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Use of artificial intelligence for image analysis in breast cancer 
screening programmes: systematic review of test accuracy
Karoline Freeman, Julia Geppert, Chris Stinton, Daniel Todkill, Samantha Johnson, Aileen Clarke, 
Sian Taylor-Phillips

ABSTRACT
OBJECTIVE
To examine the accuracy of artificial intelligence (AI) 
for the detection of breast cancer in mammography 
screening practice.
DESIGN
Systematic review of test accuracy studies.
DATA SOURCES
Medline, Embase, Web of Science, and Cochrane 
Database of Systematic Reviews from 1 January 2010 
to 17 May 2021.
ELIGIBILITY CRITERIA
Studies reporting test accuracy of AI algorithms, alone 
or in combination with radiologists, to detect cancer in 
women’s digital mammograms in screening practice, 
or in test sets. Reference standard was biopsy with 
histology or follow-up (for screen negative women). 
Outcomes included test accuracy and cancer type 
detected.
STUDY SELECTION AND SYNTHESIS
Two reviewers independently assessed articles for 
inclusion and assessed the methodological quality 
of included studies using the QUality Assessment of 
Diagnostic Accuracy Studies-2 (QUADAS-2) tool. A 
single reviewer extracted data, which were checked 
by a second reviewer. Narrative data synthesis was 
performed.
RESULTS
Twelve studies totalling 131 822 screened women 
were included. No prospective studies measuring 
test accuracy of AI in screening practice were found. 
Studies were of poor methodological quality. Three 

retrospective studies compared AI systems with 
the clinical decisions of the original radiologist, 
including 79 910 women, of whom 1878 had screen 
detected cancer or interval cancer within 12 months 
of screening. Thirty four (94%) of 36 AI systems 
evaluated in these studies were less accurate than 
a single radiologist, and all were less accurate than 
consensus of two or more radiologists. Five smaller 
studies (1086 women, 520 cancers) at high risk of 
bias and low generalisability to the clinical context 
reported that all five evaluated AI systems (as 
standalone to replace radiologist or as a reader aid) 
were more accurate than a single radiologist reading 
a test set in the laboratory. In three studies, AI used 
for triage screened out 53%, 45%, and 50% of women 
at low risk but also 10%, 4%, and 0% of cancers 
detected by radiologists.
CONCLUSIONS
Current evidence for AI does not yet allow 
judgement of its accuracy in breast cancer screening 
programmes, and it is unclear where on the clinical 
pathway AI might be of most benefit. AI systems are 
not sufficiently specific to replace radiologist double 
reading in screening programmes. Promising results 
in smaller studies are not replicated in larger studies. 
Prospective studies are required to measure the effect 
of AI in clinical practice. Such studies will require 
clear stopping rules to ensure that AI does not reduce 
programme specificity.
STUDY REGISTRATION
Protocol registered as PROSPERO CRD42020213590.

Introduction
Breast cancer is a leading cause of death among 
women worldwide. Approximately 2.4 million women 
were diagnosed with breast cancer in 2015, and 
523 000 women died.1 Breast cancer is more amenable 
to treatment when detected early,2 so many countries 
have introduced screening programmes. Breast cancer 
screening requires one or two radiologists to examine 
women’s mammograms for signs of presymptomatic 
cancer, with the aim of reducing breast cancer 
related morbidity and mortality. Such screening is 
also associated with harms, such as overdiagnosis 
and overtreatment of cancer that would not have 
become symptomatic within the woman’s lifetime. 
Disagreement exists about the extent of overdiagnosis, 
from 1% to 54% of screen detected cancers, and about 
the balance of benefits and harms of screening.2 The 
spectrum of disease detected at screening is associated 
with outcomes. For example, detection of low grade 
ductal carcinoma in situ is more associated with 
overdiagnosis,3 4 whereas detection of grade 3 cancer is 
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WHAT IS ALREADY KNOWN ON THIS TOPIC
A recent scoping review of 23 studies on artificial intelligence (AI) for the early 
detection of breast cancer highlighted evidence gaps and methodological 
concerns about published studies
Published opinion pieces claim that the replacement of radiologists by AI is 
imminent
Current mammography screening is repetitive work for radiologists and misses 
15-35% of cancers—a prime example of the sort of role we would expect AI to be 
fulfilling

WHAT THIS STUDY ADDS
This systematic review of test accuracy identified 12 studies, of which only one 
was included in the previous review
Current evidence on the use of AI systems in breast cancer screening is of 
insufficient quality and quantity for implementation into clinical practice
In retrospective test accuracy studies, 94% of AI systems were less accurate than 
the original radiologist, and all were less accurate than original consensus of two 
radiologists; prospective evaluation is required
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more likely to be associated with fewer deaths.5 Cancer 
is detected in between 0.6% and 0.8% of women during 
screening.6 7 Breast screening programmes also miss 
between 15% and 35% of cancers owing either to error 
or because the cancer is not visible or perceptible to 
the radiologist. Some of these missed cancers present 
symptomatically as interval cancers.8

Considerable interest has been shown in the use 
of artificial intelligence (AI) either to complement the 
work of humans or to replace them. In 2019, 3.8% of 
all peer reviewed scientific publications worldwide 
on Scopus related to AI.9 Claims have been made that 
image recognition using AI for breast screening is 
better than experienced radiologists and will deal with 
some of the limitations of current programmes.10-13 
For instance, fewer cancers might be missed because 
an AI algorithm is unaffected by fatigue or subjective 
diagnosis,14 15 and AI might reduce workload or replace 
radiologists completely.11 12

AI might, however, also exacerbate harm from 
screening. For example, AI might alter the spectrum of 
disease detected at breast screening if it differentially 
detects more microcalcifications, which are associated 
with lower grade ductal carcinoma in situ. In such a 
case, AI might increase rates of overdiagnosis and 
overtreatment and alter the balance of benefits and 
harms. 

Autopsy studies suggest that around 4% of women 
die with, not because of, breast cancer,16 so there 
is a “reservoir” of clinically unimportant disease, 
including incidental in situ carcinoma, which 
might be detected by AI. The spectrum of disease is 
correlated with mammographic features (for example, 
ductal carcinoma in situ is often associated with 
microcalcifications). Therefore, the cases on which AI 
systems were trained, and the structures within the 
AI system, might considerably affect the spectrum of 
disease detected. These structures and algorithms 
within an AI system are not always transparent or 
explicable, making interpretation a potential problem. 
Unlike human interpretation, how or why an algorithm 
has made a decision can be difficult to understand 
(known as the “black box” problem).17 Unlike human 
decision makers, algorithms do not understand the 
context, mode of collection, or meaning of viewed 
images, which can lead to the problem of “shortcut” 
learning,18 whereby deep neural networks reach a 
conclusion to a problem through a shortcut, rather 
than the intended solution. Thus, for example, DeGrave 
et al19 have shown how some deep learning systems 
detect covid-19 by means of confounding factors, 
rather than pathology, leading to poor generalisability. 
Although this problem does not preclude the use 
of deep learning, it highlights the importance of 
avoiding potential confounders in training data, an 
understanding of algorithm decision making, and the 
critical role of rigorous evaluation.

