

  • Miller NF (1981) Plant remains from Ville Royale II, Susa. Cah DAFI 12:137–142

    Google Scholar 

  • Mori Y (2002) The origin and development of rice paddy cultivation in Japan based on evidence of insect and diatom fossils. In: Yasuda Y (ed) The origins of pottery and agriculture. Lustre, Delhi, pp 273–296

    Google Scholar 

  • Mudar KM (1999) How many Dvaravati Kingdoms? Locational analysis of first millennium A.D. Moated settlements in Central Thailand. J Anthropol Archaeol 18:1–28

    Google Scholar 

  • Nakamura S (2010) The origin of rice cultivation in the lower Yangtze Region, China. Archaeol Anthropol Sci 2 (this issue)

  • Nakamura I, Urairong H, Kameya N, Fukuta Y, Chitrkon S, Sato YI (1998) Six different plastid subtypes were found in the O. sativa–O. rufipogon complex. Rice Genet Newslett 15:80–82

    Google Scholar 

  • Nasu H, Momohara A, Yasuda Y, He J (2007) The occurrence and identification of Setaria italica (L.) P. Beauv. (foxtail millet) grains from the Chengtoushan site (ca. 5800 cal B.P.) in central China, with reference to the domestication centre in Asia. Veg Hist Archaeobot 16(6):481–494

    Google Scholar 

  • Nitsuma Y (1993) Upland rice. In: Matsuo T, Hoshikawa K (eds) Science of the rice plant, vol. 1. Morphology. Food and Agriculture Policy Research Center, Tokyo, pp 70–76

    Google Scholar 

  • Norton CJ (2007) Sedentism, territorial circumscription, and the increased use of plant domesticates across Neolithic–Bronze Age Korea. Asian Perspect 46(1):133–165

    Google Scholar 

  • Ohtsubo H, Cheng C, Ohsawa I, Tsichimoto S, Ohtsubo E (2004) Rice retroposon p-SINE1 and origin of cultivated rice. Breed Sci 54:1–11

    Google Scholar 

  • Oka H (1988) Origins of cultivated rice. Elsevier, Amsterdam

    Google Scholar 

  • Olsen KM, Purugganan MD (2002) Molecular evidence on the origin and evolution of glutinous rice. Genetics 162:941–950

    Google Scholar 

  • Pan Y (2008) Immature wild rice harvesting at Kuahuqiao, China? Antiquity 82. Online: http://www.antiquity.ac.uk/ProjGall/pan/in

  • Paz V (2003) Island Southeast Asia: spread or friction zone? In: Bellwood P, Renfrew AC (eds) Examining the farming/language dispersal hypothesis. McDonald Institute for Archaeological Research, Cambridge, pp 275–285

    Google Scholar 

  • Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457(7231):843–848. doi:10.1038/nature07895

    Google Scholar 

  • Qin L, Fuller (Fu Daolian) DQ (2009) Appendix 3. The Nanjiaokou site 2007 excavated Early to Mid Yangshao plant remains. In: Henan Provincial Institute of Cultural Relics and Archaeology (ed) Nanjiaokou site in Sanmenxia. Science, Beijing, pp 427–435, In Chinese

  • Ren G, Beug H (2002) Mapping Holocene pollen data and vegetation of China. Quatern Sci Rev 21:1395–1422

    Google Scholar 

  • Rispoli F (2008) The incised and impressed pottery of Mainland Southeast Asia: following the paths of Neolithization. East West 57:235–304

    Google Scholar 

  • Rosen A (2008) The impact of environmental change and human land use on alluvial valleys on the Loess Plateau of China during the Mid-Holocene. Geomorphology 101:298–307

    Google Scholar 

  • Sato Y, Tang SX, Yang LU, Tang LH (1991) Wild-rice seeds in the oldest rice remains. Rice Genetics Newsletter 8:76

    Google Scholar 

  • Sagart L (2008) The expansion of Setaria farmers in East Asia: a linguistic and archaeological model. In: Sanchez-Mazas A, Blench RM, Ross M, Lin M, Pejros I (eds) Human migrations in continental East Asia and Taiwan: matching archaeology, linguistics and genetics. Taylor & Francis, London, pp 133–157

    Google Scholar 

  • Sage RF (1995) Was low atmospheric CO2 during the Pleistocene a limiting factor for the origin of agriculture? Glob Chang Biol 1:93–106

    Google Scholar 

  • Sang T, Ge S (2007) The puzzle of rice domestication. J Integr Plant Biol 49(6):760–768

    Google Scholar 

  • Saraswat KS, Sharma NK, Saini DC (1994) Plant economy ay ancient Narhan (ca. 1,300 B.C.–300/400 A.D.). In: Singh P (ed) Excavations at Narhan (1984–1989). Banaras Hindu University, Varanasi, pp 255–346

