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ABSTRACT
OBJECTIVE
To assess whether reshaping of the immune balance 
by infusion of autologous natural regulatory T cells 
(nTregs) in patients after kidney transplantation is safe, 
feasible, and enables the tapering of lifelong high dose 
immunosuppression, with its limited efficacy, adverse 
effects, and high direct and indirect costs, along with 
addressing several key challenges of nTreg treatment, 
such as easy and robust manufacturing, danger of 
over immunosuppression, interaction with standard 
care drugs, and functional stability in an inflammatory 
environment in a useful proof-of-concept disease model.
DESIGN
Investigator initiated, monocentre, nTreg dose 
escalation, phase I/IIa clinical trial (ONEnTreg13).
SETTING
Charité-University Hospital, Berlin, Germany, within the 
ONE study consortium (funded by the European Union).

PARTICIPANTS
Recipients of living donor kidney transplant 
(ONEnTreg13, n=11) and corresponding reference 
group trial (ONErgt11-CHA, n=9).
INTERVENTIONS
CD4+ CD25+ FoxP3+ nTreg products were given 
seven days after kidney transplantation as one 
intravenous dose of 0.5, 1.0, or 2.5-3.0×106 cells/
kg body weight, with subsequent stepwise tapering 
of triple immunosuppression to low dose tacrolimus 
monotherapy until week 48.
MAIN OUTCOME MEASURES
The primary clinical and safety endpoints 
were assessed by a composite endpoint at 
week 60 with further three year follow-up. 
The assessment included incidence of biopsy 
confirmed acute rejection, assessment of nTreg 
infusion related adverse effects, and signs of 
over immunosuppression. Secondary endpoints 
addressed allograft functions. Accompanying 
research included a comprehensive exploratory 
biomarker portfolio.
RESULTS
For all patients, nTreg products with sufficient yield, 
purity, and functionality could be generated from 
40-50 mL of peripheral blood taken two weeks before 
kidney transplantation. None of the three nTreg 
dose escalation groups had dose limiting toxicity. 
The nTreg and reference groups had 100% three 
year allograft survival and similar clinical and safety 
profiles. Stable monotherapy immunosuppression 
was achieved in eight of 11 (73%) patients receiving 
nTregs, while the reference group remained on 
standard dual or triple drug immunosuppression 
(P=0.002). Mechanistically, the activation of 
conventional T cells was reduced and nTregs shifted 
in vivo from a polyclonal to an oligoclonal T cell 
receptor repertoire.
CONCLUSIONS
The application of autologous nTregs was safe and 
feasible even in patients who had a kidney transplant 
and were immunosuppressed. These results warrant 
further evaluation of Treg efficacy and serve as 
the basis for the development of next generation 
nTreg approaches in transplantation and any 
immunopathologies.
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WHAT IS ALREADY KNOWN ON THIS TOPIC
No consensus protocol exists for tapering immunosuppression in patients after 
solid organ transplantation and pharmacological induction treatment; preclinical 
data have indicated adoptive transfer of regulatory T cells (Tregs) as a promising 
option
Although currently published protocols on good manufacturing practice are 
heterogeneous and inconsistent, several groups have been able to generate Treg 
products from peripheral blood, cord blood, or thymus with sufficient yield and 
purity if enough starting material is available; however, manufacturing protocols 
that are easy to implement and clear defined criteria of product characteristics 
are lacking
Data from 12 patients who received Treg treatment at later time points after 
kidney transplantation have been published with limited information on 
mechanistic side studies to better understand the mode of action and reasons 
for patients responding or not responding to treatment

WHAT THIS STUDY ADDS
Our natural Treg (nTreg) manufacturing process uses small amounts of blood and 
is easy to use, especially for patients with comorbidities and for those receiving 
solid organ transplantation from deceased donors, with a short time window for 
cell collection
These data show stable minimisation of immunosuppression in most patients 
receiving nTreg treatment after kidney transplantation
Our analyses indicate that inhibition of conventional T cell activation and natural 
killer cell maturation without signs of over immunosuppression and (allo)antigen 
driven clonal expansion in the nTreg T cell receptor repertoire might be important 
mechanisms of nTreg treatment
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Introduction
Adoptive cellular therapies based on thymus derived 
natural regulatory T cells (nTregs) are promising 
candidates for sustainable reshaping of undesired 
immune reactions in various medical indications.1 2 
Conventional immunosuppression targets undesired 
effector mechanisms, but unfortunately also protective 
pathways like nTreg control. Consequently, in patients 
undergoing immunosuppression the immune balance 
remains disturbed and chronic immunosuppression 
is often necessary. Reshaping the immune balance by 
nTreg infusion in immunopathology related diseases 
might overcome the need for lifelong high dose 
immunosuppression with its limited efficacy, adverse 
effects, and high direct and indirect costs. Preclinical 
studies have already shown the ability of nTregs 
to delay or prevent graft rejection after solid organ 
transplantation or graft versus host disease, and to 
control autoimmunity and undesired immunogenicity 
of biological drugs and advanced treatment products 
after adoptive transfer in vivo. However, several open 
questions and obstacles remain before adoptive cellular 
treatment with nTregs can be widely implemented.