This review was commissioned by the UK National 
Screening Committee to determine whether there is 
sufficient evidence to use AI for mammographic image 
analysis in breast screening practice. Our aim was to 

assess the accuracy of AI to detect breast cancer when 
integrated into breast screening programmes, with a 
focus on the cancer type detected.

Methods
Data sources
Our systematic review was reported in accordance 
with the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses of diagnostic test accuracy 
(PRISMA-DTA) statement.20 The review protocol is 
registered on PROSPERO (international prospective 
register of systematic reviews).

We conducted literature searches for studies 
published in English between 1 January 2010 and 
9 September 2020 and updated our searches on 17 
May 2021. The search comprised four themes: breast 
cancer, artificial intelligence, mammography, and test 
accuracy or randomised controlled trials. A number of 
additional synonyms were identified for each theme. 
Databases searched were Medline (Ovid), Embase 
(Ovid); Web of Science, and the Cochrane Database of 
Systematic Reviews (CENTRAL). Details of the search 
strategies are shown in supplementary appendix 1. We 
screened the reference lists of systematic reviews and 
included additional relevant studies and contacted 
experts in the field.

Study selection
Two reviewers independently reviewed the titles and 
abstracts of all retrieved records against the inclusion 
criteria, and subsequently, all full text publications. 
Disagreements were resolved by consensus or 
discussion with a third reviewer.

We applied strict inclusion/exclusion criteria to 
focus on the evaluation of the integration of AI into 
a breast cancer screening programme rather than the 
development of AI systems. Studies were eligible for 
inclusion if they reported test accuracy of AI algorithms 
applied to women’s digital mammograms to detect 
breast cancer, as part of a pathway change or a complete 
read (reading+decision resulting in classification). 
Eligible study designs were prospective test accuracy 
studies, randomised controlled trials, retrospective 
test accuracy studies using geographical validation 
only, comparative cohort studies, and enriched test 
set multiple reader multiple case laboratory studies. 
The enriched test set multiple reader multiple case 
laboratory studies included retrospective data 
collection of images and prospective classification by 
standalone AI or AI assisted radiologists. The reference 
standard was cancer confirmed by histological analysis 
of biopsy samples from women referred for further tests 
at screening and preferably also from symptomatic 
presentation during follow-up. 

All studies will necessarily have differential 
verification because not all women can or should be 
biopsied. In prospective test accuracy studies this will 
not introduce significant bias because those positive on 
either an index or comparator test will receive follow-
up tests. In retrospective studies and enriched test 
set studies (with prospective readers), the decision 
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as to whether women receive biopsy or follow-up is 
based on the decision of the original reader, which 
introduces bias because cancer, when present, is more 
likely to be found if the person receives follow-up tests 
after recall from screening. We assessed this using the 
QUality Assessment of Diagnostic Accuracy Studies-2 
tool (QUADAS-2). When AI is used as a pre-screen to 
triage which mammograms need to be examined by 
a radiologist and which do not, we also accepted a 
definition of a normal mammogram as one free of screen 
detected cancer based on human consensus reading, as 
this allows estimation of accuracy in the triage.

We excluded studies that reported the validation 
of AI systems using internal validation test sets (eg, 
x-fold cross validation, leave one out method), split 
validation test sets, and temporal validation test 
sets as they are prone to overfitting and insufficient 
to assess the generalisability of the AI system. 
Furthermore, studies were excluded if less than 90% of 
included mammograms were complete full field digital 
mammography screening mammograms. Additionally, 
studies were excluded if the AI system was used to 
predict future risk of cancer, if only detection of cancer 
subtypes was reported, if traditional computer aided 
detection systems without machine learning were 
used, or if test accuracy measures were not expressed 
at any clinically relevant threshold (eg, area under 
the curve only) or did not characterise the trade-off 
between false positives and false negative results (eg, 
sensitivity for cancer positive samples only). Finally, 
we excluded simulation results of the hypothetical 
integration of AI with radiologists’ decisions as they do 
not reliably estimate radiologist behaviour when AI is 
applied.

Data extraction and quality assessment
One reviewer extracted data on a predesigned data 
collection form. Data extraction sheets were checked 
by a second reviewer and any disagreements were 
resolved by discussion. Study quality was assessed 
independently by two reviewers using QUADAS-221 
tailored to the review question (supplementary 
appendix 2).

Data analysis
The unit of analysis was the woman. Data were 
analysed according to where in the pathway AI was 
used (for example, standalone AI to replace one or all 
readers, or reader aid to support decision making by a 
human reader) and by outcome. The primary outcome 
was test accuracy. If test accuracy was not reported, we 
calculated measures of test accuracy where possible. 
Important secondary outcomes were cancer type and 
interval cancers. Cancer type (eg, by grade, stage, 
size, prognosis, nodal involvement) is important in 
order to estimate the effect of cancer detection on 
the benefits and harms of screening. Interval cancers 
are also important because they have worse average 
prognosis than screen detected cancers,22 and by 
definition, are not associated with overdiagnosis at 
screening. We synthesised studies narratively owing 

to their small number and extensive heterogeneity. We 
plotted reported sensitivity and specificity for the AI 
systems and any comparators in a receiver operating 
characteristic plot using the package “ggplot2”23 in R 
version 3.6.1 (Vienna, Austria).24

Patient and public involvement
The review was commissioned on behalf of the UK 
National Screening Committee (UKNSC), and the 
scope was determined by the UKNSC adult reference 
group, which includes lay members. The results were 
discussed with patient contributors.

Results
Study selection
Database searches yielded 4016 unique results, of 
which 464 potentially eligible full texts were assessed. 
Four additional articles were identified: one through 
screening the reference lists of relevant systematic 
reviews, one through contact with experts, and two by 
hand searches. Overall, 13 articles25-37 reporting 12 
studies were included in this review (see supplementary 
fig 1 for full PRISMA flow diagram). Exclusions on full 
text are listed in supplementary appendix 3.

