Skip to main content

Advertisement

Log in

Prediabetes and associated disorders

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Prediabetes represents an elevation of plasma glucose above the normal range but below that of clinical diabetes. Prediabetes includes individuals with IFG, IGT, IFG with IGT and elevated HbA1c levels. Insulin resistance and β-cell dysfunction are characteristic of this disorder. The diagnosis of prediabetesis is vital as both IFG and IGT are indeed well-known risk factors for type 2 diabetes with a greater risk in the presence of combined IFG and IGT. Furthermore, as will be illustrated in this review, prediabetes is associated with associated disorders typically only considered in with established diabetes. These include cardiovascular disease, periodontal disease, cognitive dysfunction, microvascular disease, blood pressure abnormalities, obstructive sleep apnea, low testosterone, metabolic syndrome, various biomarkers, fatty liver disease, and cancer. As the vast majority of individuals with prediabetes are unaware of their diagnosis, it is therefore vital that the associated conditions are identified, particularly in the presence of mild hyperglycemia, so they may benefit from early intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. M. Buysschaert, M. Bergman, Definition of prediabetes. Med. Clin. N. Am. 95(2), 289–297 (2011)

    CAS  PubMed  Google Scholar 

  2. K. Færch, K. Borch-Johnsen, J.J. Holst, A. Vaag, Pathophysiology and aetiology of impaired fasting glycemia and impaired glucose tolerance: does it matter for prevention and treatment of type 2 diabetes? Diabetologia 52, 1714–1723 (2009)

    PubMed  Google Scholar 

  3. R.A. DeFronzo, M.A. Ghani, Assessment and treatment of cardiovascular risk in prediabetes: impaired glucose tolerance and impaired fasting glucose. Am. J. Cardiol. 108(Suppl), 3B–24B (2011)

    CAS  PubMed  Google Scholar 

  4. M. Buysschaert, M. Bergman, Diagnosis of prediabetes and diabetes prevention, in Prevention of Diabetes, 1st edn., ed. by P. Schwarz, P. Reddy (Wiley, New York, 2013)

    Google Scholar 

  5. M. Buysschaert, V. Preumont, J.L. Medina, M. Bergman, Global Health Perspectives in Prediabetes and Diabetes (World Scientific Publishing, Hackensack, 2014)

    Google Scholar 

  6. H. Gerstein, P. Santaguida, P. Raina, K. Morrison, C. Balion, D. Hunt, H. Yazdi et al., Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: a systematic review and meta-analysis of prospective studies. Diabetes Res. Clin. Pract. 78, 305–312 (2007)

    PubMed  Google Scholar 

  7. A.G. Tabák, C. Herder, W. Rathmann, E.J. Brunner, M. Kivimäki, Prediabetes: a high-risk state for diabetes development. Lancet 379, 2279–2290 (2012)

    PubMed Central  PubMed  Google Scholar 

  8. E. Ferrannini: Definition of intervention points in prediabetes. Lancet (2014). doi:10.1016/s2213-8587(13)70175-x

  9. S.M. Grundy, Pre-diabetes, metabolic syndrome and cardiovascular risk. JACC 59, 635–643 (2012)

    CAS  PubMed  Google Scholar 

  10. J.L. Chiasson, S. Bernard, Reducing cardiovascular risk factors in patients with prediabetes. Diabetes Manag. 1(4), 423–438 (2011)

    Google Scholar 

  11. L.G. Mellbin, M. Anselmino, R. Lars, Diabetes, prediabetes and cardiovascular risk. Eur. J. Cardiovasc. Prev. Rehabil. 17, S9–S14 (2010)

    PubMed  Google Scholar 

  12. A. Norhammar, A. Tenerz, G. Nilsson, A. Hamsten, S. Effendic, L. Ryden, G. Malmber, Glucose metabolism in patients with acute myocardial infarction and no previous diagnosis of diabetes mellitus: a prospective study. Lancet 359, 2140–2144 (2002)

    CAS  PubMed  Google Scholar 

  13. S. Fonville, A.A.M. Zandbergen, S.E. Vermeer, D.W.J. Dippel, P.J. Koudstaal, H.M. den Hertog, Prevalence of prediabetes and newly diagnosed diabetes in patients with a transient ischemic attack or stroke. Cerebrovasc. Dis. 36, 283–289 (2013)

    CAS  PubMed  Google Scholar 

  14. W.L. Lee, A.M. Cheung, D. Cape, B. Zinman, Impact of diabetes on coronary artery disease in women and men: a meta-analysis of prospective studies. Diabetes Care 23(7), 962–968 (2000)

    CAS  PubMed  Google Scholar 

  15. R. Huxley, F. Barzi, M. Woodward, Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ 332(7533), 73–78 (2006)

    PubMed Central  PubMed  Google Scholar 

  16. Emerging Risk Factors Collaboration, N. Sarwar, P. Gao, S.R. Seshasai, R. Gobin, S. Kaptoge, E. Di Angelantonio et al., Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375, 2215–2222 (2010)

    Google Scholar 

  17. E.J. Brunner, M.J. Shipley, D.R. Witte, J.H. Fuller, M.G. Marmot, Relation between blood glucose and coronary mortality over 33 years in the Whitehall Study. Diabetes Care 29(1), 26–31 (2006)

    PubMed  Google Scholar 

  18. B. Balkau, M. Shipley, R.J. Jarrett, K. Pyörälä, M. Pyörälä, A. Forhan, E. Eschwège, High blood glucose concentration is a risk factor mortality in middle-aged nondiabetic men. 20-year follow-up in the Whitehall Study. The Paris Prospective Study, and the Helsinki Policemen Study. Diabetes Care 21(3), 360–367 (1998)

    CAS  PubMed  Google Scholar 

  19. M. Coutinho, H.C. Gerstein, Y. Wang, S. Yusuf, The relationship between glucose and incident cardiovascular events. Diabetes Care 22, 233–240 (1999)

    CAS  PubMed  Google Scholar 

  20. E.L. Barr, P.Z. Zimmet, T.A. Welborn, D. Jolley, D.J. Magliano, D.W. Dunstan et al., Risk of cardiovascular and all-cause mortality in individuals with diabetes mellitus, impaired fasting glucose, and impaired glucose tolerance: the Australian Diabetes, Obesity and lifestyle Study (AusDiab). Circulation 116(2), 151–157 (2007)

    CAS  PubMed  Google Scholar 

  21. B. Hoogwerf, D. Spreche, G. Pearce, M. Alevedo, J.P. Frolkis, J.M. Foody et al., Blood glucose concentration ≤125 mg/dl and coronary heart disease risk. Am. J. Cardiol. 89, 556–559 (2002)

    Google Scholar 

  22. E.S. Ford, G. Zhao, C. Li, Pre-diabetes and the risk for cardiovascular disease. A systematic review of the evidence. J. Am. Coll. Cardiol. 55, 1310–1317 (2010)

    PubMed  Google Scholar 

  23. E.L.M. Barr, E.J. Boyko, P.Z. Zimmet, R. Wolfe, A.M. Tonkin, J.E. Shaw, Continuous relationship between non-diabetic hyperglycaemia and both cardiovascular disease and all-cause mortality: the Australian Diabetes, Obesity, and lifestyle (AusDiab) study. Diabetologia 52, 415–424 (2009)

    CAS  PubMed  Google Scholar 

  24. E. Selvin, M.W. Steffes, H. Zhu, K. Matsushita, L. Wagenknecht, J. Pankow et al., Glycated hemoglobin, diabetes and cardiovascular risk in non diabetic adults. N. Engl. J. Med. 362(9), 800–811 (2010)

    PubMed Central  CAS  PubMed  Google Scholar 

  25. M. Lee, J.L. Saver, K.S. Hong, S. Song, K.H. Chang, B. Ovbiagele, Effect of pre-diabetes on future risk of stroke: meta-analysis. BMJ 344, e3564 (2012). doi:10.1136/bmj.e3564

    PubMed Central  PubMed  Google Scholar 

  26. A. Di Pino, R. Scicali, S. Calanna, F. Urbano, C. Mantegna, A.M. Rabuazzo et al., Cardiovascular risk profile in subjects with prediabetes and new-onset type 2 diabetes identified by HbA1c according to American Diabetes Association criteria. Diabetes Care 37, 1447–1453 (2014)

    PubMed  Google Scholar 

  27. J. Yeboah, A.G. Bertoni, D.M. Herrington, W.S. Post, G.L. Burke, Impaired fasting glucose and the risk of incident diabetes mellitus and cardiovascular events in an adult population. J. Am. Coll. Cardiol. 58, 140–146 (2001)

    Google Scholar 

  28. B. Kowall, W. Rathmann, M. Heier, G. Giani, A. Peters, B. Thorand et al., Categories of glucose tolerance and continuous glycemic measures and mortality. Eur. J. Epidemiol. 26(8), 637–645 (2011)