Transplantation with long term immunosuppression 
is the current standard of care in solid organ 
transplantation.3 4 Despite progress in one year 
patient and allograft survival, long term results have 
not improved during the past two decades. Chronic 
rejection and long term complications of chronic 
immunosuppression such as infections, malignancies, 
cardiovascular diseases, and pharmacological 
toxicity associated graft failure (eg, chronic allograft 
nephropathy) continue to be issues, which have 
spurred the search for novel treatment strategies.5-10 
Therefore, minimising or weaning long term 
immunosuppression after solid organ transplantation 
remains a major goal.4 Several promising approaches 
have failed mainly because of the high clonal size of 
alloreactive naïve and memory or effector T cells and 
B cells.4 Macrochimerism inducing protocols have 
shown promising results of tolerance induction, but 
their complexity limits broad implementation.11

CD4+ CD25+ FoxP3+ nTregs have been identified 
as key players of immune homoeostasis and are now 
a major research focus in transplantation.12-16 In a 
preclinical kidney transplantation model, which mimics 
the cellular presensitisation frequently found in patients 
undergoing transplantation, regulatory T cells (Tregs) 
combined with calcineurin inhibitor and T cell depletion 
controlled donor reactive memory T cells without the 
need for permanent calcineurin inhibitor treatment.12 
Although clinical experience with nTregs is limited, 
during the past decade a few phase I clinical trials of 
Treg treatments have been carried out for different 
clinical indications. Two small studies have included 
patients undergoing kidney transplantation and more 
recently patients with coronavirus disease 2019.1 2 17 18 
However, crucial knowledge gaps still exist about the 
optimal use of Treg treatment, reflected among the large 
heterogeneity in good manufacturing practice (GMP) 
protocols, dosing, and timing of Treg applications.

We used a single dose of nTreg treatment after 
living donor kidney transplantation in an investigator 
initiated phase I/IIa trial, accompanied by an extensive 
biomarker programme, as a proof-of-principle study. 
We addressed several issues relating to the broad 
implementation of nTreg treatment for various 
indications, including easy and robust manufacturing, 
risk of over immunosuppression, interaction with 
standard care drugs, and biomarkers for monitoring 
safety and efficacy.

Methods
Trial objectives, study design, safety, and efficacy 
monitoring
Our trials were independent studies within the 
European Union funded ONE study consortium, 
applying different site specific adoptive cellular 
therapies in patients undergoing living donor kidney 
transplantation in conjunction with using a consensus 
immunosuppression protocol and biomarker portfolio 
in comparison to the reference patients.19 20

The primary objective of the ONEnTreg13 phase I/IIa 
trial was to assess safety and feasibility of our in-house 
developed autologous CD4+ CD25+ FoxP3+ nTreg 
product in patients undergoing living donor kidney 
transplantation (n=11). The results were compared 
with the ONErgt11-CHA reference trial (n=9), which 
was conducted at our centre before the ONEnTreg13 
trial, to establish safety margins and biomarker 
panels (fig S1A). We used a composite primary safety 
endpoint, consisting of adverse infusion related 
effects, infections, acute rejection, and graft function 
or failure (table S1). The secondary objective of the trial 
was to evaluate whether nTregs allow safe tapering 
of conventional maintenance immunosuppression 
from triple drug treatment to monotherapy within 
48 weeks of transplantation (fig 1). Figure 1, figure 
S1, and tables S1 and S2 summarise the primary 
and secondary trial objectives and endpoints, the 
assessment of adverse events and efficacy, and patient 
eligibility criteria. Baseline parameters were similar 
for the reference group and the nTreg group (table 1 
and table S5). Additionally, both groups followed the 
same approach (fig 1 and table 2) for visits and initial 
immunosuppression (except the nTreg group did not 
receive induction treatment with the anti-interleukin 
2 receptor basiliximab), and the adjunct biomarker 
programme.

In total, 17 patients were assessed two weeks before 
kidney transplantation for eligibility to be enrolled in 
the ONEnTreg13 trial. However, six patients did not 
receive the nTreg product because of patient related 
issues occurring before cell infusion which was 
scheduled seven days after surgery (such as kidney 
transplantation not performed, surgical complications, 
withdrawal of consent, early biopsy proven acute 
rejection; fig S1). The remaining 11 patients were 
split into cohorts of three or four patients and received 
nTregs in escalating doses of 0.5, 1.0, or 2.5-3.0×106 
fresh cells/kg of body weight seven days after kidney 
transplantation. Because the targeted dose of 3.0×106 
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Fig 1 | ONE study ONEnTreg13 clinical trial design. Upper panel: time schedule of ONEnTreg13 clinical trial: patient enrolment, cell collection, 
living donor kidney transplantation, nTreg adoptive cellular therapy (dose escalation of 0.5, 1.0, or 2.5-3.0×106 fresh cells/kg of body weight), and 
primary 60 week study follow-up. Lower panel: overview of protocol immunosuppressive regimen of ONEnTreg13 clinical trial with doses adjusted 
to specified levels at indicated time points: first steroid reduction until week 14, followed by MMF reduction at week 36-48, with continuation of 
tacrolimus monotherapy in nTreg group until study end at week 60 and three year follow-up. GMP=good manufacturing practice; IV=intravenous; 
KTx=kidney transplantation; MMF=mycophenolate mofetil; nTreg=natural regulatory T cell
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cells/kg could not be obtained in two patients owing 
to cell loss at bead depletion, two patients in the high 
dose group received only 2.5×106 cells/kg body weight. 
The cells were administered through slow intravenous 
infusion over 30 minutes by Perfusor Space pump 
(fig 1 upper panel). Paracetamol (acetaminophen) 
and antihistamine were given prophylactically before 
cell infusion. With the exception of basiliximab (to 
prevent targeting of Tregs), nTreg treatment was used 