Characteristics of included studies
The characteristics of the 12 included studies are 
presented in table 1, table 2, and table 3 and in 
supplementary appendix 4, comprising a total of 
131 822 screened women. The AI systems in all 
included studies used deep learning convolutional 
neural networks. Four studies evaluated datasets 
from Sweden,26 27 35 36 three of which had largely 
overlapping populations,26 35 36 one from the United 
States and Germany,32 one from Germany,25 one from 
the Netherlands,33 one from Spain31 and four from the 
US.28-30 37 Four studies enrolled women consecutively 
or randomly,25 27 31 36 while the remaining studies 
selected cases and controls to enrich the dataset 
with patients with cancer. Three studies included all 
patients with cancer and a random sample of those 
without cancer.26 29 35 One study included all patients 
with cancer and controls matched by age and breast 
density.28 In two studies, patients and controls were 
sampled to meet predefined distributions and were 
reviewed by one radiologist to exclude images not 
meeting quality standards and images with obvious 
signs of cancer.30 32 One study used a range of rules 
for selection, including by perceived difficulty and 
mammographic features.33 Finally, one study included 
only false negative mammograms.37 No prospective 
test accuracy studies in clinical practice were included, 
only retrospective test accuracy studies25-27 29 31 35 36 
and enriched test set multiple reader multiple case 
laboratory studies.28 30 32 33 37 Of these enriched test 
set laboratory studies, three reported test accuracy for 
a single AI read as a reader aid.30 32 37 Another nine 
studies reported test accuracy for a single AI read as 
a standalone system in a retrospective test accuracy 
study 25-27 29 31 35 36 or an enriched test set multiple 
reader multiple case laboratory study.28 33

 on 18 A
pril 2024 by guest. P

rotected by copyright.
http://w

w
w

.bm
j.com

/
B

M
J: first published as 10.1136/bm

j.n1872 on 1 S
eptem

ber 2021. D
ow

nloaded from
 

http://www.bmj.com/


RESEARCH

4 doi: 10.1136/bmj.n1872 | BMJ 2021;374:n1872 | the bmj

In studies of standalone systems, the AI algorithms 
provided a cancer risk score that can be turned into 
a binary operating point to classify women as high 
risk (recall) or low risk (no recall). The in-house or 
commercial standalone AI systems (table 1, table 2, 
table 3) were evaluated in five studies as a replacement 
for one or all radiologists. Three studies compared the 
performance of the AI system with the original decision 
recorded in the database, based on either a single US 
radiologist29 or two radiologists with consensus within 
the Swedish screening programme.35 36 Two studies 
compared the performance of the AI system with the 
average performance of nine Dutch single radiologists33 
and five US single radiologists,28 respectively, who 
read the images under laboratory conditions. Four 
commercial AI systems were evaluated as a pre-screen to 
remove normal cases25-27 31 or were used as a post-screen 
of negative mammograms after double reading to predict 
interval and next round screen detected cancers.26

In studies of assistive AI, the commercial AI systems 
provided the radiologist with a level of suspicion for 
the area clicked. All three studies compared the test 
accuracy of the AI assisted read with an unassisted 
read by the same radiologists under laboratory 
conditions.30 32 37 The experience of the radiologists in 
the reader assisted studies ranged from 3 to 25 years 
(median 9.5 years) in 14 radiologists,32 from 0 to 25 
years (median 8.5 years) in 14 American Board of 
Radiology and Mammography Quality Standards Act 
(MQSA) certified radiologists,30 and from less than 5 
to 42 years in 7 MQSA certified radiologists.37 The role 
of the AI system in the screening pathway in the 12 
studies is summarised in figure 1.

Assessment of risk of bias and applicability
The evidence for the accuracy of AI to detect breast 
cancer was of low quality and applicability across all 
studies (fig 2) according to QUADAS-2 (supplementary 

Table 1 | Summary of study characteristics for studies using AI as standalone system
Study Study design Population Mammography vendor Index test Comparator Reference standard
Lotter 202128 Enriched test set 

MRMC laboratory study 
(accuracy of a read)

285 women from 1 US 
health system with 4 
centres (46.0% screen 
detected cancer); age 
and ethnic origin NR

Hologic 100% In-house AI system 
(DeepHealth); threshold 
NR (set to match readers’ 
sensitivity and specificity, 
respectively)

5 MQSA certified 
radiologists (US), single 
reading; threshold of 
BI-RADS scores 3, 4, and 
5 considered recall

Cancer: pathology 
confirmed cancer within 
3 months of screening; 
confirmed negative: a 
negative examination 
followed by an additional 
BI-RADS score 1 or 2 
interpretation at the next 
screening examination 
9-39 months later

McKinney 
202029

Retrospective test 
accuracy study (accuracy 
of a read)

3097 women from 1 US 
centre (22.2% cancer 
within 27 months of 
screening); age <40, 
181 (5.8%); 40-49, 
1259 (40.7%); 50-59, 
800 (25.8%); 60-69, 
598 (19.3%); ≥70, 259 
(8.4%)

Hologic / Lorad branded: 
>99%; 
Siemens or General 
Electric: <1%

In-house AI system 
(Google Health); 
threshold: to achieve 
superiority for both 
sensitivity and specificity 
compared with original 
single reading using 
validation set

Original single radiologist 
decision (US); threshold: 
BI-RADS scores 0, 4, 5 
were treated as positive

Cancer: biopsy confirmed 
cancer within 27 months 
of imaging; non-cancer: 
one follow-up non-cancer 
screen or biopsied 
negative (benign 
pathologies) after ≥21 
months

Rodriguez-Ruiz 
201933

Enriched test set 
MRMC laboratory study 
(accuracy of a read)

199 examinations from 
a Dutch digital screening 
pilot project (39.7% 
cancer); 
age range 50-74

Hologic 100% Transpara version 1.4.0 
(Screenpoint Medical BV, 
Nijmegen, Netherlands); 
threshold: 8.26/10, 
corresponding to the 
average radiologist’s 
specificity

Nine Dutch radiologists, 
single reading, as part of 
a previously completed 
MRMC study38; no 
threshold

Cancer: histopathology-
proven cancer; 
non-cancer: ≥1 normal 
follow-up screening 
examination (2 year 
screening interval)

Salim 
202035

Retrospective test 
accuracy study (accuracy 
of a read)

8805 women from a 
Swedish cohort study 
(8.4% cancer within 12 
months of screening); 
median age 54.5 (IQR 
47.4-63.5)

Hologic 100% 3 commercial AI systems 
(anonymised: AI-1, AI-2, 
and AI-3); threshold: 
corresponding to the 
specificity of the first 
reader

Original radiologist 
decision (Sweden); (1) 
single reader (R1; R2), 
(2) consensus reading; 
no threshold

Cancer: pathology 
confirmed cancer within 
12 months of screening; 
non-cancer: ≥2 years 
cancer free follow-up

Schaffter 
202036

Retrospective test 
accuracy study (accuracy 
of a read)

68 008 consecutive 
women from 1 Swedish 
centre (1.1% cancer 
within 12 months of 
screening) mean age 
53.3 (SD 9.4)

NR 4 in-house AI systems: 
1 top performing 
model submitted to the 
DREAM challenge, 1 
ensemble method of the 
eight best performing 
models (CEM), CEM 
combined with reader 
decision (single reader 
or consensus reading); 
threshold: corresponding 
to the sensitivity of single 
and consensus reading, 
respectively