    CAS  PubMed  Google Scholar 

  29. P. Deedwania, K. Patel, G.C. Fonarow, R.V. Desai, Y. Zhang, M.A. Feller et al., Prediabetes is not an independent risk factor for incident heart failure, other cardiovascular events or mortality in older adults: findings from a population-based cohort study. Int. J. Cardiol. 168(4), 3616–3622 (2013)

    PubMed Central  PubMed  Google Scholar 

  30. K. Shaye, T. Amir, S. Shlomo, S. Yechezkel, Fasting glucose levels within the high normal range predict cardiovascular outcome. Am. Heart J. 164, 111–116 (2012)

    CAS  PubMed  Google Scholar 

  31. For the DECODE Study Group, F. Ning, J. Tuomilehto, K. Pyörälä, A. Onat, S. Söderberg, Q. Qiao, Cardiovascular disease mortality in Europeans in relation to fasting and 2-h plasma glucose levels within a normoglycemic range. Diabetes Care 33, 2211–2216 (2010)

    PubMed Central  Google Scholar 

  32. K.T. Khaw, N. Wareham, R. Luben, S. Bingham, S. Oakes, A. Welch, N. Day, Glycated haemoglobin, diabetes, and mortality in men in Norfolk cohort of European Prospective Investigation of Cancer and Nutrition (EPIC-Norfolk). BMJ 322, 1–6 (2001)

    Google Scholar 

  33. K.T. Khaw, N. Wareham, S. Bingham, R. Luben, A. Welch, N. Day, Association of hemoglobin A1c with cardiovascular disease and mortality in adults: the European prospective investigation into cancer in Norfolk. Ann. Intern. Med. 141(6), 413–420 (2004)

    CAS  PubMed  Google Scholar 

  34. H.C. Gerstein, S. Islam, S. Anand, W. Almahmeed, A. Damasceno, A. Dans et al., Dysglycaemia and the risk of acute myocardial infarction in multiple ethnic groups: an analysis of 15,780 patients from the INTERHEART study. Diabetologia 53, 2509–2517 (2010)

    CAS  PubMed  Google Scholar 

  35. Q. Qiao, K. Pyörälä, M. Pyörälä, A. Nissinen, J. Lindström, R. Tilvis, J. Tuomilehto, Two-hour glucose is better risk predictor for incident coronary heart disease and cardiovascular mortality than fasting glucose. Eur. Heart J. 23(16), 1267–1275 (2002)

    CAS  PubMed  Google Scholar 

  36. The DECODE Study Group, On behalf of the European Diabetes Epidemiology Group, Glucose tolerance and cardiovascular mortality. Comparison of fasting and 2-hour diagnostic criteria. Arch. Intern. Med. 161, 397–404 (2001)

    Google Scholar 

  37. S.B. Meigs, D.M. Nathan, R.B. D’Agostino Sr, The Framingham Offspring Study. Fasting and postchallenge glycemic and cardiovascular disease risk. Diabetes Care. 25, 1845–1850 (2002)

    PubMed  Google Scholar 

  38. F. De Vegt, J.M. Dekker, H.G. Ruhé, C.D. Stehouwer, G. Nijpels, L.M. Bouter, R.J. Heine, Hyperglycaemia is associated with all-cause and cardiovascular mortality in the Hoorn population: the Hoorn Study. Diabetologia 42(8), 926–931 (1999)

    PubMed  Google Scholar 

  39. M. Tominaga, H. Eguchi, H. Manaka, K. Igarashi, T. Kato, A. Sekikawa, Impaired glucose tolerance is a risk factor for cardiovascular disease but not impaired fasting glucose. The Funagata Diabetes Study. Diabetes Care. 22(6), 920–924 (1999)

    CAS  PubMed  Google Scholar 

  40. K. Kato, T. Otsuka, N. Kobayashi, Y. Kon, T. Kawada, Two-hour post-load plasma glucose levels are associated with carotid intima-media thickness in subjects with normal glucose tolerance. Diabet. Med. 31(1), 76–83 (2014)

    CAS  PubMed  Google Scholar 

  41. Emerging Risk Factors Collaboration, S.R. Seshasai, S. Kaptoge, A. Thompson, E. Di Angelantonio, P. Gao, N. Sarwar et al., Diabetes mellitus, fasting glucose, and risk of cause-specific death. N. Engl. J. Med. 364(9), 829–841 (2011)

    Google Scholar 

  42. J.A. Laukkanen, T.H. Makikallio, K. Ronkainen, J. Karppi, S. Kurl, Impaired fasting plasma glucose and type 2 diabetes are related to the risk of out-of-hospital sudden cardiac death and all-cause mortality. Diabetes Care 36, 1166–1171 (2012). doi:10.2337/dc12-0110

    PubMed  Google Scholar 

  43. Y.S. Levitzky, M.J. Pencina, R.B. D’Agostino, J.B. Meigs, J.M. Murabito, R.S. Vasan, C.S. Fox, Impact of impaired fasting glucose on cardiovascular disease. JACC 51, 264–270 (2008)

    CAS  PubMed  Google Scholar 

  44. E. Selvin, J. Coresh, S.H. Golden, F.L. Brancati, A.R. Folsom, M.W. Steffes, Glycemic control and coronary heart disease risk in persons with and without diabetes: the atherosclerosis risk in communities study. Arch. Intern. Med. 165(16), 1910–1916 (2005)

    PubMed  Google Scholar 

  45. N. Sarwar, T. Aspelund, G. Eiriksdottir, R. Gobin, S.R. Seshasai, N.G. Forouhi et al., Markers of dysglycaemia and risk of coronary heart disease in people without diabetes: Reykjavik prospective study and systematic review. PLoS Med. 7(5), e1000278 (2010). doi:10.1371/journal.pmed.1000278

    PubMed Central  PubMed  Google Scholar 

  46. M.V. Skriver, K. Borch-Johnsen, T. Lauritzen, HbA1c as predictor of all-cause mortality in individuals at high risk of diabetes with normal glucose tolerance, identified by screening: a follow-up study of the Anglo-Danish-Dutch Study of Intensive Treatment in People with Screen-Detected Diabetes in Primary Care (ADDITION), Denmark. Diabetologia 53(11), 2328–2333 (2010)

    CAS  PubMed  Google Scholar 

  47. K. Faerch, D. Vistisen, N. Johansen Borup, M.E. Jorgensen, Cardiovascular risk stratifications and management in prediabetes. Curr. Diab. Rep. 14, 493 (2014)

    PubMed  Google Scholar 

  48. S. Kodama, K. Saito, S. Tanaka et al., Fasting and post-challenge glucose as quantitative cardiovascular risk factors: a meta-analysis. J. Atheroscler. Thromb. 19, 385–396 (2012)

    CAS  PubMed  Google Scholar 

  49. A.S. Gami, B.J. Witt, D.E. Howard et al., Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies. J. Am. Coll. Cardiol. 49, 403–414 (2007)

    CAS  PubMed  Google Scholar 

  50. S. Mottillo, K.B. Filion, J. Genest et al., The metabolic syndrome and cardiovascular risk : a systematic review and meta-analysis. J. Am. Coll. Cardiol. 56, 1113–1132 (2010)

    PubMed  Google Scholar 

  51. Y. Zhang, E.T. Lee, R.B. Devereux, J. Yeh, L.G. Best, R.R. Fabsitz, B.V. Howard, Prehypertension diabetes and cardiovascular disease risk in a population-based sample: the Strong Heart Study. Hypertension 47, 410–414 (2006)

    CAS  PubMed  Google Scholar 

  52. S. Milman, J.P. Crandall, Mechanisms of vascular complications in prediabetes. Med. Clin. N. Am. 95, 309–325 (2011)

    CAS  PubMed  Google Scholar 

  53. J. Tuomilehto, J. Lindström, J.G. Eriksson, T.T. Valle, H. Hämäläinen, P. Ilanne-Parikka et al., Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 344(18), 1343–1350 (2001)

    CAS  PubMed  Google Scholar 

  54. R. Ratner, R. Goldberg, S. Haffner, S. Marcovina, T. Orchard, S. Fowler, Impact of intensive lifestyle and metformin therapy on cardiovascular disease risk factors in the diabetes prevention program. Diabetes Care 28(4), 888–894 (2005)

    PubMed  Google Scholar 

  55. W.C. Knowler, E. Barrett-Connor, S.E. Fowler, R.F. Hammam, J.M. Lachin, E.A. Walker et al., Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346(6), 393–403 (2002)

    CAS  PubMed  Google Scholar 

  56. T. Orchard, M. Temprosa, E. Barrett-Connor et al., Long-term effects of the Diabetes Prevention Program interventions on cardiovascular risk factors: a report from the DPP Outcomes Study. Diabet. Med. 30, 46–55 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  57. F.B. Hu, M.J. Stampfer, S.M. Haffner, C.G. Solomon, W.C. Willett, J.E. Manson, Elevated risk of cardiovascular disease prior to clinical diagnosis of type 2 diabetes. Diabetes Care 25(7), 1129–1134 (2002)