in conjunction with the standard immunosuppression 
regimen (steroids, mycophenolate mofetil, and 
tacrolimus) as adjunct treatment with the intention to 
reduce maintenance immunosuppression (fig 1 lower 
panel).

GMP manufacturing and characterisation of nTregs
The clinical grade nTregs were manufactured at our 
in-house GMP facility (Berlin Institute of Health 
Center for Regenerative Therapies, and Berlin 
Center for Advanced Therapies).21 Table S3 gives an 
overview of the process and materials. We were able 
to establish a robust GMP process for isolation and 
expansion of autologous polyclonal nTregs with good 
purity and sufficient yield (table 3) from 40-50 mL 
peripheral blood samples. We studied whether our 
nTreg manufacturing process is feasible for patients 
before kidney transplantation in terms of robustness, 
yield, and product composition. In total, we generated 
17 nTreg products from patients before kidney 
transplantation and 11 were administered to patients 
in the ONEnTreg13 trial (table S4).

For validation purposes and to better understand 
the manufacturing process and to study potential 
differences in product characteristics, we also generated 
nTreg products from healthy donors. A sufficient 
yield of nTregs (>1×109 cells) could be consistently 
generated from 40-50 mL of heparinised whole blood 
obtained by venipuncture from the patient’s forearm 
two weeks before kidney transplantation. All of the 
donors in the ONE study cohort had end stage renal 
disease and half were receiving dialysis. The Tregs 
were enriched by using the CliniMACS Plus system 
(CD8+ T cell depletion and CD25+ T cell enrichment) 
with subsequent stimulation and expansion for 23 

Table 1 | Baseline characteristics of patients before transplantation. Data are numbers 
unless indicated otherwise

Characteristics
Charité nTreg group 
ONEnTreg13 (n=11)

Charité reference group 
ONErgt11-CHA (n=9)

Median (range) recipient age (years) 36 (33-58) 43 (30-63)
Recipient female/male 5/6 4/5
Median (range) donor age (years) 56 (33-63) 53 (30-67)
Donor related/unrelated 7/4 7/2
Cause of end stage renal disease
 Glomerulonephritis or vasculitis 4 5
 Diabetic nephropathy 2 2
 Polycystic kidney disease 2 —
 Uropathy 1 —
 Other or undetermined 2 2
Median (range) time receiving dialysis (months) 11 (0-110) 14 (4-118)
Human leukocyte antigen mismatch
 0 2 1
 1-3 7 6
 4-6 2 2
Panel reactive antibody test
 <10% 10 8
 >10% 1 1
Cytomegalovirus serology donor/recipient
 D−/R− 3 3
 D-/R+ 2 —
 D+/R− 2 1
 D+/R+ 4 5
nTreg=natural regulatory T cell.

Table 2 | Clinical outcomes after 60 week study period and three year follow-up. Data are numbers unless indicated otherwise

Clinical outcome 
60 weeks 3 years
nTreg (n=11) Reference (n=9) P value nTreg (n=11) Reference (n=9) P value