Original radiologist 
decision (Sweden); (1) 
single reader (R1; R2), 
(2) consensus reading; 
no threshold

Cancer: tissue diagnosis 
within 12 months of 
screening; non-cancer: 
no cancer diagnosis ≥12 
months after screening

AI=artificial intelligence; BI-RADS=breast imaging reporting and data system; CEM=challenge ensemble method; DREAM=Dialogue on Reverse Engineering Assessment and Methods; 
IQR=interquartile range; MQSA=Mammography Quality Standards Act; MRMC=multiple reader multiple case; NR=not reported; R1=first reader; R2=second reader; SD=standard deviation.
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Table 2 | Summary of study characteristics for studies using AI for triage
Study Study design Population Mammography vendor Index test Comparator Reference standard
Balta 202025 Retrospective cohort 

study (accuracy of 
classifying into low and 
high risk categories)

17 895 consecutively 
acquired screening 
examinations from 
1 centre in Germany 
(0.64% screen detected 
cancer), age NR

Siemens 70% Hologic 
30%

Transpara version 1.6.0 
(Screenpoint Medical BV, 
Nijmegen, Netherlands);  
preselection of probably 
normal mammograms; 
Transpara risk score of 
1-10, different cutoff 
points evaluated; 
optimal cutoff point ≤7: 
low risk

No comparator as human 
consensus reading 
decisions used as 
reference standard for 
screen negative results

Cancer: biopsy proven 
screen detected 
cancers; non-cancer: 
no information about 
follow-up for the normal 
examinations was 
available. 
available; for this review, 
a normal mammogram 
was defined as free 
of screen detected 
cancer based on human 
consensus reading

Dembrower 
202026

Retrospective case-
control study (accuracy 
of classifying into low 
and high risk categories)

7364 women with 
screening examinations 
obtained during 2 
consecutive screening 
rounds in 1 centre in 
Sweden (7.4% cancer: 
347 screen detected 
in current round, 200 
interval cancers within 
30 months of previous 
screening round), 
median age 53.6 (IQR 
47.6-63.0)

Hologic 100% Lunit (Seoul, South 
Korea, version 5.5.0.16) 
(1) AI for preselection of 
mammograms probably 
normal, (2) AI as post-
screen after negative 
double reading to recall 
women at highest risk 
of undetected cancer; 
AI risk score: decimal 
between 0 and 1, 
different cutoff points 
evaluated

None Cancer: diagnosed 
with breast cancer at 
current screening round 
or within ≤30 months 
of previous screening 
round; non-cancer: >2 
years’ follow up

Lång 202127 Retrospective cohort 
study (accuracy of 
classifying into low and 
high risk categories)

9581 women attending 
screening at 1 centre 
in Sweden, consecutive 
subcohort of Malmö 
Breast Tomosynthesis 
Screening Trial (0.71% 
screen detected 
cancers), mean age 57.6 
(range 40-74)

Siemens 100% Transpara version 1.4.0 
(Screenpoint Medical BV, 
Nijmegen, Netherlands);  
preselection of 
mammograms probably 
normal; Transpara risk 
score of 1–10, different 
cutoff points evaluated; 
chosen cutoff point ≤5: 
low risk

No comparator as human 
consensus reading 
decisions used as 
reference standard for 
screen negative results

Cancer: histology of 
surgical specimen or 
core needle biopsies 
with a cross reference 
to a regional cancer 
register; 
non-cancer: a normal 
mammogram was 
defined as free of screen 
detected cancer based 
on human consensus 
reading

Raya-Povedano 
202131

Retrospective cohort 
study (accuracy of 
classifying into low and 
high risk categories)

15 986 consecutive 
women from the Córdoba 
Tomosynthesis Screening 
Trial, 1 Spanish centre 
(0.7% cancer: 98 screen 
detected (FFDM or DBT), 
15 interval cancers 
within 24 months of 
screening); mean age 
58 (SD 6), range 50-69 
years

Hologic (Selenia 
Dimensions) 100%

Transpara, version 1.6.0 
(ScreenPoint Medical BV, 
Nijmegen, Netherlands); 
preselection of 
mammograms probably 
normal; Transpara risk 
score of 1–10; cutoff 
point ≤7 low risk (chosen 
based on previous 
research by Balta 
202035)

Original radiologist 
decision from Córdoba 
Tomosynthesis Screening 
Trial (double reading 
without consensus or 
arbitration)

Cancer: histopathologic 
results of biopsy, screen 
detected via FFDM or 
DBT and interval cancers 
within 24 months of 
screening; non-cancer: 
normal reading with 
2-years’ follow-up

AI=artificial intelligence; DBT=digital breast tomosynthesis; FFDM=full field digital mammography; IQR=interquartile range; NR=not reported; SD=standard deviation.

Table 3 | Summary of study characteristics for studies using AI as reader aid
Study Study design Population Mammography vendor Index test Comparator Reference standard
Pacilè 202030 Enriched test set MRMC 

laboratory study, 
counterbalance design 
(accuracy of a read)

240 women from 1 US 
centre (50.0% cancer), 
mean age 59 (range 
37-85)

NR 14 MQSA certified 
radiologists (US) with AI 
support (MammoScreen 
version 1, Therapixel, 
Nice, France); threshold: 
level of suspicion (0-
100) >40

14 MQSA certified 
radiologists (US) without 
AI support, single 
reading; threshold: level 
of suspicion (0-100) >40

Cancer: histopathology; 
non-cancer: negative 
biopsy or negative result 
at follow-up for ≥18 
months

Rodriguez-Ruiz 
201932

Enriched test set MRMC 
laboratory study, fully 
crossed (accuracy of a 
read)

240 women (120 from 1 
US centre and 120 from 
1 German centre; 41.7% 
cancer), median age 62 
(range 39-89)

Hologic 50% 
Siemens 50%

14 MQSA certified 
radiologists (US) with 
AI support (Transpara 
version 1.3.0, 
Screenpoint Medical 
BV, Nijmegen, the 
Netherlands); threshold: 
BI-RADS score ≥3

14 MQSA certified 
radiologists (US) without 
AI support, single 
reading; 
threshold: BI-RADS 
score ≥3

Cancer: histopathology 
confirmed cancer; 
false positives: 
histopathologic 
evaluation or negative 
follow-up for ≥1 year; 
non-cancer: ≥1 year of 
negative follow-up

Watanabe 
201937

Enriched test set MRMC 
laboratory study, first 
without AI support, then 
AI aided (accuracy of a 
read)

122 women from 1 US 
centre (73.8% cancer, 
all false negative 
mammograms), mean 
age 65.4 (range 40-90)