    PubMed  Google Scholar 

  58. J.L. Chiasson, R.G. Josse, R. Gomis, M. Hanefeld, A. Karasik, M. Laakso, Acarbose treatment and risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance. The STOP-NIDDM trial. JAMA. 290, 486–494 (2003)

    CAS  PubMed  Google Scholar 

  59. E. Lonn, H. Gerstein, P. Sheridan, For the DREAM and STARR Investigations et al., Effect of ramipril and of rosiglitazone on carotid intima-media thickness in people with impaired glucose tolerance or impaired fasting glucose: STARR (Study of Atherosclerosis with Ramipril and Rosiglitazone). J. Am. Coll. Cardiol. 53, 2028–2035 (2009)

    CAS  PubMed  Google Scholar 

  60. E.M. Lonn, J. Bosch, R. Diaz, P. Lopez-Jaramillo, A. Ramachandran, N. Hâncu et al., Effect of insulin glargine and n-3FA on carotid intima-media thickness in people with dysglycemia at high risk for cardiovascular events : the glucose reduction and atherosclerosis continuing evaluation study (ORIGIN-GRACE). Diabetes Care 36(9), 2466–2474 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  61. I. Hopper, B. Billah, M. Skiba, H. Krum, Prevention of diabetes and reduction in major cardiovascular events in studies of subjects with prediabetes: meta-analysis of randomised controlled clinical trials. Eur. J. Cardiovasc. Prev. Rehabil. 18(6), 813–823 (2011)

    PubMed  Google Scholar 

  62. G. Li, P. Zhang, J. Wang, Y. An, Q. Gong, E.W. Gregg et al., Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: a 23-year follow-up study. Lancet 28, 88–136 (2014). doi:10.1016/s2213-8587(14)70057-9

    Google Scholar 

  63. M. Bergman, M. Buysschaert, P.E.H. Schwarz, A. Albright, V. Narayan, D. Yach, Diabetes prevention: global health policy and perspectives from the ground. Diabetes Manag. 2(4), 309–321 (2012)

    CAS  Google Scholar 

  64. L. Rydén et al., Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: executive summary. The Task Force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD): ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with EASD. Eur. Heart J. 34, 3035–3087 (2013)

    PubMed  Google Scholar 

  65. American Diabetes Association, Standards of medical care in diabetes—2014. Diabetes Care 37(Suppl. 1), s14 (2014)

    Google Scholar 

  66. P.M. Kearney, L. Blackwell, R. Collins, A. Keech, J. Simes, R. Peto et al., Efficacy of cholesterol-lowering therapy in 18.686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 371, 117–125 (2008)

    CAS  PubMed  Google Scholar 

  67. P.M. Ridker, E. Danielson, F.A. Fonseca et al., JUPITER Study Group: rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 359, 2195–2207 (2008)

    CAS  PubMed  Google Scholar 

  68. P.M. Preshaw, A.L. Alba, D. Herrera, S. Jepsen, A. Konstantinidis, K. Makrilakis, R. Taylor, Periodontitis and diabetes: a two-way relationship. Diabetelogia 55, 21–31 (2012)

    CAS  Google Scholar 

  69. F. Javed, A.S.T. Alghamdi, T. Mikami, A. Mehmood, H.B. Ahemed, L.P. Samaranayake, H.C. Tenenbaum, Effect of glycemic control on self-perceived oral health, periodontal parameters, and alveolar bone loss among patients with prediabetes. J. Periodontol. 85, 234–241 (2014)

    CAS  PubMed  Google Scholar 

  70. N. Arora, P.N. Papapanou, M. Rosenbaum, D.R. Jacobs Jr, M. Desvarieux, R.T. Demmer, Periodontal infection, impaired fasting glucose and impaired glucose tolerance: results from The Continuous National Health and Nutrition Examination Survey 2009–2010. J. Clin. Periodontol. 41, 643–652 (2014)

    CAS  PubMed  Google Scholar 

  71. C.C.P. Andersen, A. Flyvbjerg, K. Buschard, P. Holmstrup, Periodontitis is associated with aggravation of prediabetes in Zucker fatty rats. J. Periodontol. 71, 1625–1631 (2007)

    Google Scholar 

  72. M. Manouchehr-Pour, P.J. Spagnuolo, H.M. Rodman, N.F. Bissada, Comparison of neutrophil chemotactic response in diabetic patients with mild and severe periodontal disease. J. Periodontol. 52, 410–415 (1981)

    CAS  PubMed  Google Scholar 

  73. M. Altamash, S. Arledal, B. Klinge, P.-E. Engström, Pre-diabetes and diabetes: medical risk factors and periodontal conditions. Acta Odontol. Scand. 71, 1625–1631 (2013)

    PubMed  Google Scholar 

  74. R. McCrimmon, C.M. Ryan, M. Frier, Diabetes and cognitive dysfunction. Lancet 379, 2291–2299 (2012)

    PubMed  Google Scholar 

  75. T. Cukierman-Yaffe, Diabetes, dysglycemia & cognitive dysfunction. Diabetes Metab. Res. Rev. 30(5), 341–345 (2014)

    PubMed  Google Scholar 

  76. D.D. Schwartz, M.E. Axelrad, B.J. Andersen, Neurocognitive function in children and adolescents at the time of type 1 diabetes diagnosis: associations with glycemic control 1 year after diagnosis. Diabetes Care 37(9), 2475–2482 (2014)

    CAS  PubMed  Google Scholar 

  77. C. Dufouil, C. Brayne, The continuing challenge of turning promising observational evidence about risk for dementia to evidence supporting prevention. JAMA Intern. Med. 174, 333–335 (2014)

    PubMed  Google Scholar 

  78. P.J.J. Spauwen, C.D.A. Stehouwer, Cognitive decline in type 2 diabetes. Lancet Diabetes Endocrinol. 2, 188–189 (2013). doi:10.1016/S2213-8587(13)70167-0

    PubMed  Google Scholar 

  79. J.S. Roriz-Filho, T.M. Sá-Roriz, I. Rosset, A.L. Camozzato, A.C. Santos, M.L.F. Chaves, J.C. Moriguti, M. Roriz-Cruz, (Pre)diabetes, brain aging, and cognition. Biochim. Biophys. Acta 1792, 432–443 (2009)

    CAS  Google Scholar 

  80. R.H. Tuligenga, A. Dugravot, A.G. Tabák, A. Elbaz, E.J. Brunner, M. Kivimäki, A. Singh-Manoux, Midlife type 2 diabetes and poor glycaemic control as risk factors for cognitive decline in early old age: a post hoc analysis of the Whitehall II cohort study. Lancet (2013). doi:10.1016/S2213-8587(13)70192-X

    PubMed  Google Scholar 

  81. G.J. Biessels, Intensive glucose lowering and cognition in type 2 diabetes. Lancet Neurol. 10, 949–950 (2011)

    PubMed  Google Scholar 

  82. L. Kerti, A.V. Witte, A. Winkler, U. Grittner, D. Rujescu, A. Flöel, Higher glucose levels associated with lower memory and reduced hippocampal microstructure. Neurology 81, 1746–1753 (2013)

    CAS  PubMed  Google Scholar 

  83. C. Anderson et al., Glucose intolerance and diabetes as risk factors for cognitive impairment in people at high cardiovascular risk: results from the ONTARGET/TRANSCEND Research Programme. Diabetes Res. Clin. Pract. 83(3), 387–393 (2009)

    PubMed  Google Scholar 

  84. C.M. Sanz, J.-B. Ruidavets, V. Bongard, J.-C. Marquié, H. Hanaire, J. Ferrières, S. Andrieu, Relationship between markers of insulin resistance, markers of adiposity, HbA1c, and cognitive functions in a middle-aged population-based sample: the MONA LISA Study. Diabetes Care 36(6), 1512–1521 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Z.S. Tan, A.S. Beiser, C.S. Fox et al., Association of metabolic dysregulation with volumetric brain magnetic resonance imaging and cognitive markers of subclinical brain aging in middle-aged adults: the Framingham Offspring Study. Diabetes Care 34, 1766–1770 (2011)

    PubMed Central  PubMed  Google Scholar 

  86. M. Nazaribadie, K. Asgari, M. Amini, M. Ahmadpanah, M. Nazarbadie, S. Jamlipaghale, Cognitive processes and functions in patients with type 2 diabetes in comparison to pre-diabetic patients. JRHS 13(2), 208–213 (2013)

    PubMed  Google Scholar 

  87. T. Ohara, Y. Doi, T. Ninomiya et al., Glucose tolerance status and risk off dementia in the community: the Hisayama Study. Neurology 77, 1126–1134 (2011)