Immunosuppression
Monotherapy (tacrolimus only) 8 0 0.002 8 — 0.001
Dual therapy (tacrolimus, MMF) — 5 — 4
Triple therapy (tacrolimus, MMF, steroid) 3 4 3 5
Alloreactivity
T cell mediated acute rejection 0.56 1.00
 Borderline — 1 — —
 Ia/Ib 1 1 — —
 IIa/IIb/III 1 — — —
 Mixed T cell and antibody mediated acute rejection 1 — — —
De novo donor specific antibodies 2 — 0.18 2 1 0.66
Infections and malignancies
Cytomegalovirus viraemia 1 1 0.51 — — 1.00
Cytomegalovirus disease — — 1.00 — 1 0.26
Polyomavirus viraemia — 1 0.26 — — 1.00
Other infections* 1 1 0.88 — — 1.00
Cancer — — 1.00 — 1 0.26
Graft function
Delayed graft function — 2 0.10 — — 1.00
Median (range) creatinine (mg/dL) 1.6 (1.3-1.8) 1.1 (1.0-2.0) 0.65 1.5 (1.2-1.6) 1.2 (0.9-2.0) 0.80
Median (range) estimated glomerular filtration rate (mL/min) 51 (46-58) 60 (37-64) 0.45 53 (47-49) 59 (38-66) 0.79
Median (range) proteinuria (mg/g Krea) 192 (92-336) 130 (93-430) 0.89 120 (89-221) 151 (62-278) 0.89
MMF=mycophenolate mofetil; nTreg=natural regulatory T cell.
nTreg and reference groups were compared after 60 weeks (study endpoint) and at three year follow-up.
*Urinary tract infection and pneumonia.
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days under nTreg promoting conditions, followed by 
magnetic expansion bead depletion (>99.997%) to 
obtain the final nTreg product (fig S4). We performed 
several analytical procedures before product release 
with validated methods (table 3), as described in detail 
in the supplementary methods (fig S4, tables S3 and 
S7). The nTreg products from all patients showed 
high expansion rates from the starting material (mean 
>2000-fold), high viability (mean 96%) and purity 
(mean 96% and 91% of CD4+ T cells and total cells, 
respectively), and low effector cytokine production 
(<10% interleukin 2 and interferon γ) upon phorbol 
myristate acetate or ionomycin activation. These data 
were comparable to those of healthy donors. T cell 
receptor repertoire analysis of our nTreg GMP products 
by next generation sequencing confirmed their 
polyclonal pattern, as described previously.22

Clinical monitoring and exploratory biomarker 
analysis
More than 100 parameters for determining safety, 
efficacy, and mechanism of action were monitored in 
the nTreg and reference groups over the study period 
of 60 weeks, with follow-up of up to three years, 
consisting of the consensus biomarker portfolio 
within the ONE study consortium19 and additional 
site specific markers. Monitoring included assessing 
biopsy confirmed acute rejection, clinical analysis 
and biochemical indices for renal function, and 
immune monitoring for measures of safety, immune 
activation or tolerance, and pharmacokinetics or 
dynamics, as outlined in supplementary table S7. 
Specifically, patient assessment included monitoring 
of viral load, monocytic human leukocyte antigen 
(HLA)-DR expression,23 standardised multiparameter 
flow cytometry analysis of 60 immune cell subsets 
according to the ONE study protocol20 24; monitoring of 
humoral and cellular allosensitisation by screening of 
antidonor HLA panel reactive antibodies with Luminex 
and donor reactive T cell frequencies with interferon 
γ ELISPOT25; cytokine measurements in plasma and 
urine; T cell receptor repertoire analysis of nTreg GMP 
products and circulating nTregs in patient blood26-29; 

and gene expression of selected tolerance or rejection 
pattern.30

Statistical analysis
A statistical analysis plan defined the conventions 
and analysis, and emphasised the exploratory nature 
of the study; accordingly the proposed statistical 
examination of clinical and immunological data 
was in principle descriptive.19 Table S6 summarises 
all statistical subset definitions, testing methods, 
and P values. We assessed clinical parameters and 
biomarkers over the whole time course by using non-
parametric analysis of the variance type statistic with F 
approximation developed by Brunner and colleagues31 
in a two way factorial repeated measures design (fig 
2, fig 3, fig 4, and fig S2). Testing was conducted for 
significant interaction; that is, non-parallel response 
profiles of the two treatment groups and within group 
changes over time using the nparLD R package.32 Post 
hoc multiple comparisons between individual time 
points were performed with P value adjustment by 
using Holm’s method. A two tailed Wilcoxon matched 
pairs signed rank test was used when comparing two 
time points within the nTreg group. A P value less 
than 0.05 was considered statistically significant for 
all tests. All analyses were performed with R (version 
3.5.1). GraphPad Prism software (version 8, GraphPad, 
La Jolla, CA) was used to generate graphs. Longitudinal 
data are presented as medians and interquartile ranges 
in all line graphs or individual comparisons as boxplots 
with whiskers indicating the data ranges.

Patient and public involvement
No patients were involved in setting the research 
question, nor were they involved in the design and 
implementation of the study.

Results
Patients and study design
Two weeks before kidney transplantation, patients 
were assessed for eligibility and blood samples were 
collected to manufacture the nTreg products. The 
definitive enrolment of patients for cellular treatment 
and for the reference group took place seven days after 
kidney transplantation according to the inclusion and 
exclusion criteria (fig S1A and table S2). The clinical 
results of patients treated with Tregs (n=11) were 
compared with the ONE study reference group patients 
(n=9), who were enrolled at our centre by using the 
same criteria and who received the standard of care. 
Patient characteristics and initial immunosuppression 
were similar for the two groups (table 1), but the 
nTreg group did not receive anti-interleukin 2 receptor 
induction treatment to prevent interaction with 
the nTreg product. No apparent cell dose-response 
association was found for any of the parameters 
investigated.