NR 7 MQSA certified 
radiologists (US) with 
AI support (cmAssist, 
CureMetrix, Inc., La Jolla, 
CA); no threshold

7 MQSA certified 
radiologists (US) without 
AI support, single 
reading; no threshold

Cancer: biopsy proven 
cancer; non-cancer: 
BI-RADS 1 and 2 women 
with a 2 year follow-up of 
negative diagnosis

AI=artificial intelligence; BI-RADS=Breast Imaging-Reporting and Data System; MQSA=Mammography Quality Standards Act; MRMC=multireader multicase; NR=not reported.
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Breast screening mammograms

AI replaces all readers Radiologists use AI as a reader aid

Double reading + consensus negative

AI replaces one reader

Disagreement

No recall

Recall No recall

Recall No recall

Recall No recall

Arbitration
Arbitration

Do not know how AI might affect behaviour
of other radiologist and arbitration

Review findings:
No studies evaluating AI as a pathway change

No evidence of impact of AI on screening practice
No prospective evidence (either RCT, test accuracy study or cohort study)

Available evidence of high risk of bias (enriched study design,
laboratory effect, differential verification, insufficient follow-up)

Or

+–

Pre-screen to remove patients at low
risk for single or no radiologist review

Post-screen to identify patients missed
by double reading and consensus

4 retrospective studies
Transpara v1.4.0/v1.6.0 score

≤2: sens =100%/100%; spec = 19%/15%
≤5: sens = 90%/96%; spec = 53%/45%

≤7: sens = 84%/88.5% to 92%; spec = 73%/66% to 72.0%
Lunit v5.5.0.16 score

Lowest 50%: sens = 100%; spec = 50%
Lowest 90%: sens = 96%; spec = 90%

3 enriched MRMC laboratory studies
comparing radiologist with and without AI

Range Δ % sens: +3 (n=240) to +11 (n=122);
Range Δ % spec: -0.9 (n=122) to +2.0 (n=240)

Studies affected by laboratory effect, so radiologist
comparator not generalisable to clinical practice

Do not know how AI as reader aid
might affect subsequent arbitration

Sensitivity to detect cancer detected by screening radiologist
No follow-up of screening radiologist test negatives

Do not know how different prevalence might affect radiologists

1 retrospective study
Lunit v5.5.0.16 score

Highest 2%: sens = 19%; spec = 98%

Sensitivity to detect interval and/or next screen
detected cancers (that is, cancers missed by radiologists)

Do not know how knowledge of this “back-up”
might affect behaviour of radiologists

3 retrospective test accuracy studies compared
with original reader decision R1, R2, consensus

2 enriched MRMC laboratory studies
compared with average single reader

Range Δ % sens compared with single reader:
-10.4 (n=8805) to +14.2 (n=285)

Δ % sens compared with consensus: -3.1 (n=3097)
Range Δ % spec compared with single reader:

-8.7 (n=68 008) to +24.0 (n=285)
Δ % spec compared with consensus: -17.3 (n=68 008)

AI

AI AI
AI

AI

+ –

+

+
+

–

–

–

+ –

+

1

1 2

2 2

Fig 1 | Overview of published evidence in relation to proposed role in screening pathway. Purple shade=current pathway; orange shade=AI added to 
pathway; green shade=level of evidence for proposed AI role. AI=artificial intelligence; +/−=high/low risk of breast cancer, person icon=radiologist 
reading of mammograms as single, first, or second reader; MRMC=multiple reader multiple case; R1, R2=reader 1, reader 2; RCT, randomised 
controlled trial; sens=sensitivity; spec=specificity
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appendix 2). Only four studies (albeit the four 
largest comprising 85% of all 131 822 women in the 
review) enrolled women consecutively or randomly, 
with a cancer prevalence of between 0.64% and 
1.1%.25 27 31 36 The remaining studies used enrichment 
leading to breast cancer prevalence (ranging from 
7.4%26 to 73.8%37), which is atypical of screening 
populations. Five studies28 30 32 33 37 used reading under 
“laboratory” conditions at risk of introducing bias 
because radiologists read mammograms differently in 
a retrospective laboratory experiment than in clinical 
practice.39 Only one of the studies used a prespecified 
test threshold which was internal to the AI system to 
classify mammographic images.31

The reference standard was at high (n=8) or unclear 
(n=3) risk of bias in 11/12 studies. Follow-up of 
screen negative women was less than two years in 
seven studies,25-28 30 32 36 which might have resulted in 
underestimation of the number of missed cancers and 
overestimation of test accuracy.

Furthermore, in retrospective studies of routine data 
the choice of patient management (biopsy or follow-up) 
to confirm disease status was based on the decision of 
the original radiologist(s) but not on the decision of the 

AI system. Women classified as positive by AI who did 
not receive biopsy based on the original radiologists’ 
decision only, received follow-up to confirm disease 
status. Therefore, cancers with a lead time from screen 
to symptomatic detection longer than the follow-up 
time in these studies will be misclassified as false 
positives for the AI test, and cancers which would have 
been overdiagnosed and overtreated after detection by 
AI would not be identified as such because the type of 
cancer that can indicate overdiagnosis, is unknown. 
The direction and magnitude of bias is complex and 
dependent on the positive and negative concordance 
between AI and radiologists but is more likely to be 
in the direction of overestimation of sensitivity and 
underestimation of specificity.

The applicability to European or UK breast cancer 
screening programmes was low (fig 2). None of the 
studies described the accuracy of AI integrated into 
a clinical breast screening pathway or evaluated the 
accuracy of AI prospectively in clinical practice in any 
country. Only two studies compared AI performance 
with the decision from human consensus reading.35 36 
The studies included only interval cancers within 12 
months of screening, which is not typical for screening 

Standalone AI systems (5 studies)

AI as reader aid (3 studies)

Patient
selection

Lotter
202128

McKinney
202029

Rodriguez-Ruiz
201933

Salim
202035

Schaffter
202036

Watanabe
201937

Index
test

Comparator
test

Reference
standard

Patient
selection

Index
test

Risk of bias Applicability concerns

Study
reference

Flow and
timing

Comparator
test

Reference
standard

High High High Unclear Unclear High High High High

High High Low High High High High High Low

High High High Unclear Unclear High High High Unclear

High High Low High High High High High*Low*

High*Low*

High

Low High Low High High Unclear High High

Low High None High High Low High None High

High High None High High High None

Low High None High High Low High None High

Low Low Low Low High Low High High Low

High High High High Unclear High High High High

High High High High Unclear High High High High

High High High Unclear Unclear High High High Low

Pacilè
202030

Rodriguez-Ruiz
201932,34

Raya-Povedano
202131

AI for triage (4 studies)

Lång
202027

Balta
202025

Dembrower
202026

High†Low†High†Low†

Fig 2 | Overview of concerns about risk of bias and applicability of included studies. *Low concerns about applicability for consensus reading; high 
concerns about applicability for single reading as comparator test. †Low concerns about risk of bias and low applicability for the previous screening 
round (biopsy proven cancer or at least two years’ follow-up); high concerns about risk of bias and high applicability for the current screening round 
(biopsy-proven cancer but no follow-up of test negatives)
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programmes. No direct evidence is therefore available 
as to how AI might affect accuracy if integrated into 
breast screening practice.