    CAS  PubMed  Google Scholar 

  88. P.K. Crane, R. Walker, R.A. Hubbard, G. Li, D.M. Nathan, H. Zheng, S. Haneuse, S. Craft, T.J. Montine, S.E. Kahn, W. McCormick, S.M. McCurry, J.D. Bowen, E.B. Larson, Glucose levels and risk of dementia. N. Engl. J. Med. 369, 540–548 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  89. P.G. Lee, C.T. Cigolle, J. Ha, L. Min, S.L. Murphy, C.S. Blaum, W.H. Herman, Physical function limitations among middle-aged and older adults with prediabetes. Diabetes Care 36(10), 3076–3083 (2013)

    PubMed Central  PubMed  Google Scholar 

  90. A.L. Christman, K. Matsushita, R.F. Gottesman, T. Mosley, A. Alonso, J. Coresh, F. Hill-Briggs, A.R. Sharrett, E. Selvin, Glycated haemoglobin and cognitive decline: the Atherosclerosis Risk in Communities (ARIC) study. Diabetologia 54, 1645–1652 (2011)

    PubMed Central  CAS  PubMed  Google Scholar 

  91. A.M. Jacobson, Diabetes and cognitive performance: a story that is still unfolding. Diabetologia 54, 1593–1595 (2011)

    CAS  PubMed  Google Scholar 

  92. S.G.C. van Elderen, A. deRoos, A.J.M. de Craen et al., Progression of brain atrophy and cognitive decline in diabetes mellitus: a 3-year follow-up. Neurology 75, 997–1002 (2010)

    PubMed  Google Scholar 

  93. R.O. Roberts, D.S. Knopman, S.A. Przybelski et al., Association of type 2 diabetes with brain atrophy and cognitive impairment. Neurology (2014). doi:10.1212/WNL.0000000000000269

    Google Scholar 

  94. G.J. Biessels, S. Staekenborg, E. Brunner, C. Brayne, P. Scheltens, Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol. 5, 64–74 (2006)

    PubMed  Google Scholar 

  95. R.N. Bryan, M. Bilello, C. Davatzikos, R.M. Lazar, A. Murray, K. Horowitz, J. Lovato, M.E. Miller, J. Williamson, L.J. Launer, Effect of diabetes on brain structure: the action to control cardiovascular risk in diabetes MR imaging baseline data. Radiology 271(1), 210–216 (2014)

    Google Scholar 

  96. A. Kleinridders, H.A. Ferris, W. Cai, C.R. Kahn, Insulin action in brain regulates systemic metabolism and brain function. Diabetes 63(7), 2232–2243 (2014)

    PubMed  Google Scholar 

  97. A. Elbaz, M.J. Shipley, H. Nabi, E.J. Brunner, M. Kivimäki, A. Singh-Manoux, Trajectories of the Framingham general cardiovascular risk profile in midlife and poor motor function later in life: The Whitehall II study. Int. J. Cardiol. 172, 96–102 (2014). doi:10.1016/j.ijcard.2013.12.051

    PubMed Central  PubMed  Google Scholar 

  98. L.J. Launer, M.E. Miller, J.D. Williamson, R.M. Lazar, H.C. Gertsein, A.M. Murray, M. Sullivan, K.R. Horowitz, J. Ding, S. Marcovina, L.C. Lovato, J. Lovato, K.L. Margolis, P. O’Connor, E.E. Lipkin, J. Hirsch, L. Coker, J. Maldjian, J.L. Sunshine, C. Truwit, C. Davatzikos, R.N. Bryan, For the ACCORD MIND investigators, Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND):a randomized open-label substudy. Lancet Neurol. 10, 969–977 (2011)

    PubMed Central  PubMed  Google Scholar 

  99. J.D. Williamson, L.J. Launer, R.N. Bryan, L.H. Coker, R.M. Lazar, H.C. Gerstein, A.M. Murray, M.D. Sullivan, K.R. Horowitz, S. Marcovina, L.C. Lovato, J. Lovato, K.L. Margolis, C. Davatzikos, J. Barzilay, H.N. Ginsberg, P.E. Linz, M.E. Miller, For the Action to Control Cardiovascular Risk in Diabetes (ACCORD) Memory in Diabetes (MIND) investigators, Cognitive function and brain structure in persons with type 2 diabetes mellitus after intensive lowering of blood pressure and lipid levels. JAMA Intern. Med. 174(3), 24–333 (2014)

    Google Scholar 

  100. C.D. Saudek, W.H. Herman, D.B. Sacks, R.M. Bergenstal, D. Edelman, M.B. Davidson, A new look at screening and diagnosing diabetes mellitus. J. Clin. Endocrinol. Metab. 93(7), 2447–2453 (2008)

    CAS  PubMed  Google Scholar 

  101. S. Ghosh, A. Collier, T. Elhadd, I. Malik, Retinopathy in diabetes. Br. J. Diabetes Vasc. Dis. 10(3), 155–156 (2010)

    Google Scholar 

  102. T.Y. Wong, G. Liew, R.J. Tapp, M.I. Schmidt, J.J. Wang, P. Mitchell, R. Klein, B.E. Klein, P. Zimmet, J. Shaw, Relation between fasting glucose and retinopathy for diagnosis of diabetes: three population-based cross-sectional studies. Lancet 371, 736–743 (2008)

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Y.J. Cheng, E.W. Gregg, L.S. Geiss, G. Imperatore, D.E. Williams, X. Zhang, A.L. Albright, C.C. Cowie, R. Klein, J.B. Saaddine, Association of A1c and fating plasma glucose levels with diabetic retinopathy prevalence in the U.S. population. Diabetes Care 32(11), 2027–2032 (2009)

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Diabetes Prevention Program Research Group, The prevalence of retinopathy un impaired glucose tolerance and recent-onset diabetes in the Diabetes Prevention Program. Diabet. Med. 24, 137–144 (2007)

    PubMed Central  Google Scholar 

  105. T.T. Nguyen, J.J. Wang, T.Y. Wong, Reinal vascular changes in pre-diabetes and prehypertension. Diabetes Care 30(10), 2708–2715 (2007)

    PubMed  Google Scholar 

  106. N. Papanas, A.I. Vinik, D. Ziegler, Neuropathy in prediabetes: does the clovk start ticking early? Nat. Rev. Endocrinol. 7, 682–690 (2011)

    CAS  PubMed  Google Scholar 

  107. C.J. Sumner, S. Sheth, J.W. Griffin, D.R. Cornblath, M. Polydefkis, The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology 60, 108–111 (2003)

    CAS  PubMed  Google Scholar 

  108. B.W.C. Bongaerts, W. Rathmann, M. Heier, B. Kowall, C. Herder, D. Stöckl, C. Meisinger, D. Ziegler, Older subjects with diabetes and prediabetes are frequently unaware of having distal sensorimotor polyneuropathy. Diabetes Care 36(5), 1141–1146 (2013)

    PubMed Central  PubMed  Google Scholar 

  109. L.C. Plantinga, D.C. Crews, J. Coresh, E.R. Miller, R. Saran, J. Yee, E. Hedgeman, M. Pavkov, M.S. Eberhardt, D.E. Williams, N.R. Powe, For the CDC CKD Surveillance team, Prevalence of chronic kidney disease in U.S. adults with undiagnosed diabetes or prediabetes. Clin. J. Am. Soc. Nephrol. 5, 673–682 (2010)

    PubMed Central  PubMed  Google Scholar 

  110. H. Kramer, Screening for kidney disease in adults with diabetes and prediabetes. Curr. Opin. Nephrol. Hypertens. 14, 249–252 (2005)

    PubMed  Google Scholar 

  111. G.C. Curhan, Prediabetes, prehypertension…Is it time for pre-CKD? Clin. J. Am. Soc. Nephrol. 5, 557–559 (2010)

    PubMed  Google Scholar 

  112. O. Schnell, E. Standl, Impaired glucose tolerance, diabetes, and cardiovascular disease. Endocr. Pract. 12(1), 16–19 (2006)

    PubMed  Google Scholar 

  113. E.J. Diamantopoulos, E.A. Andreadis, G.I. Tsourous, P.M. Katsanou, D.X. Georgiopoulos, N.C. Nestora, S.A. Raptis, Early vascular lesions in subjects with metabolic syndrome and prediabetes. Int. Angiol. 25(2), 179–183 (2006)

    CAS  PubMed  Google Scholar 

  114. J.B. Meigs, M.G. Larson, R.B. D’Agostino, D. Levy, M.E. Clouse, D.M. Nathan, P.W. Wilson, C.J. O’Donnell, Coronary artery calcification in type 2 diabetes and insulin resistance: the Framingham offspring study. Diabetes Care 25(8), 1313–1319 (2002)