Safety of nTreg treatment
The primary objective was to assess the safety of cellular 
treatment. At the time of this analysis after three years 

Table 3 | Robust GMP manufacturing of nTregs from small volumes of blood from patients 
with ESRD and healthy donors. Data are medians (minimum-maximum)

Quality control analyses
Release 
criteria

Patients with ESRD 
(n=17)*

Healthy donors  
(n=6)

Viability (%) ≥70 96 (87-97.5) 96.9 (95.27-98.2)
Purity
 CD4+ CD25+ FoxP3+ (% of CD4+) ≥70 95.44 (90.4-99.6) 96.48 (94.55-98.82)
 CD4+ CD25+ FoxP3+ (% of total) FIO 91.9 (80.8-99.6) 94.0 (90.4-98.8)
Impurity
 Interleukin 2 production (% of total) ≤10 2.9 (0.15-6.05) 0.82 (0-1.5)
 Interferon γ production (% of total) ≤10 2.2 (0.2-7) 0.35 (0-1.14)
Starting material and cell yield
 Blood collected (mL) FIO 45 (38-50) 50 (50-50)
 Treg cell No start (E+06) FIO 3.9 (2.3-8.02) 5.5 (2.2-7)
 Treg cell No end (E+09) FIO 4.7 (0.96-37.7) 3.78 (0.73-13.4)
ESRD=end stage renal disease; FIO=for information only (no release criteria); GMP=good manufacturing practice; 
nTreg=natural regulatory T cell.
Quality control analyses of 23 GMP nTreg products from validation and clinical trial runs. Figure S4 shows further 
details on the process. 
*Eleven products were infused seven days after kidney transplantation to Treg group.
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of follow-up, all patients in both groups are alive with 
good graft function. No serious adverse events have 
been reported; that is, immediate or long term adverse 
effects arising directly from nTreg cell infusion (fig S1B 

and table 2). Importantly, no differences were found 
in the following parameters: tacrolimus blood levels 
during the three year follow-up (fig 2); renal functional 
parameters (including estimated glomerular 
filtration rate, serum creatinine, proteinuria, serum 
albumin, and serum urea; fig 3 and fig S2A); liver 
functional parameters (including bilirubin, aspartate 
aminotransferase, alanine transaminase, and alkaline 
phosphatase; fig S2B); or systemic inflammation and 
other safety parameters (such as C reactive protein, 
urinary interferon induced protein 10 inflammation 
marker, fibrinogen, and free haemoglobin; fig 4 and 
fig S2C). In contrast to anticancer T cell treatment, we 
did not observe any cellular infusion related systemic 
increase of proinflammatory or anti-inflammatory 
plasma cytokines, such as interferon γ, tumour necrosis 
factor α, interleukin 1, interleukin 6, interleukin 8, 
interleukin 10, and urinary interferon induced protein 
10 (fig 4). A trend was observed towards decreased 
intrarenal inflammation (P=0.1, fig 4). Furthermore, 
we did not observe any signs of immediate and long 
term over immunosuppression by nTreg treatment, as 
shown by monitoring monocytic HLA-DR expression 
(an immunocompetence marker; fig 4 lower panel), 
and the rate of infectious complications (eg, 
cytomegalovirus, Epstein-Barr virus, polyomavirus, 
urinary tract infections, septic events) and cancer until 
the three year follow-up (table 2).

First hints for efficacy of nTreg treatment
The secondary objective of the ONEnTreg13 trial 
was to evaluate whether nTregs allow safe tapering 
of conventional maintenance immunosuppression 
from triple drug treatment to monotherapy (fig 1 and 
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fig S3). Weaning of immunosuppression to low dose 
tacrolimus monotherapy (trough blood levels <6 
ng/mL) was achieved within 48 weeks for 10 of 11 
patients receiving nTreg treatment (91%). One patient 
(C5058) was excluded from a switch to monotherapy 
as he developed a posterior reversible encephalopathy 
syndrome related to calcineurin inhibitor treatment 
early after kidney transplantation. Tacrolimus was 
extremely reduced (trough level 2-3 ng/mL) for more 
than six months to overcome this complication. When 
a protocol biopsy revealed acute cellular rejection 
Banff IB, the patient received antirejection treatment. 
He was kept on standard triple drug treatment with 
good three year graft function.

In two of the 10 patients who were weaned of 
immunosuppression, tacrolimus monotherapy 
failed: one patient (C5056) developed mixed acute 
cellular rejection Banff III, antibody mediated acute 
rejection, and donor specific antibodies shortly before 
the end of the 60 week study period. Graft function 
could be rescued by rejection treatment and reversal 
to triple drug immunosuppression with good three 
year function. In another patient (C5063) recurrence 
of the underlying renal disease (immunoglobulin A 
nephropathy) was observed in the protocol biopsy 
some weeks later that was associated with proteinuria. 
For safety reasons, immunosuppression was reversed 

to the triple drug regimen. Patient C5057 showed mild 
graft deterioration from uncontrolled type 2 diabetes 
mellitus and cardiac decompensation early on before 
protocol switch to monotherapy. He did not show any 
hints of alloreactivity or inflammation in the biomarkers 
and recompensation of heart failure and diabetes 
would probably have been sufficient to normalise 
kidney function. However, he received a short steroid 
bolus for safety reasons as the histological picture 
showed some cellular infiltrations (acute cellular 
rejection Banff IB). Later he was successfully weaned 
to tacrolimus monotherapy with excellent three year 
follow-up. During the three year follow-up, stable good 
graft function was observed in the eight patients from 
the nTreg group on low dose tacrolimus monotherapy, 
and in all three patients from the nTreg group who 
were kept on standard triple drug treatment. Figure S3 
shows the individual patient courses.