Analysis
AI as a standalone system to replace radiologist(s)
No prospective test accuracy studies, randomised 
controlled trials, or cohort studies examined AI 
as a standalone system to replace radiologists. 
Test accuracy of the standalone AI systems and 
the human comparators from retrospective cohort 
studies is summarised in table 4. All point estimates 
of the accuracy of AI systems were inferior to those 
obtained by consensus of two radiologists in screening 
practice, with mixed results in comparison with a 
single radiologist (fig 3). Three studies compared AI 
accuracy with that of the original radiologist in clinical 
practice,29 35 36 of which two were enriched with extra 
patients with cancer. 

The DREAM challenge of 68 008 consecutive 
women from the Swedish screening programme found 
the specificity of the top performing AI system (by 
Therapixel in a competition between 31 AI systems 
evaluated in the competitive phase on the independent 
Swedish dataset) was inferior in comparison with the 
original first radiologist (88% v 96.7%) and inferior 
also in comparison with the original consensus 
decision (81% v 98.5%) when the AI threshold was set 
to match the first reader’s sensitivity and the consensus 
of readers’ sensitivity, respectively.36 The specificity of 
an ensemble method of the eight top performing AI 
systems remained inferior to that of the original first 
radiologist (92.5% v 96.7%, P<0.001), even in the 
same dataset that was used to choose the top eight. 

An enriched Swedish cohort study (which overlapped 
that of the DREAM challenge, n=8805, 8.4% cancer) 
used three commercially available AI systems with 
thresholds set to match the specificity of the original 
radiologists. The study found that one commercially 
available AI system had superior sensitivity (81.9%, 
P=0.03) and two had inferior sensitivity (67%, 67.4%) in 
comparison with the original first radiologist (77.4%).35 
All had inferior sensitivity in comparison with the 
original consensus decision (85%, P=0.11 for best AI 
system v consensus). The manufacturer and identity 
were not reported for any of the three AI systems. 

An enriched retrospective cohort from the US 
(n=3097, 22.2% cancer) found the AI system 
outperformed the original single radiologist in 
sensitivity (56% v 48%, P<0.001) and specificity (84% 
v 81%, P=0.021), although absolute values for the 
radiologist were lower than those found in clinical 
practice in the US and Europe.29 Two enriched test 
set multiple case multiple reader laboratory studies 
reported that AI outperformed an average single 
radiologist reading in a laboratory setting, but the 
generalisability to clinical practice is unclear.28 33

AI as a standalone system for triage
Four studies used the Transpara versions 1.4.0 
and 1.6.0 and Lunit version 5.5.0.16 AI systems, St
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respectively, as a pre-screen to identify women at 
low risk whose mammograms required less or no 
radiological review.25-27 31 In this use, AI systems 
require high sensitivity so that few patients with 
cancer are excluded from radiological review, and only 
moderate specificity, which determines the radiology 
case load saved. 

In a retrospective consecutive German cohort 
(n=17 895, 0.64% cancer) the Transpara version 
1.6.0 AI system achieved a sensitivity of 92% and a 
specificity of 66% at the Transpara score 7 to remove 
patients at low risk from double reading, and 96% 
sensitivity (45% specificity) at a Transpara score of 
5.25 A Transpara version 1.4.0 score of 5 had 90% 
sensitivity and 53% specificity in a Swedish cohort 
(n=9581, 0.71% cancer).27 Both studies reported 100% 
sensitivity at a score of 2 (and specificities of 15% and 
19%, respectively). The threshold for classification 
(725 and 527) was determined by exploring the full 
range of Transpara scores from 1 to 10 in the same 
dataset (fig 4A). In these studies, screen negative 
women were not followed up, so the sensitivity refers 
to detection of cancers which were detected by the 
original radiologists. 

One study predefined the Transpara score of 7 
to identify women at low risk in a Spanish cohort 
(n=15 986, 0.7% cancer, including 15 interval cancers 

within 24 months of follow-up) and achieved 88% 
sensitivity and 72% specificity.31

A Swedish case-control study (n=7364, 7.4% cancer) 
used a range of thresholds to consider use of the Lunit 
version 5.5.0.16 AI system as a pre-screen to remove 
normal patients (fig 4A) and then as a post-screen 
of patients who were negative after double reading 
to identify additional cancers (interval cancers and 
next round screen detected cancers; fig 4B).26 Using 
11 times upsampling of healthy women to simulate 
a screening population, they reported that use of AI 
alone with no subsequent radiologist assessment in 
the 50% and 90% of women with the lowest AI scores 
had 100% and 96% sensitivity and 50% and 90% 
specificity, respectively. AI assessment of negative 
mammograms after double reading detected 103 
(19%) of 547 interval and next round screen detected 
cancers if the 2% women with the highest AI scores 
were post-screened (with a hypothetical perfect follow-
up test).26

None of these studies reported any empirical data 
on the effect on radiologist behaviour of integrating AI 
into the screening pathway.

AI as a reader aid
No randomised controlled trials, test accuracy studies, 
or cohort studies evaluated AI as a reader aid in clinical 
practice. The only three studies of AI as a reader aid 
reported accuracy of radiologists’ reading of an 
enriched test set in a laboratory environment, with 
limited generalisability to clinical practice. Sensitivity 
and specificity were reported as an average of 14,30 
14,32 or 737 radiologists with and without the AI 
reader aid. Point estimates of the average sensitivity 
were higher for radiologists with AI support than 
for unaided reading (absolute difference +3.0%, 
P=0.046,32 +3.3%, P=0.021,30 and +11%, P=0.03037) 
in all three studies of 240,30 240,32 and 12237 women. 
The effect of AI support on average reader specificity 
in a laboratory setting was small (absolute difference 
+2.0%, P=0.06,32 +1.0%, P=0.63,30 and −0.9%,37 no P 
value reported; table 4).