    CAS  PubMed  Google Scholar 

  115. M.W. Millar-Craig, C.N. Bishop, E.B. Raftery, Circadian variation of blood-pressure. Lancet 1(8075), 795–797 (1978)

    CAS  PubMed  Google Scholar 

  116. A.K. Gupta, F.L. Greenway, G. Cornelissen, W. Pan, F. Halberg, Prediabetes is associated with abnormal circadian blood pressure variability. J. Hum. Hypertens. 22(9), 627–633 (2008)

    PubMed Central  CAS  PubMed  Google Scholar 

  117. W.B. White, Relevance of blood pressure variation in the circadian onset of cardiovascular events. J. Hypertens. 21(6), S9–S15 (2003)

    CAS  Google Scholar 

  118. R.C. Hermida, D.E. Ayala, F. Portaluppi, Circadian variation of blood pressure: the basis for the chronotherapy of hypertension. Adv. Drug Deliv. Rev. 59(9–10), 904–922 (2007)

    CAS  PubMed  Google Scholar 

  119. W.B. White, How well does ambulatory blood pressure predict target-organ disease and clinical outcome in patients with hypertension? Blood Press. Monit. 4(2), S17–S21 (1999)

    PubMed  Google Scholar 

  120. O. Torffvit, C.D. Agardh, Day and night variation in ambulatory blood pressure in type 1 diabetes mellitus with nephropathy and autonomic neuropathy. J. Intern. Med. 233(2), 131–137 (1993)

    CAS  PubMed  Google Scholar 

  121. F.S. Nielsen, P. Rossing, L.E. Bang, T.L. Svendsen, M.A. Gall, U.M. Smidt, H.H. Parving, On the mechanisms of blunted nocturnal decline in arterial blood pressure in NIDDM patients with diabetic nephropathy. Diabetes 44(7), 783–789 (1995)

    CAS  PubMed  Google Scholar 

  122. V. Spallone, M.R. Maiello, R. Morganti, S. Mandica, G. Frajese, Usefulness of ambulatory blood pressure monitoring in predicting the presence of autonomic neuropathy in type I diabetic patients. J. Hum. Hyperten. 21(7), 381–386 (2007)

    CAS  Google Scholar 

  123. S. Nakano, M. Fukuda, F. Hotta, T. Ito, T. Ishii, M. Kitazawa, M. Nishizawa, T. Kigoshi, K. Uchida, Reversed circadian blood pressure rhythm is associated with occurrence of both fatal and nonfatal vascular events in NIDDM subjects. Diabetes 47(9), 1501–1506 (1998)

    CAS  PubMed  Google Scholar 

  124. A.K. Gupta, G. Cornelissen, F.L. Greenway, V. Dhoopati, F. Halberg, W.D. Johnson, Abnormalities in circadian blood pressure variability and endothelial function: pragmatic markers for adverse cardiometabolic profiles in asymptomatic obese adults. Cardiovasc. Diabetol. (2010). doi:10.1186/1475-2840-9-58

    PubMed Central  PubMed  Google Scholar 

  125. B. Isak, B. Oflazoglu, T. Tanridag, I. Yitmen, O. Us, Evaluation of peripheral and autonomic neuropathy among patients with newly diagnosed impaired glucose tolerance. Diabetes Metab. Res. Rev. 24(7), 563–569 (2008)

    PubMed  Google Scholar 

  126. S. Kumarasamy, K. Gopalakrishnan, D.H. Kim, N.G. Abraham, W.D. Johnson, B. Joe, A.K. Gupta, Dysglyceia induces abnormal circadian blood pressure variability. Cardiovasc. Diabetol. (2011). doi:10.1186/1475-2840-10-104

    PubMed Central  PubMed  Google Scholar 

  127. Z. Putz, N. Németh, I. Istenes, T. Martos, R.A. Gandhi, A.E. Körei, Z. Hermányi, M. Szathmári, G. Jermendy, S. Tesfaye, Á.G. Tabák, P. Kempler, Autonomic dysfunction and circadian blood pressure variations in people with impaired glucose tolerance. Diabet. Med. 30(3), 358–362 (2013)

    CAS  PubMed  Google Scholar 

  128. J.E. Shaw, N.M. Punjabi, J.P. Wilding, K.G. Alberti, P.Z. Zimmet, Sleep-disordered breathing and type 2 diabetes: a report from the International Diabetes Federation Taskforce on Epidemiology and Prevention. Diabetes Res. Clin. Pract. 81(1), 2–12 (2008)

    PubMed  Google Scholar 

  129. S.R. Coughlin, L. Mawdsley, J.A. Mugarza, P.M. Calverley, J.P. Wilding, Obstructive sleep apnoea is independently associated with an increased prevalence of metabolic syndrome. Eur. Heart J. 25(9), 735–741 (2004)

    PubMed  Google Scholar 

  130. N.M. Punjabi, E. Shahar, S. Redline, D.J. Gottlieb, R. Givelber, H.E. Resnick, Sleep-disordered breathing, glucose intolerance, and insulin resistance: the Sleep Heart Health Study. Am. J. Epidemiol. 160(6), 521–530 (2004)

    PubMed  Google Scholar 

  131. S. Seicean, H.L. Kirchner, D.J. Gottlieb, N.M. Punjabi, H. Resnick, M. Sanders, R. Budhiraja, M. Singer, S. Redline, Sleep-disordered breathing and impaired glucose metabolism in normal-weight and overweight/obese individuals: the Sleep Heart Health Study. Diabetes Care 31(5), 1001–1006 (2008)

    PubMed  Google Scholar 

  132. I. Muraki, T. Tanigawa, K. Yamagishi, S. Sakurai, T. Ohira, H. Imano, A. Kitamura, M. Kiyama, S. Sato, T. Shimamoto, M. Konishi, H. Iso, Nocturnal intermittent hypoxia and the development of type 2 diabetes: the Circulatory Risk in Communities Study (CIRCS). Diabetologia 53(3), 481–488 (2010)

    CAS  PubMed  Google Scholar 

  133. N. Botros, J. Concato, V. Mohsenin, B. Selim, K. Doctor, H.K. Yaggi, Obstructive sleep apnea as a risk factor for type 2 diabetes. Am. J. Med. 122(12), 1122–1127 (2009)

    PubMed Central  PubMed  Google Scholar 

  134. T. Kendzerska, A.S. Gershon, G. Hawker, G. Tomlinson, R.S. Leung, Obstructive sleep apnea and incident diabetes. A historical cohort study. Am. J. Respir. Crit. Care Med. 190(2), 218–225 (2014)

    PubMed  Google Scholar 

  135. S. Pamidi, E. Tasali, Obstructive sleep apnea and type 2 diabetes: is there a link? Front. Neurol. 3, 126 (2012). doi:10.3389/fneur.2012.00126

    PubMed Central  PubMed  Google Scholar 

  136. O. Alshaarawy, S. Teppala, A. Shankar, Markers of sleep-disordered breathing and prediabetes in US adults. Int. J. Endocrinol. (2012). doi:10.1155/2012/902324

    PubMed Central  PubMed  Google Scholar 

  137. N. Cheng, W. Cai, M. Jiang, S. Wu, Effect of hypoxia on blood glucose, hormones, and insulin receptor functions in newborn calves. Pediatr. Res. 41(6), 852–856 (1997)

    CAS  PubMed  Google Scholar 

  138. J.P. Chaput, J.P. Despres, C. Bouchard, A. Tremblay, Short sleep duration is associated with reduced leptin levels and increased adiposity: results from the Quebec family study. Obesity 15(1), 253–261 (2007)

    CAS  PubMed  Google Scholar 

  139. N. Peled, A. Greenberg, G. Pillar, O. Zinder, N. Levi, P. Lavie, Contributions of hypoxia and respiratory disturbance index to sympathetic activation and blood pressure in obstructive sleep apnea syndrome. Am. J. Hypertens. 11(11), 1284–1289 (1998)

    CAS  PubMed  Google Scholar 

  140. D. Einhorn, D.A. Stewart, M.K. Erman, N. Gordon, A. Philis-Tsimikas, E. Casal, Prevalence of sleep apnea in a population of adults with type 2 diabetes mellitus. Endocr. Pract. 13(4), 355–362 (2007)

    PubMed  Google Scholar 

  141. G.D. Foster, M.H. Sanders, R. Millman, G. Zammitt, K.E. Borradaile, A.B. Newman, T.A. Wadden, D. Kelley, R.R. Wing, F.X. Sunyer, V. Darcey, S.T. Kuna, Obstructive sleep apnea among obese patients with type 2 diabetes. Diabetes Care 32(6), 1017–1019 (2009)

    PubMed Central  PubMed  Google Scholar 

  142. R.S. Aronsohn, H. Whitmore, E. Van Cauter, E. Tasali, Impact of untreated obstructive sleep apnea on glucose control in type 2 diabetes. Am. J. Respir. Crit. Care Med. 181(5), 507–513 (2010)