The consensus protocol of the ONE study consortium 
for the reference group was to aim for a steroid free 
dual immunosuppression after week 12 and to manage 
patients with standard triple drug regimens in case of 
impending complications (functional deterioration, 
proteinuria, de novo donor specific antibodies). At 
the end of the 60 week study period, five of nine 
patients were on dual immunosuppression; at the 
three year follow-up four of nine patients were on dual 
immunosuppression. The remaining patients were 
receiving triple drug immunosuppression (P=0.002 
and P=0.001; table 2 and fig 2).

Exploratory biomarker analysis of nTreg treatment
Analysis of a broad set of more than 100 exploratory 
biomarkers revealed only few significant differences 
between the two groups (table S6). Among the 59 
immune cell subsets analysed by multiparameter flow 
cytometry, we observed significantly enhanced nTreg 
counts (CD4+ CD25high CD127low or CD4+ CD25high 
FoxP3+) with a favourable ratio of regulatory to effector 
T cells in the circulation for up to eight weeks after nTreg 
infusion with no apparent dose-response association 
(fig 5 and fig S7). By contrast, the reference group 
showed decreased nTreg levels compared with baseline 
for up to 12 weeks after kidney transplantation, partly 
owing to the basiliximab induction treatment,33 which 
supports sequestration of nTreg and internalisation 
of CD25. The nTreg group developed significantly 
fewer activated HLA-DR+ CD4+ non-Treg conventional 
T cells (P=0.018) and the counts of activated CD25+ 
127high CD8+ conventional T cells did not change over 
the entire period in the nTreg group. However, in the 
reference group these cells were initially suppressed by 
basiliximab, but increased after week 12 in a rebound 
effect (P=0.012; fig S6 and table S6C-D). Additionally, 
in the reference group a shift was observed from the 
CD56dim to the more mature CD56high natural killer 
cell subset during the study period, while the ratio 
remained stable in the nTreg group (P=0.08). At the end 
of the 60 week study period, the nTreg group showed 
a slightly higher proportion of the marginal zone B cell 
subset in the circulation (P=0.045). All other immune 
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Fig 4 | No immune complications after infusion: monitoring of cytokine release after 
infusion by measuring inflammatory cytokine serum or urinary levels (box plot, 
minimum-maximum range) with respective typical normal values (serum: TNFα<15.0 pg/
mL, IFNγ=10-30 pg/mL, IL-6<5.0 pg/mL, IL-1<5.0 pg/mL, IL-8<10.0 pg/mL, IL-10<5.0 pg/
mL, IP-10<200 pg/mL) and monocyte HLA-DR (molecules per cell) either 24 hours before 
or 24 hours after systemic nTreg infusion, including two week follow-up for HLA-DR. 
No significant differences between groups for any assessed parameters. HLA=human 
leukocyte antigen; IFNγ=interferon γ; IL=interleukin; IP-10= urinary interferon induced 
protein 10; nTreg=natural regulatory T cell; TNFα=tumour necrosis factor α
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cell subsets were not significantly affected by nTreg 
treatment compared with the reference group (fig S6).

To track nTregs in vivo, we monitored the T cell 
receptor repertoire of ex vivo sorted Tregs from patients 
at different time points after kidney transplantation 
and compared them with the respective infused nTreg 
product (fig 6 and fig S5). As expected, expanded clones 
covering more than 0.1% or even more than 1% of the 
T cell receptor repertoire were rarely detectable or not 
detectable at all within the polyclonal nTreg product, 
respectively, and together reached less than 15% of the 
total repertoire. The peripheral blood nTreg samples 

from the ONEnTreg13 group showed a significant 
clonal expansion within a few weeks after infusion, 
which persisted for up to 60 weeks. Up to 80% of the 
total nTreg T cell receptor repertoire consisted of in 
vivo expanded nTreg clones at individual frequencies 
of more than 0.1%; strongly expanded nTreg clones of 
more than 1% clonal size covered up to 60% (P<0.01 
v baseline). Most of these in vivo expanded clones 
were detectable at low frequency in the respective 
nTreg product of the individual patient. Analysis of a 
tolerance or rejection gene expression panel30 in whole 
blood did not reveal significant differences, except for 
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Fig 5 | Exploratory biomarker analysis of therapy response to nTreg treatment. More than 100 biomarkers were analysed in patients receiving 
nTregs, with a more comprehensive summary presented in figures S5-S6. Patients receiving nTregs were evaluated according to cell dose applied 
and compared with reference group. Transiently enhanced Treg levels and favourable Treg:Teff ratio. Upper panels: multiparameter flow cytometry 
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nTreg=natural regulatory T cell; Teff= effector T cell; Treg=regulatory T cell
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the rejection associated gene TMEM176B (TORID), 
which was downregulated to almost undetectable 
levels for the first 12 weeks in the nTreg group but not 
the reference group (group difference P=0.023).