    Google Scholar 

  • Sato Y (1996) DNA-ga Kataru Inasaku Bunmaei Kingento Tenkai [The origins of rice culture inferred from DNA analysis] (in Japanese). NHK Books, Tokyo

    Google Scholar 

  • Sato Y (2002) Origin of rice cultivation in the Yangtze River Basin. In: Yasuda Y (ed) The origins of pottery and agriculture. Lustre, New Delhi, pp 143–150

    Google Scholar 

  • Saxena A, Prasad V, Singh IB, Chauhan MS, Hassan R (2006) On the Holocene record of phytoliths of wild and cultivated rice from Ganga Plain: evidence for rice-based agriculture. Curr Sci 90(11):1547–1552

    Google Scholar 

  • Shan J, Zhu M, Shi M, Gao J, Lin H (2009) Fine mapping and candidate gene analysis of spd6, responsible for small panicle and dwarfness in wild rice (Oryza rufipogon Griff.). Theor Appl Genet 119(5):827–836

    Google Scholar 

  • Sharma AK (1982) Excavations at Gufkral, 1981. Puratattva 11:19–25

    Google Scholar 

  • Shi Y, Kong Z, Wang S, Tang L, Wang F, Yao T et al (1993) Mid-Holocene climates and environments in China. Glob Planet Change 7:219–233

    Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1028

    Google Scholar 

  • Song X, Huang W, Shi M, Zhu M-Z, Lin H (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Google Scholar 

  • Stacul G (1992) Swat, Pirak, and connected problems (mid-2nd millennium B.C.). In: Jarrige C, Gerry JP, Meadow RH (eds) South Asian archaeology 1989. Prehistory, Madison, pp 267–270

    Google Scholar 

  • Sweeney MT, McCouch SR (2007) The complex history of the domestication of rice. Ann Bot 100:951–957

    Google Scholar 

  • Takahashi R (2009) Symbiotic relations between paddy-field rice cultivators and hunter-gatherer-fishers in Japanese prehistory: archaeological considerations on the transition from the Jomon Age to the Yayoi Age. In: Ikeyea K, Ogawa H, Mithcell P (eds) Interactios between hunter-gatherers and farmers: from prehistory to present. Senri Ethnological Studies 73. National Museum of Ethnology, Osaka, pp 71–98

  • Takahashi H, Sato Y, Nakamura I (2008) Evolutionary analysis of two plastid DNA sequences in cultivated and wild species of Oryza. Breed Sci 233:225–233

    Google Scholar 

  • Takamiya H (2001) Introductory routes of rice to Japan: an examination of the Southern Hypothesis. Asian Perspect 40(2):209–226

    Google Scholar 

  • Tan L, Li X, Liu F, Sun X, Li C, Zhu Z et al (2008) Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet 40:1360–1364

    Google Scholar 

  • Tanaka K, Ishikawa R, Honda T (2010) Rice archaeological remains and the possibility of DNA archaeology: examples from Yayoi and Heian periods of Northern Japan. Archaeol Anthropol Sci (this volume)

  • Tang JB, Xia HA, Cao ML, Zhang XQ, Zheng WY, Hu SN et al (2004) A comparison of rice chloroplast genomes. Plant Physiol 135:412–420

    Google Scholar 

  • Tewari R, Srivastava RK, Singh KK, Saraswat KS, Singh IB, Chauhan MS et al (2006) Second preliminary report of the excavations at Lahuradewa. District Sant Kabir Nagar, U. P.: 2002–2003–2004 & 2005–06. Pragdhara 16:35–68

    Google Scholar 

  • Tewari R, Srivastava RK, Saraswat KS, Singh IB, Singh KK (2008) Early farming at Lahuradewa. Pragdhara 18:347–373

    Google Scholar 

  • Thompson GB (1996) The excavations of Khok Phanom Di, a prehistoric site in Central Thailand. Volume IV. Subsistence and environment: the botanical evidence. The biological remains part III. The Society of Antiquaries of London, London

    Google Scholar 

  • Thompson GB (1997) Archaeobotanical indicators of rice domestication—a critical evaluation of diagnostic criteria. In: Ciarla R, Rispoli F (eds) South-East Asian archaeology 1992. Instituto Italiano per il Medio ed Estremo Orientale, Rome, pp 159–174

    Google Scholar 

  • Toyama S (2002) The origin and spread of rice cultivation as seen from rice remains. In: Yasuda Y (ed) The origins of pottery and agriculture. Lustre, Delhi, pp 263–272

    Google Scholar 

  • Tsang C (2005) Recent discoveries at a Tapenkeng culture site in Taiwan: implications for the problem of Austronesian origins. In: Sagart L, Blench R, Sanchez-Mazas A (eds) The peopling of East Asia: putting together archaeology, linguistics and genetics. Routledge-Curzon, London, pp 63–74