    PubMed Central  PubMed  Google Scholar 

  143. R.N. Aurora, N.M. Punjabi, Obstructive sleep apnoea and type 2 diabetes mellitus: a bidirectional association. Lancet Respir. Med. 1(4), 329–338 (2013)

    PubMed  Google Scholar 

  144. J.M. Fredheim, J. Rollheim, T. Omland, D. Hofsø, J. Røislien, K. Vegsgaard, J. Hjelmesæth, Type 2 diabetes and pre-diabetes are associated with obstructive sleep apnea in extremely obese subjects: a cross-sectional study. Cardiovasc. Diabetol. (2011). doi:10.1186/1475-2840-10-84

    PubMed Central  PubMed  Google Scholar 

  145. P. Levy, M.R. Bonsignore, J. Eckel, Sleep, sleep-disordered breathing and metabolic consequences. Eur. Respir. J. 34(1), 243–260 (2009)

    CAS  PubMed  Google Scholar 

  146. I.A. Harsch, S.P. Schahin, K. Brückner, M. Radespiel-Tröger, F.S. Fuchs, E.G. Hahn, P.C. Konturek, T. Lohmann, J.H. Ficker, The effect of continuous positive airway pressure treatment on insulin sensitivity in patients with obstructive sleep apnoea syndrome and type 2 diabetes. Respiration 71(3), 252–259 (2004)

    PubMed  Google Scholar 

  147. H.A. Hassaballa, A. Tulaimat, J.J. Herdegen, B. Mokhlesi, The effect of continuous positive airway pressure on glucose control in diabetic patients with severe obstructive sleep apnea. Sleep Breath. 9(4), 176–180 (2005)

    PubMed  Google Scholar 

  148. A.R. Babu, J. Herdegen, L. Fogelfeld, S. Shott, T. Mazzone, Type 2 diabetes, glycemic control, and continuous positive airway pressure in obstructive sleep apnea. Arch. Intern. Med. 165(4), 447–452 (2005)

    PubMed  Google Scholar 

  149. S.D. West, D.J. Nicoll, T.M. Wallace, D.R. Matthews, J.R. Stradling, Effect of CPAP on insulin resistance and HbA1c in men with obstructive sleep apnoea and type 2 diabetes. Thorax 62(11), 969–974 (2007)

    PubMed Central  PubMed  Google Scholar 

  150. S. Surani, S. Subramanian, Effect of continuous positive airway pressure therapy on glucose control. World J. Diabetes 3(4), 65–70 (2012)

    PubMed Central  PubMed  Google Scholar 

  151. S. Pamidi, Abstract #39588. American Thoracic Society 2013 International Conference, Philadelphia, May 17–22, 2013

  152. D. Kapoor, H. Aldred, S. Clark, K.S. Channer, T.H. Jones, Clinical and biochemical assessment of hypogonadism in men with type 2 diabetes: correlations with bioavailable testosterone and visceral adiposity. Diabetes Care 30(4), 911–917 (2007)

    CAS  PubMed  Google Scholar 

  153. M. Grossmann, M.C. Thomas, S. Panagiotopoulos, K. Sharpe, R.J. Macisaac, Low testosterone levels are common and associated with insulin resistance in men with diabetes. J. Clin. Endocrinol. Metab. 93(5), 1834–1840 (2008)

    CAS  PubMed  Google Scholar 

  154. A.A. Al Hayek, Y.S. Khader, S. Jafal, N. Khawaja, A.A. Robert, K. Ajilouni, Prevalence of low testosterone levels in men with type 2 diabetes mellitus: a cross-sectional study. J. Fam. Community Med. 20(3), 179–186 (2013)

    Google Scholar 

  155. E.L. Ding, Y. Song, V.S. Malik, S. Liu, Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 295(11), 1288–1299 (2006)

    CAS  PubMed  Google Scholar 

  156. G. Hackett, M. Kirby, A.J. Sinclair, Testosterone deficiency, cardiac health, and older men. Int. J. Endocrinol. (2014). doi:10.1155/2014/143763

    PubMed Central  PubMed  Google Scholar 

  157. R. Pasquali, C. Macor, V. Vicennati, F.R. Delasio, P. Mesini, S. Boschi, F. Casimirri, R. Vettor, Effects of acute hyperinsulinemia on testosterone serum concentrations in adult obese and normal-weight men. Metabolism 46(5), 526–529 (1997)

    CAS  PubMed  Google Scholar 

  158. S. Bhasin, G.R. Cunningham, F.J. Hayes, A.M. Matsumoto, P.J. Snyder, R.S. Swerdloff, V.M. Montori, Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 95(6), 2536–2559 (2010)

    CAS  PubMed  Google Scholar 

  159. R.K. Stellato, H.A. Feldman, O. Hamdy, E.S. Horton, J.B. McKinlay, Testosterone, sex hormone-binding globulin, and the development of type 2 diabetes in middle-aged men: prospective results from the Massachusetts male aging study. Diabetes Care 23(4), 490–494 (2000)

    CAS  PubMed  Google Scholar 

  160. E.C. Tsai, A.M. Matsumoto, W.Y. Fujimoto, E.J. Boyko, Association of bioavailable, free, and total testosterone with insulin resistance: influence of sex hormone-binding globulin and body fat. Diabetes Care 27(4), 861–868 (2004)

    CAS  PubMed  Google Scholar 

  161. P. Marin, S. Homang, L. Jonsson, L. Sjostrom, H. Kvist, G. Holm, G. Lindstedt, P. Bjorntorp, The effects of testosterone treatment on body composition and metabolism in middle-aged obese men. Int. J. Obes. Relat. Metab. Disord. 16(12), 991–997 (1992)

    CAS  PubMed  Google Scholar 

  162. S. Filippi, L. Vignozzi, A. Morelli, A.K. Chavalmane, E. Sarchielli, B. Fibbi, F. Saad, P. Sandner, P. Ruggiano, G.B. Vannelli, E. Mannucci, M. Maggi, Testosterone partially ameliorates metabolic profile and erectile responsiveness to PDE5 inhibitors in an animal model of male metabolic syndrome. J. Sex Med. 6(12), 3274–3288 (2009)

    CAS  PubMed  Google Scholar 

  163. D. Goodman-Gruen, E. Barrett-Connor, Sex differences in the association of endogenous sex hormone levels and glucose tolerance status in older men and women. Diabetes Care 23(7), 912–918 (2000)

    CAS  PubMed  Google Scholar 

  164. G. Corona, G. Rastrelli, G. Balercia, F. Lotti, A. Sforza, M. Monami, G. Forti, E. Mannucci, M. Maggi, Hormonal association and sexual dysfunction in patients with impaired fasting glucose: a cross-sectional and longitudinal study. J. Sex Med. 9(6), 1669–1680 (2012)

    CAS  PubMed  Google Scholar 

  165. C.H. Ho, H.J. Yu, C.Y. Wang, F.S. Jaw, J.T. Hsieh, W.C. Liao, Y.S. Pu, S.P. Liu, Prediabetes is associated with an increased risk of testosterone deficiency, independent of obesity and metabolic syndrome. PLoS ONE (2013). doi:10.1371/journal.pone.0074173

    Google Scholar 

  166. D. Kapoor, E. Goodwin, K.S. Channer, T.H. Jones, Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur. J. Endocrinol. 154(6), 899–906 (2006)

    CAS  PubMed  Google Scholar 

  167. M.I. Naharci, M. Pinar, E. Bolu, A. Olgun, Effect of testosterone on insulin sensitivity in men with idiopathic hypogonadotropic hypogonadism. Endocr. Pract. 13(6), 629–635 (2007)

    PubMed  Google Scholar 

  168. T.H. Jones, S. Arver, H.M. Behre, J. Buvat, E. Meuleman, I. Moncada, A.M. Morales, M. Volterrani, A. Yellowlees, J.D. Howell, K.S. Channer, Testosterone replacement in hypogonadal men with type 2 diabetes and/or metabolic syndrome (the TIMES2 study). Diabetes Care 34(4), 828–837 (2011)

    PubMed Central  CAS  PubMed  Google Scholar 

  169. J. Kaur, A comprehensive review on metabolic syndrome. Cardiol Res Pract. (2014). doi:10.1155/2014/943162

    Google Scholar 

  170. H. Beltran-Sanchez, M.O. Harhay, M.M. Harhay, S. McElligott, Prevalance and trends of metabolic syndrome in the adult U.S. population, 1999–2010. J. Am. Coll. Cardiol. 62(8), 697–703 (2013)

    PubMed Central  PubMed  Google Scholar 

  171. Expert Panel on Detection, Evaluation and treatment of high cholesterol in adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel detection, evaluation and treatment of high cholesterol in adults (Adult Treatment Panel III). JAMA 285(19), 2486–2497 (2001)