Cancer type
Limited data were reported on types of cancer 
detected, with some evidence of systematic differences 
between different AI systems. Of the three retrospective 
cohort studies investigating AI as a standalone 
system to replace radiologist(s), only one reported 
measuring whether there was a difference between AI 
and radiologists in the type of cancer detected. One 
anonymised AI system detected more invasive cancers 
(82.8%) than a radiologist (radiologist 1: 76.7%; 
radiologist 2: 79.7%, n=640) and less ductal carcinoma 
in situ (83.5%) than a radiologist (radiologist 1: 
89.4%; radiologist 2: 89.4%, n=85), though the grades 
of ductal carcinoma in situ and invasive cancer were 
not reported.35 This same AI system detected more 
stage 2 or higher invasive cancers (n=204, 78.4% than 
radiologist 1: 68.1% and radiologist 2: 68.1%).35 The 
other two anonymised AI systems detected fewer stage 
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of multiple readers (radiologist single/average). iVertical dashed lines represent 
specificity for screening programmes for Denmark (2% false positive rate),61 UK (3% 
false positive rate),62 63 and US (11% false positive rate).64 Retrospective test accuracy 
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2 or higher invasive cancers (58.3% and 60.8%) than 
the radiologists. 

In an enriched test set multiple reader multiple 
case laboratory study, a standalone in-house AI 
model (DeepHealth Inc.) detected more invasive 
cancer (+12.7%, 95% confidence interval 8.5 to 16.5) 
and more ductal carcinoma in situ (+16.3%, 95% 
confidence interval 10.9 to 22.2) than the average 
single reader.28 This trend for higher performance of 
the AI model was also seen for lesion type, cancer size, 
and breast density. 

In an enriched test set multiple reader multiple 
case laboratory study, addition of the CureMetrix 
AI system to assist readers increased detection of 
microcalcifications (n=17,+20%) preferentially in 
comparison with other mammographic abnormalities 
such as masses (n=73,+9%).37 Microcalcifications are 
known to be more associated with ductal carcinoma 
in situ than with invasive cancer, but the spectrum of 
disease was not directly reported. 

Forty seven (87%) of 54 screen detected invasive 
cancers were classified as high risk using Transpara 
version 1.4.0 with a threshold of 5, in comparison with 
14 (100%) of 14 microcalcifications.27 Using Transpara 
version 1.6.0 with a threshold of 7 as pre-screen, four 
additional cancers were classified as high risk by 
AI that had been missed by original double reading 
without consensus (two ductal carcinoma in situ, one 
low grade invasive ductal cancer, and one high grade 
invasive ductal cancer).31 No information on cancer 
type was reported for the two screen detected cancers 
that were classed by AI as low risk.

Discussion
Main findings
In this systematic review of AI mammographic systems 
for image analysis in routine breast screening, we 
identified 12 studies which evaluated commercially 
available or in-house convolutional neural network 
AI systems, of which nine included a comparison 
with radiologists. One of the studies reported that 
they followed STARD reporting guidelines.36 The six 
smallest studies (total 4183 women) found that AI 
was more accurate than single radiologists.28-30 32 33 

37 The radiologists in five of six of these studies were 
examining the mammographic images of 932 women 
in a laboratory setting, which is not generalisable 
to clinical practice. In the remaining study, the 
comparison was with a single reading in the US with 
an accuracy below that expected in usual clinical 
practice.29 Whether this lower accuracy was due to 
case mix or radiologist expertise is unclear. In two of 
the largest retrospective cohort studies of AI to replace 
radiologists in Europe (n=76 813 women),35 36 all 
AI systems were less accurate than consensus of two 
radiologists, and 34 of 36 AI systems were less accurate 
than a single reader. One unpublished study is in line 
with these findings.40 This large retrospective study 
(n=275 900 women) reported higher sensitivity of AI 
in comparison with the original first reader decision 
but lower specificity, and the AI system was less 
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specificity, post-screen requires very high specificity, but can have modest sensitivity. 
Reference standard for test negatives was double reading not follow-up. (A) Dembrower 
2020a: retrospective study using AI (Lunit version 5.5.0.16) for pre-screen (point 
estimates not based on exact numbers). Reference standard includes only screen 
detected cancers. No data reported for radiologists.26 Balta 2020 (Transpara version 
1.6.0),25 Raya-Povedano 2021 (Transpara version 1.6.0),31 and Lång 2020 (Transpara 
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would be 100% specificity and 0% sensitivity as this was only in a cohort of women 
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accurate than consensus reading.40 Four retrospective 
studies25-27 31 indicated that at lower thresholds, AI 
can achieve high sensitivity so might be suitable for 
triaging which women should receive radiological 
review. Further research is required to determine the 
most appropriate threshold as the only study which 
prespecified the threshold for triage achieved 88.5% 
sensitivity.31 Evidence suggests that the accuracy and 
spectrum of disease detected between different AI 
systems is variable.

Considerable heterogeneity in study methodology 
was found, some of which resulted in high concerns 
over risk of bias and applicability. Compared with 
consecutive sampling, case-control studies added 
bias by selecting cases and controls41 to achieve an 
enriched sample. The resulting spectrum effect could 
not be assessed because studies did not adequately 
report the distribution of original radiological findings, 
such as the distribution of the original BI-RADS scores. 
The effect was likely to be greater, however, when 
selection was based on image or cancer characteristics 
rather than if enrichment was achieved by including 
all available women with cancer and a random sample 
of those who were negative. 

The overlap of populations in three Swedish studies 
means that they represent only one rather than three 
separate cohorts.26 35 36 Performance of the AI system 
might have been overestimated if the same AI system 
read the same dataset more than once and, therefore, 
could have had the opportunity to learn. We could not 
confirm this as the three AI systems used by Salim et al 
were anonymised.35

The included studies have some variation in reference 
standard for the definition of normal cases, from 
simply consensus decision of radiologists at screening, 
to one to three years of follow-up. This inconsistency 
means accuracy estimates are comparable within, but 
not between, studies. Overall, the current evidence is 
a long way from the quality and quantity required for 
implementation in clinical practice.

Strengths and limitations
We followed standard methodology for conducting 
systematic reviews, used stringent inclusion criteria, 
and tailored the quality assessment tool for included 
studies. The stringent inclusion criteria meant that 
we included only geographical validation of test sets 
in the review—that is, at different centres in the same 
or different countries, which resulted in exclusion of a 
large number of studies that used some form of internal 
validation (where the same dataset is used for training 
and validation—for example, using cross validation 
or bootstrapping). Internal validation overestimates 
accuracy and has limited generalisability,42 and might 
also result in overfitting and loss of generalisability as 
the model fits the trained data extremely well but to the 
detriment of its ability to perform with new data. The 
split sample approach similarly does not accurately 
reflect a model’s generalisability.43

Temporal validation is regarded as an approach that 
lies midway between internal and external validation43 

and has been reported by others to be sufficient in 
meeting the expectations of an external validation set 
to evaluate the effectiveness of AI.42 For screening, 
however, temporal validation could introduce bias 
because, for instance, the same women might attend 
repeat screens, and be screened by the same personnel 
using the same machines. Only geographical 
validation offers the benefits of external validation and 
generalisability.42

We also excluded computer aided detection for 
breast screening using systems that were categorised 
as traditional. The definition was based on expert 
opinion and the literature.14 The distinction is not clear 
cut and this approach might have excluded relevant 
studies that poorly reported the AI methods or used a 
combination of methods.