Discussion
We used kidney transplantation as a proof-of-concept 
disease model to address several challenges of nTreg 
cellular treatment for reshaping undesired immune 
reactions. We were able to show that GMP compliant 
production of nTreg products from patients with end 
stage renal disease who had several comorbidities 
is feasible, robust, and possible at reasonable costs 
(€17 500/product (£15 800; $20 500))—a prerequisite 
for trustworthy data from clinical adoptive cell 
treatment trials.34-36 In line with the main trial objective, 

we also showed that infusion of autologous nTregs at 
the end of the first week after kidney transplantation 
was well tolerated. No evidence was found of cell 
infusion related short term or long term adverse effects, 
and we observed no signs of over immunosuppression. 
All patients in the nTreg group and the reference group 
had good graft function until the three year follow-
up despite stepwise minimising immunosuppression 
within the first 60 weeks in the nTreg group. The data 
support the feasibility of Treg treatment for many 
medical indications in solid organ transplantation and 
many other diseases with immunopathologies.

Strengths and limitations of this study
We were able to establish a robust GMP process for 
the isolation and expansion of autologous polyclonal 
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nTregs with good purity and yield (table 3) from small 
peripheral blood samples of 40-50 mL. Starting sources 
normally use approximately 10 times this amount of 
blood or leukapheresis material.37-40 Therefore, the 
use of nTregs is a more feasible treatment option and 
its applicability can be widened to different medical 
indications.

Our attempt to taper the standard triple or 
dual immunosuppression regimen to less toxic 
monotherapy with low dose tacrolimus showed stable 
three year success in 73% of the patients treated 
with nTregs. In the remaining 27% of patients, in 
whom tapering to tacrolimus monotherapy was not 
feasible or had to be reversed, we observed good 
graft function after three years of follow-up with a 
standard triple drug immunosuppression regimen. 
In contrast, reference patients remained on gold 
standard dual or triple immunosuppression as further 
tapering of immunosuppression in this group was not 
justifiable for safety reasons. Despite the limitation of 
low numbers of patients, the biomarker programme 
revealed five observations.

Firstly, the absence of any signs of inflammatory 
reaction after cell infusion, as seen typically after 
anticancer T cell treatment, underlines the lack 
of significant effector cell contamination of the 
nTreg product as shown by the product release test. 
Secondly, we did not observe any clinical (infections) 
or laboratory signs of over immunosuppression, 
previously discussed as a putative safety issue of 
polyclonal Treg treatment.41 We suggest that without 
T cell receptor or CD28 stimulation, Tregs lose their 
activation within a few days or even die. Therefore, 
only Treg clones that are repeatedly antigen stimulated 
keep their suppressive capacity and can expand in 
vivo. Thirdly, we observed that the polyclonal T cell 
receptor repertoire of infused Treg products shifts in 
vivo over time to an oligoclonal pattern, suggesting 
an alloantigen driven selection process. Similarly, the 
replacement of polyclonal anti-CD3/28 monoclonal 
antibodies by alloantigen in vitro stimulation induces 
a biased T cell receptor repertoire within a few days,22 
which suggests specific immunoregulation even after 
administration of polyclonal nTregs.

Fourthly, nTreg infusion induced only a temporary 
increase in Treg counts. The drop in circulating Tregs 
after four weeks might be explained by nTregs homing 
to the inflamed graft or lack of lasting engraftment. 
Because we hypothesise that only alloantigen 
triggered Tregs survive as suggested by the oligoclonal 
expansion, the clonal size might not be sufficient to be 
visible at total Treg counts. Finally, the nTreg group 
expressed less conventional T cell activation, natural 
killer cell maturation, and downregulation of the 
rejection associated gene TORID, which might give an 
indication of the mode of action of nTreg in vivo.

The study has some further limitations. As typical 
for cell treatment phase I/IIa trials, the number of 
patients is low, which limits the power of statistical 
analyses. Therefore, interpretation of the data must be 
done carefully and on a case-by-case basis. However, 

the consistency of many parameters with the same 
message makes core statements plausible (eg, no over 
immunosuppression, stable graft function despite 
weaning, inhibition of conventional T cell activation). 
In two patients, tapering of immunosuppression was 
not successful. The first patient developed mixed 
acute cellular rejection Banff III, antibody mediated 
acute rejection, and donor specific antibodies shortly 
before the study endpoint. This was the only patient 
in both groups with high levels of pre-existing donor 
specific T cell immunity. After successful intense 
rejection treatment, immunosuppression could be 
reversed to the triple drug regimen. The second patient 
had recurrence of the underlying kidney disease, 
immunoglobulin A nephropathy, an event observed 
in 10-60% of patients after kidney transplantation. 
Because high immunosuppression by thymoglobuline 
and weaning of steroids correlates with decreased 
and enhanced risk of immunoglobulin A nephropathy 
recurrence, respectively, we decided to change 
treatment back to the triple drug regimen.42 43 We 
have seen an improvement in proteinurea and stable 
graft function for more than three years in this patient. 
Therefore, in both patients treatment was successfully 
reversed to the triple drug regimen.