    Google Scholar 

  172. S.M. Grundy, J.I. Cleeman, S.R. Daniels, K.A. Donato, R.H. Eckel, B.A. Franklin, D.J. Gordon, R.M. Krauss, P.J. Savage, S.C. Smith Jr, J.A. Spertus, F. Costa, Diagnosis and management of the metabolic syndrome. An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Executive summary. Cardiol. Rev. 13(6), 322–327 (2005)

    PubMed  Google Scholar 

  173. K.G. Alberti, P. Zimmet, J. Shaw, The metabolic syndrome—a new worldwide definition. Lancet 366(9491), 1059–1062 (2005)

    PubMed  Google Scholar 

  174. G.M. Reaven, The insulin resistance syndrome: definition and dietary approaches to treatment. Annu. Rev. Nutr. 25, 391–406 (2005)

    CAS  PubMed  Google Scholar 

  175. R.A. DeFronzo, E. Ferrannini, Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia and atherosclerotic cardiovascular disease. Diabetes Care 14(3), 173–194 (1991)

    CAS  PubMed  Google Scholar 

  176. C.M. Alexander, P.B. Landsman, S.M. Grundy, Metabolic syndrome and hyperglycemia: congruence and divergence. Am. J. Cardiol. 98(7), 982–985 (2006)

    PubMed  Google Scholar 

  177. E.J. Diamantopoulos, E.A. Andreadis, G.I. Tsourous, G.K. Ifanti, P.M. Katsanou, D.X. Georgiopoulos, C.V. Vassilopoulos, G. Dimitriadis, S.A. Raptis, Metabolic syndrome and prediabetes identify overlapping but not identical populations. Exp. Clin. Endocrinol. Diabetes 144(7), 377–383 (2006)

    Google Scholar 

  178. C. Lorenzo, K. Williams, K.J. Hunt, S.M. Haffner, The National Cholesterol Education Program—Adult Treatment Panel III, International Diabetes Federation, and World Health Organization definitions of the metabolic syndrome as predictors of incident cardiovascular disease and diabetes. Diabetes Care 30(1), 8–13 (2007)

    PubMed  Google Scholar 

  179. C. Lorenzo, M. Okoloise, K. Williams, M.P. Stern, S.M. Haffner, The metabolic syndrome as predictor of type 2 diabetes: the San Antonio heart study. Diabetes Care 26(11), 3153–3159 (2003)

    PubMed  Google Scholar 

  180. Q.M. Nguyen, S.R. Srinivasan, J.H. Xu, W. Chen, G.S. Berenson, Changes in risk variables of metabolic syndrome since childhood in pre-diabetic and type 2 diabetic subjects: the Bogalusa Heart Study. Diabetes Care 31(10), 2044–2049 (2008)

    PubMed Central  CAS  PubMed  Google Scholar 

  181. J.A. Morrison, L.A. Friedman, P. Wang, C.J. Glueck, Metabolic syndrome in childhood predicts adult metabolic syndrome and type 2 diabetes mellitus 25 to 30 years later. J. Pediatr. 152(2), 201–206 (2008)

    CAS  PubMed  Google Scholar 

  182. H. Florez, M.G. Temprosa, T.J. Orchard, K.J. Mather, S.M. Marcovina, E. Barrett-Connor, E. Horton, C. Saudek, X.F. Pi-Sunyer, R.E. Ratner, R.B. Goldberg, Metabolic syndrome components and their response to lifestyle and metformin interventions are associated with differences in diabetes risk in persons with impaired glucose tolerance. Diabetes Obese Metab. 16(4), 325–333 (2014)

    Google Scholar 

  183. S.M. Grundy, Pre-diabetes, metabolic syndrome, and cardiovascular risk. J. Am. Coll. Cardiol. 59(7), 635–643 (2012)

    CAS  PubMed  Google Scholar 

  184. T.J. Orchard, M. Temprosa, R. Goldberg, S. Haffner, R. Ratner, S. Marcovina, S. Fowler, The effect of metformin and intensive lifestyle intervention on the metabolic syndrome: the Diabetes Prevention Program randomized trial. Ann. Intern. Med. 142(8), 611–619 (2005)

    PubMed Central  CAS  PubMed  Google Scholar 

  185. J.L. Chiasson, R.G. Josse, R. Gomis, M. Hanefeld, A. Karasik, M. Laakso, Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 290(4), 486–494 (2003)

    CAS  PubMed  Google Scholar 

  186. R. Rajagopalan, S. Iyer, M. Khan, Effect of pioglitazone on metabolic syndrome risk factors: results of double-blind, multicenter, randomized clinical trials. Curr. Med. Res. Opin. 21(1), 163–172 (2005)

    CAS  PubMed  Google Scholar 

  187. S. Li, H.J. Shin, E.L. Ding, R.M. van Dam, Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 302(2), 179–188 (2009)

    CAS  PubMed  Google Scholar 

  188. A.G. Tabak, M. Cartensen, D.R. Witte, E.J. Brunner, M.J. Shipley, M. Jokela, M. Roden, M. Kivimaki, C. Herder, Adiponectin trajectories before type 2 diabetes diagnosis. Diabetes Care 35(12), 2540–2547 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  189. H. Kim, J. Jo, J.E. Lim, Y.D. Yun, S.J. Baek, T. Lee, K.B. Huh, S.H. Jee, Adiponectin as predictor for diabetes among pre-diabetic groups. Endocrine 44(2), 411–418 (2013)

    CAS  PubMed  Google Scholar 

  190. M.Y. Donath, D.M. Schumann, M. Faulenbach, H. Ellingsgaard, A. Perren, J.A. Ehses, Islet inflammation in type 2 diabetes: from metabolic stress to therapy. Diabetes Care 31(Suppl 2), S161–S164 (2008)

    CAS  PubMed  Google Scholar 

  191. C.M. Larsen, M. Faulenbach, A. Vaag, A. Volund, J.A. Ehses, B. Seifert, T. Mandrup-Poulsen, M.Y. Donath, Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356(15), 1517–1526 (2007)

    CAS  PubMed  Google Scholar 

  192. M. Carstensen, C. Herder, M. Kivimaki, M. Jokela, M. Roden, M.J. Shipley, D.R. Witte, E.J. Brunner, A.G. Tabak, Accelereated increase in serum interleukin-1 receptor antagonist starts 6 years before diagnosis of type 2 diabetes: Whitehall II prospective cohort study. Diabetes 59(5), 1222–1227 (2010)

    PubMed Central  CAS  PubMed  Google Scholar 

  193. T.J. Wang, M.G. Larson, R.S. Vasan, S. Cheng, E.P. Rhee, E. McCabe, G.D. Lewis, C.S. Fox, P.F. Jacques, C. Fernandez, C.J. O’Donnell, S.A. Carr, V.K. Mootha, J.C. Florez, A. Souza, O. Melander, C.B. Clish, R.E. Gerszten, Metabolite profiles and the risk of developing diabetes. Nat. Med. 17(4), 448–453 (2011)

    PubMed Central  PubMed  Google Scholar 

  194. R. Wang-Sattler, Z. Yu, C. Herder, A.C. Messias, A. Floegel, Y. He, K. Heim, M. Campillos, C. Holzapfel, B. Thorand, H. Grallert, T. Xu, E. Bader, C. Huth, K. Mittelstrass, A. Doring, C. Meisinger, C. Gieger, C. Prehn, W. Roemisch-Margl, M. Carstensen, L. Xie, H. Yamanaka-Okumura, G. Xing, U. Ceglarek, J. Thiery, G. Giani, H. Lickert, X. Lin, Y. Li, H. Boeing, H. Joost, M. Hrabé de Angelis, W. Rathmann, K. Suhre, H. Prokisch, A. Peters, T. Meitinger, M. Roden, H. Wichmann, T. Pischon, J. Adamski, T. Illig, Novel biomarkers for pre-diabetes identified by metabolomics. Mol. Syst. Biol. 8, 615 (2012)

    PubMed Central  PubMed  Google Scholar 

  195. A. Floegel, N. Stefan, Z. Yu, K. Mühlenbruch, D. Drogan, H. Joost, A. Fritsche, H. Häring, M. Hrabe de Angelis, A. Peters, M. Roden, C. Prehn, R. Wang-Sattler, T. Illig, M.B. Schulze, J. Adamski, H. Boeing, T. Pischon, Identifcation of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomics approach. Diabetes 62(2), 639–648 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  196. W.E. Gall, K. Beebe, K.A. Lawton, K. Adam, M.W. Mitchell, P.J. Nakhle, J.A. Ryals, M.V. Milburn, M. Nannipieri, S. Camastra, A. Natali, E. Ferrannini, RISC Study Group, α-Hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS ONE 5(5), e10883 (2010)