    Google Scholar 

  • Vaughan DA, Kadowaki K, Kaga A, Tomooka N (2005) On the phylogeny and biogeography of the genus Oryza. Breed Sci 55:113–122

    Google Scholar 

  • Vaughan DA, Lu B, Tomooka N (2008a) The evolving story of rice evolution. Plant Sci 174(4):394–408

    Google Scholar 

  • Vaughan DA, Lu B, Tomooka N (2008b) Was Asian rice (Oryza sativa) domesticated more than once? Rice 1:16–24

    Google Scholar 

  • Vincent B (2003) Rice in pottery: new evidence for early rice cultivation in Thailand. Indo-Pacific Prehistory Association Bulletin 23:51–58

    Google Scholar 

  • Vitte C, Ishii T, Lamy F, Brar D, Panaud O (2004) Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa L.). Mol Genet Genomics 272:504–511

    Google Scholar 

  • Weber S, Lehman H, Barela T, Hawks S, Harriman D (2010) Rice or millets: early farming strategies in prehistoric central Thailand. Archaeol Anthropol Sci 2 (this volume). doi:10.1007/s12520-010-0030-3

  • White JC (1995) Modeling the development of early rice agriculture: ethnoecological perspectives from northeast Thailand. Asian Perspect 34:37–68

    Google Scholar 

  • Xiong LZ, Liu KD, Dai XK, Xu CG, Zhang Q (1999) Identification of genetic factors controlling domestication-related traits of rice using an F2 population of a cross between Oryza sativa and O. rufipogon. Theor Appl Genet 98(2):243–251. doi:10.1007/s001220051064

    Google Scholar 

  • You X (1987) The wild rice in Chinese ancient records (Zhongguo Gushu Zhong Jizai de Yeshengdao Tantao) [in Chinese]. Gujin Nongye [Ancient and Modern Agriculture] 1987(1):1–6

    Google Scholar 

  • Yu SY, Zhu C, Song J, Qu WZ (2000) Role of climate in the rise and fall of Neolithic cultures on the Yangtze Delta. Boreas 29:157–165

    Google Scholar 

  • Zhang W (2002) The bi-peak tubercle of rice, the character of ancient rice and the origin of cultivated rice. In: Yasuda Y (ed) The origins of pottery and agriculture. Lustre, Delhi, pp 205–216

    Google Scholar 

  • Zhang C, Hung H-C (2008) The Neolithic of southern China—origin, development and dispersal. Asian Perspect 47(2):299–329

    Google Scholar 

  • Zhang C, Hung H (2010) The emergence of agriculture in southern China. Antiquity 84(323):11–25

    Google Scholar 

  • Zhang J, Wang X (1998) Notes on the recent discovery of ancient cultivated rice at Jiahu, Henan Province: a new theory concerning the origin of Oryza japonica in China. Antiquity 72:897–901

    Google Scholar 

  • Zhang LB, Zhu Q, Wu ZQ, Ross-Ibarra J, Gaut B, Ge S, Sang T (2009) Selection on grain shattering genes and rates of rice domestication. New Phytol 184:708–720

    Google Scholar 

  • Zhao Z (1998) The Middle Yangtze region in China is one place where rice was domesticated: phytolith evidence from the Diaotonghuan Cave, Northern Jiangxi. Antiquity 72:885–897

    Google Scholar 

  • Zhao Z (2010) New data and new issues for the study of origin of rice agriculture in China. Archaeol Anthropol Sci 2 (this volume)

  • Zhao Z, Piperno D (2000) Late Pleistocene/Holocene environments in the Middle Yangtze River Valley of the Taihu Lake in China and rice (Oryza sativa L.) domestication: the phytoliths evidence. Geoarchaeology 15:203–222

    Google Scholar 

  • Zhao Z, Pearsall DM, Benfer RA, Piperno DR (1998) Distinguishing rice (Oryza sativa Poaceae) from wild Oryza species through phytolith analysis II: finalised method. Econ Bot 52:134–145

    Google Scholar 

  • Zheng Y, Dong Y, Matsui A, Udatsu E, Fuijiwara H (2003) Molecular genetic basis of determining subspecies of ancient rice using shape of phytoliths. J Archaeol Sci 30:1215–1221

    Google Scholar 

  • Zheng Y, Sun G, Chen X (2007) Characteristics of the short rachillae of rice from archaeological sites dating to 7000 years ago. Chin Sci Bull 52:1654–1660

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorian Q. Fuller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1454 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuller, D.Q., Sato, YI., Castillo, C. et al. Consilience of genetics and archaeobotany in the entangled history of rice. Archaeol Anthropol Sci 2, 115–131 (2010). https://doi.org/10.1007/s12520-010-0035-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-010-0035-y

Keywords

Navigation