These data might suggest that nTregs together with 
low dose tacrolimus monotherapy cannot sufficiently 
control pre-existing pathogenic memory or effector 
immune cells. This hypothesis should be carefully 
studied in follow-up studies. The third patient on 
standard treatment in the nTreg group was not suitable 
for tapering because he developed tacrolimus related 
posterior reversible encephalopathy syndrome. We 
could speculate that the survival of his transplant with 
good three year function despite subtherapeutically 
low tacrolimus levels for several months (<2-3 ng/
mL) might be partially because of nTreg mediated 
protection.

Comparison with other studies
Minimising the clinical need for chronic immuno-
suppression as early and as much as possible is a major 
task after transplantation because it offers the chance 
to diminish undesired immunosuppression associated 
comorbidities.4 Empirical approaches with calcineurin 
inhibitor sparing regimens that minimise,9 withdraw,44 
or avoid calcineurin inhibitors45 have only been 
partially successful or have even failed to consistently 
show long term safety.4 46 At first view, Chan and 
colleagues47 reported promising data after temporary 
T cell or B cell depletion by alemtuzumab induction 
in patients who had kidney transplantation (73% 
on monotherapy after two years). However, several 
critical points should be noted: firstly, the Chan study 
reported a high rate of graft loss by graft deterioration 
or death within two years of follow-up (7.4%), whereas 
our trial reported 0% graft loss or death within three 
years of follow-up; secondly, the Chan study had a 
relatively high number of urinary tract infections 
(38%), whereas we observed only 10%; and thirdly, 
the target tacrolimus blood levels at the second half 
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of the first year (and thereafter) were much higher in 
the Chan study than in our cell treatment group (mean 
approximately 9 ng/mL v <6 ng/mL tacrolimus). Other 
studies that used alemtuzumab induction showed 
higher rates of monotherapy failure, acute rejections, 
and infections.46 48

The challenge remains to find new approaches that 
enable sustainable reduction of immunosuppression, 
thereby diminishing undesirable treatment associated 
comorbidities.4 This incentive formed the rationale for 
the ONEnTreg13 clinical trial because adoptive transfer 
of nTregs is a promising option to reshape undesired 
alloimmunity. Currently there are more than 50 active 
and completed early clinical trials that examine the 
safety and efficacy of Treg treatment for indications 
such as solid organ transplantation, inflammatory 
disease, and autoimmune diseases.1 2  17 Recently, 
two Treg clinical trials have been reported in patients 
undergoing kidney transplantation. The Leventhal 
study treated nine patients in a dose escalating phase 
I/IIa trial with much higher cell doses (up to 15 times 
higher than our highest tier) at week 4 after kidney 
transplantation and patients were kept on full rapamycin 
or mycophenolate mofetil based immunosuppression, 
allowing only safety analysis. Similar to our 
observations, this study did not see any major dose 
dependent effects.22 Chandran and colleagues treated 
three patients with subclinical rejection months after 
kidney transplantation without safety issues.49 Our 
study adds several novel aspects: new, more widely 
applicable manufacturing processes; application 
of Tregs early after solid organ transplantation with 
concomitant tapering immunosuppression to low dose 
tacrolimus monotherapy; and extensive mechanistic 
analyses giving insights into the mode of action of 
nTreg application.

Conclusions
Administration of our nTreg product was safe, 
well tolerated, and met the primary and secondary 
objectives. To further improve the efficacy of 
this treatment and to reach stable low dose 
immunosuppression or even complete weaning in 
almost all patients, next generation Treg approaches 
are required to address more sustainable and 
functional engraftment of Tregs, redirected specificity, 
resistance to immunosuppressive drugs, control 
of pre-existing memory or effector T cell response, 
as well as randomised trials. We also need to have 
a better understanding of the optimal dose. Our 
robust GMP manufacturing process is a key enabling 
platform technology for the ongoing development of 
more advanced next generation genetically modified 
products, such as chimeric antigen receptor nTregs, 
to improve the efficacy of these highly promising 
adoptive cellular therapies.34-36 50 51
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supplementary tables and figures of the paper (open access); any 
additional data will be made available by the corresponding author on 
request (petra.reinke@charite.de).

The corresponding author affirms that the manuscript is an honest, 
accurate, and transparent account of the study being reported; that 
no important aspects of the study have been omitted; and that any 
discrepancies from the study as planned (and, if relevant, registered) 
have been explained.
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Dissemination to participants and related patient and public 
communities: The dissemination plan for the results allows for 
the involvement of patients and patient organisations as well as 
the public, and implementation has already begun: for example, 
presentation of initial data and introduction of patients in regular 
doctor-patient seminars at our transplant centre 2017/18, as well as 
at the RESTORE health by advanced therapies event at the European 
Parliament in Brussels, annual long night of science event for public 
in Berlin 2019, production of a film for the public and politics about 
advanced therapies with an example of nTreg therapy (www.restore-
horizon.eu).
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