    PubMed Central  PubMed  Google Scholar 

  197. E. Ferranini, A. Natali, S. Camastra, M. Nannipieri, A. Mari, K. Adam, M.V. Milburn, G. Kastenmüller, J. Adamski, T. Tuomi, V. Lyssenko, L. Groop, W.E. Gall, Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance. Diabetes 62(5), 1730–1737 (2013)

    Google Scholar 

  198. E. Selvin, A.M. Rawlings, M. Grams, R. Klein, A.R. Sharrett, M. Steffes, J. Coresh, Fructosamine and glycated albumin for risk stratification and prediction of incident diabetes and microvascular complications: a prospective cohort analysis of the Atherosclerosis Risk in Communities (ARIC) study. Lancet Diabetes Endocrinol. 2(4), 279–288 (2014)

    PubMed  Google Scholar 

  199. J.M. Pappachan, F.A. Antonio, M.E. Edavalath, A. Mukherjee, Non-alcoholic fatty liver disease: a diabetologist’s perspective. Endocrine 45(3), 334–353 (2014)

    Google Scholar 

  200. C.P. Day, O.F. James, Steatohepatitis: a tale of two “hits”? Gastroenterology 114(4), 842–845 (1998)

    CAS  PubMed  Google Scholar 

  201. H. Tilg, A.R. Moschen, Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52(5), 1836–1846 (2010)

    CAS  PubMed  Google Scholar 

  202. M. Sargin, O. Uygur-Bayramiçli, H. Sargin, E. Orbay, A. Yayla, Association of nonalcoholic fatty liver disease with insulin resistance: is OGTT indicated in nonalcoholic fatty liver disease? J. Clin. Gastroenterol. 37(5), 399–402 (2003)

    CAS  PubMed  Google Scholar 

  203. V.W.S. Wong, A.Y. Hui, S.W.C. Tsang, J.L.Y. Chan, G.L.H. Wong, A.W.H. Chan, W.Y. So, A.Y.S. Cheng, P.C.Y. Tong, F.K.L. Chan, J.J.Y. Sung, H.L.Y. Chan, Prevalence of undiagnosed diabetes and postchallenge hyperglycaemia in Chinese patients with non-aloholic fatty liver disease. Aliment. Pharmacol. Ther. 24(8), 1215–1222 (2006)

    CAS  PubMed  Google Scholar 

  204. J.W. Yun, Y.K. Cho, J.H. Park, H.J. Kim, D.I. Park, C.I. Sohn, W.K. Jeon, B.I. Kim, Abnormal glucose tolerance in young male patients with nonalcoholic fatty liver disease. Liver Int. 29(4), 525–529 (2009)

    PubMed Central  CAS  PubMed  Google Scholar 

  205. C. Ortiz-Lopez, R. Lomonaco, B. Orsak, J. Finch, Z. Chang, V.G. Kochunov, J. Hardies, K. Cusi, Prevalence of prediabetes and diabetes and metabolic profile of patients with nonalcoholic fatty liver disease (NAFLD). Diabetes Care 35(4), 873–878 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  206. S. Zelber-Sagi, R. Lotan, O. Shibolet, M. Webb, A. Buch, D. Nitzan-Kaluski, Z. Halpern, E. Santo, R. Oren, Non-alcoholic fatty liver disease independently predicts prediabetes during a 7-year prospective follow-up. Liver Int. 33(9), 1406–1412 (2013)

    CAS  PubMed  Google Scholar 

  207. B. Vozarova, N. Stefan, R.S. Lindsay, A. Saremi, R.E. Pratley, C. Bogardus, P.A. Tataranni, High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes. Diabetes 51(6), 1889–1895 (2002)

    CAS  PubMed  Google Scholar 

  208. A.J. Hanley, K. Williams, A. Festa, L.E. Wagenknecht, R.B. D’Agostino Jr, J. Kempf, B. Zinman, S.M. Haffner, Insulin resistance atherosclerosis study, elevations in markers of liver injury and risk of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes 53(10), 2623–2632 (2004)

    CAS  PubMed  Google Scholar 

  209. M. Nannipieri, C. Gonzales, S. Baldi, R. Posadas, K. Williams, S.M. Haffner, M.P. Stern, E. Ferrannini, Mexico City Diabetes Study, liver enzymes, the metabolic syndrome, and incident diabetes: the Mexico City diabetes study. Diabetes Care 28(7), 1757–1762 (2005)

    CAS  PubMed  Google Scholar 

  210. Y. Doi, M. Kubo, K. Yonemoto, T. Ninomiya, M. Iwase, Y. Tanizaki, K. Shikata, M. Iida, Y. Kiyohara, Liver enzymes as predictor for incident diabetes in a Japanese population: the Hisayama study. Obesity (Silver Spring) 15(7), 1841–1850 (2007)

    CAS  Google Scholar 

  211. E.S. Ford, M.B. Schulze, M.M. Bergmann, C. Thamer, H.G. Joost, H. Boeing, Liver enzymes and incident diabetes: findings from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes Care 31(6), 1138–1143 (2008)

    PubMed  Google Scholar 

  212. A. Fraser, R. Harris, N. Sattar, S. Ebrahim, G.D. Smith, D.A. Lawlor, Alanine aminotransferase, gamma-glutamyltransferase, and incident diabetes: the British Women’s Heart and Health Study and meta-analysis. Diabetes Care 32(4), 741–750 (2009)

    PubMed Central  CAS  PubMed  Google Scholar 

  213. G. Bedogni, S. Bellentani, L. Miglioli, F. Masutti, M. Passalacqua, A. Castiglione, C. Tiribelli, The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 6, 33 (2006)

    PubMed Central  PubMed  Google Scholar 

  214. B. Balkau, C. Lange, S. Vol, F. Fumeron, F. Bonnet, Group Study D.E.S.I.R., Nine-year incident diabetes is predicted by fatty liver indices: the French D.E.S.I.R. study. BMC Gastroenterol. 10, 56 (2010)

    PubMed Central  PubMed  Google Scholar 

  215. I. Rückert, M. Heier, W. Rathmann, S.E. Baumeister, A. Döring, C. Meisinger, Association between markers of fatty liver disease and impaired glucose regulation in men and women from the general population: the KORA-F4-Study. PLoS ONE 6(8), e22932 (2011)

    PubMed Central  PubMed  Google Scholar 

  216. N. Stefan, A.M. Hennige, H. Staiger, J. Machann, F. Schick, S.M. Kröber, F. Machicao, A. Fritsche, H. Häring, α2-Heremans-Schmid glycoprotein/fetuin-A is associated with insulin resistance and fat accumulation in the liver in humans. Diabetes Care 29(4), 853–857 (2006)

    CAS  PubMed  Google Scholar 

  217. H. Ou, Y. Yang, H. Wu, J. Wu, F. Lu, C. Chang, Increased fetuin-A concentrations in impaired glucose tolerance with or without nonalcoholic fatty liver disease, but not impaired fasting glucose. J. Clin. Endocrinol. Metab. 97(12), 4717–4723 (2012)

    CAS  PubMed  Google Scholar 

  218. E. Giovannucci, D.M. Harlan, M.C. Archer, R.M. Bergnestal, S.M. Gapstur, L.A. Habel, M. Pollak, J.G. Regensteiner, D. Yee, Diabetes and Cancer. A consensus report. Diabetes Care 33(7), 1674–1685 (2010)

    PubMed Central  PubMed  Google Scholar 

  219. Y. Huang, X. Cai, M. Qiu, P. Chen, H. Tang, Y. Hu, Y. Huang, Prediabetes and the risk of cancer: a meta-analysis. Diabetologia (2014). doi:10.1007/s00125-014-3361-2

    Google Scholar 

  220. S. Gao, A. Li, F. Liu et al., NCOA5 haploinsufficency results in glucose intolerance and subsequent heaptocellualr carcinoma. Cancer Cell 24, 725–737 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  221. A. Leone, E. DiGennaro, F. Bruzzese, A. Avallone, A. Budillon, New perspective for an old antidiabteic drug: metformin as anticancer agent. Cancer Treat Res 159, 355–376 (2014)

    PubMed  Google Scholar 

  222. M. Bergman, R. Dankner, J. Roth, K.M. Venkat Narayan, Are current diagnostic guidelines delaying early detection of dysglycemic states? Time for new approaches. Endocrine 44(1), 66–69 (2013)

    CAS  PubMed  Google Scholar 

  223. M. Bergman, Pathophysiology of prediabetes and treatment implications for the prevention of type 2 diabetes mellitus. Endocrine 43(3), 504–513 (2013)

    CAS  PubMed  Google Scholar 

  224. M. Bergman, Inadequacies of current approaches to prediabetes and diabetes prevention. Endocrine 44(3), 623–633 (2013)

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have no conflicts to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bergman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buysschaert, M., Medina, J.L., Bergman, M. et al. Prediabetes and associated disorders. Endocrine 48, 371–393 (2015). https://doi.org/10.1007/s12020-014-0436-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0436-2

Keywords

Navigation