We extracted binary classifications from AI 
systems, and do not know how other information on 
a recall to assessment form from a radiologist, such 
as mammographic characteristics or BI-RADS score/
level of suspicion, might affect the provision of follow-
up tests. In addition, AI algorithms are short lived 
and constantly improve. Reported assessments of 
AI systems might be out of date by the time of study 
publication, and their assessments might not be 
applicable to AI systems available at the time. 

The exclusion of non-English studies might 
have excluded relevant evidence. The available 
methodological evidence suggests that this is unlikely 
to have biased the results or affected the conclusions of 
our review.44 45 Finally, the QUADAS-2 adaptation was 
a first iteration and needs further refinement taking 
into consideration the QUADAS-2 AI version and AI 
reporting guides such as STARD-AI and CONSORT-AI, 
which are expected to be published in due course.

Strengths and limitations in comparison with 
previous studies
The findings from our systematic review disagree with 
the publicity some studies have received and opinions 
published in various journals, which claim that AI 
systems outperform humans and might soon be used 
instead of experienced radiologists.10-13 Our different 
conclusion is based on our rigorous and systematic 
evaluation of study quality. We did not extract the 
“simulation” parts of studies, which were often used 
as the headline numbers in the original papers, 
and often estimated higher accuracy for AI than the 
empirical data of the studies. In these simulations 
various assumptions were made about how radiologist 
arbitrators would behave in combination with AI, 
without any clinical data on behaviour in practice 
with AI. Although a great number of studies report the 
development and internal validation of AI systems for 
breast screening, our study shows that this high volume 
of published studies does not reflect commercially 
available AI systems suitable for integration into 
screening programmes. Our emphasis on comparisons 
with the accuracy of radiologists in clinical practice 
explains why our conclusions are more cautious than 
many of the included papers.
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A recent scoping review with a similar research 
question, but broader scope, reported a potential 
role for AI in breast screening but identified evidence 
gaps that showed a lack of readiness of AI for breast 
screening programmes.46 The 23 included studies 
were mainly small, retrospective, and used publicly 
available and institutional image datasets, which often 
overlapped. The evidence included only one study with 
a consecutive cohort, one study with a commercially 
available AI system, and five studies that compared AI 
with radiologists. We found overlap of only one study 
between the scoping review and our review despite the 
same search start date, probably because we focused 
on higher study quality. Our review identified nine 
additional recent eligible studies, which might suggest 
that the quality of evidence is improving, but as yet no 
prospective evaluations of AI have been reported in 
clinical practice settings.

Possible explanations and implications for 
clinicians and policy makers
Our systematic review should be considered in the 
wider context of the increasing proposed use of AI 
in healthcare and screening. Most of the literature 
focuses, understandably, on those screening 
programmes in which image recognition and 
interpretation are central components, and this is 
indicated by a number of reviews recently published 
describing studies of AI and deep learning for diabetic 
retinopathy screening.47 48 Beyond conventional 
screening programmes, the use of deep learning in 
medicine is increasing, and has been considered in the 
diagnosis of melanoma,49 ophthalmic diseases (age-
related macular degeneration50 and glaucoma51), and 
in interpretation of histological,52 radiological,53 and 
electrocardiogram54 images.

Evidence is insufficient on the accuracy or clinical 
effect of introducing AI to examine mammograms 
anywhere on the screening pathway. It is not yet 
clear where on the clinical pathway AI might be of 
most benefit, but its use to redesign the pathway 
with AI complementing rather than competing with 
radiologists is a potentially promising way forward. 
Examples of this include using AI to pre-screen easy 
normal mammograms for no further review, and post-
screen for missed cases. Similarly, in diabetic eye 
screening there is growing evidence that AI can filter 
which images need to be viewed by a human grader, 
and which can be reported as normal immediately 
to the woman.55 56 Medical decisions made by AI 
independently of humans might have medicolegal 
implications.57 58

Implications for research
Prospective research is required to measure the effect 
of AI in clinical practice. Although the retrospective 
comparative test accuracy studies, which compared 
AI performance with the original decision of the 
radiologist, have the advantage of not being biased by 
the laboratory effect, the readers were “gatekeepers” 
for biopsy. This means that we do not know the true 

cancer status of women whose mammograms were 
AI positive and radiologist negative. Examination of 
follow-up to interval cancers does not fully resolve 
this problem of true cancer status, as lead times to 
symptomatic presentation are often longer than the 
study follow-up time. Prospective studies can answer 
this question by recalling for further assessment 
women whose mammograms test positive by AI or 
radiologist. Additionally, evidence is needed on the 
types of cancer detected by AI to allow an assessment 
of potential changes to the balance of benefits 
and harms, including potential overdiagnosis. We 
need evidence for specific subgroups according to 
age, breast density, prior breast cancer, and breast 
implants. Evidence is also needed on radiologist views 
and understanding and on how radiologist arbitrators 
behave in combination with AI.

Finally, evidence is needed on the direct comparison 
of different AI systems; the effect of different 
mammogram machines on the accuracy of AI systems; 
the effect of differences in screening programmes on 
cancer detection with AI, or on how the AI system 
might work within specific breast screening IT 
systems; and the effect of making available additional 
information to AI systems for decision making. 
Commercially available AI systems should not be 
anonymised in research papers, as this makes the 
data useless for clinical and policy decision makers. 
The most applicable evidence to answer this question 
would come from prospective comparative studies 
in which the index test is the AI system integrated 
into the screening pathway, as it would be used in 
screening practice. These studies would need to report 
the change to the whole screening pathway when AI 
is added as a second reader, as the only reader, as a 
pre-screen, or as a reader aid. No studies of this type or 
prospective studies of test accuracy in clinical practice 
were available for this review. We did identify two 
ongoing randomised controlled trials, however: one 
investigating AI as pre-screen with the replacement 
of double reading for women at low risk with single 
reading (randomising to AI integrated mammography 
screening v conventional mammography screening), 
and one investigating AI as a post-screen (randomising 
women with the highest probability of having had 
a false negative screening mammogram to MRI or 
standard of care.)59 60

Conclusions
Current evidence on the use of AI systems in breast 
cancer screening is a long way from having the 
quality and quantity required for its implementation 
into clinical practice. Well designed comparative test 
accuracy studies, randomised controlled trials, and 
cohort studies in large screening populations are 
needed which evaluate commercially available AI 
systems in combination with radiologists. Such studies 
will enable an understanding of potential changes 
to the performance of breast screening programmes 
with an integrated AI system. By highlighting the 
shortcomings, we hope to encourage future users, 
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commissioners, and other decision makers to press 
for high quality evidence on test accuracy when 
considering the future integration of AI into breast 
cancer screening programmes.
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