
the bmj | BMJ 2020;371:m3658 | doi: 10.1136/bmj.m3658 1

Brain HealtH

New era of personalised epilepsy management
The trial and error approach to epilepsy treatment has not changed for over a century but machine 
learning and patient derived stem cells promise a personalised and more effective strategy, argue 
Patrick Kwan and colleagues

Epilepsy affects 50 million peo-
ple worldwide with no age, eth-
nic, or geographical boundary.1 
Patients have recurrent seizures 
that can lead to injuries, cogni-

tive decline, psychosocial dysfunction, and 
even death. Epilepsy is caused by brain 
insults such as trauma, stroke, tumour, 
inflammation, and infection as well as sys-
temic changes resulting from genomic vari-
ation. Patients with epilepsy have increased 
comorbidities, including cerebrovascular, 
neurocognitive, and psychiatric diseases.2 
Better epilepsy control will therefore 
improve overall brain health.

Uncertainty in treatment response is major 
problem
Numerous drugs are available to treat epi-
lepsy as well as non-drug interventions 
such as resective surgery, neuromodula-
tion, and dietary therapies. Yet the current 
standard of care still relies on a trial and 
error approach of sequential regimens of 
antiseizure medications. Although there 
are guidelines on drug selection based on 
broad seizure type (focal or generalised 
onset) many drugs have similar efficacy 
when analysed on a group basis.3 For 
any given patient, it is impossible to pre-
dict which drug will be most effective and 
should be selected as the initial treatment. 
Nor are there surrogate biomarkers that 
can reliably predict treatment responses or 
risk of drug resistant epilepsy in the routine 

clinical setting. The upshot is that patients 
must simply wait and see whether their epi-
lepsy will be controlled, usually defined as 
an absence of seizures for at least one year.4 
Despite an explosion of new drugs, with 
over 20 on the market, antiseizure medica-
tions fail to control seizures in one third of 
patients.5

Across much of the world most patients 
newly diagnosed with epilepsy are treated 
by primary care physicians (box 1). If 
seizure control is not achieved with initial 
treatment, patients are referred to a general 
neurologist who, if further drug treatments 
fail, then refers them to an epilepsy centre. 
This sequential care pathway means critical 
time is lost before patients who may be at 
high risk of drug resistant epilepsy can be 
assessed by epilepsy specialists.6 Other 
treatment options, such as surgery, are 
widely considered a last resort. Sadly, 
the associated time delay means such 
treatments may be less effective.7 8 The 
result is often years of reduced quality 
of life, lost productivity, and increased 
mortality.9

This predicament might be solved 
by a reliable method to find patterns 
linking treatment outcomes to a patient’s 
personal characteristics. Patients with 
high risk of drug resistant epilepsy could 
be triaged early, expediting access to the 
precious resource of specialist care. Recent 
advances in artificial intelligence (AI) 
and stem cell research are raising hopes 
that personalised epilepsy management 
could soon be a viable alternative to this 
sequential treatment pathway (fig 1).

Medical artificial intelligence
Recent advances in machine learning, a 
subset of AI, offer novel ways to develop 
prediction models that are more accurate 
than traditional statistical modelling. 
Machine learning is being explored in 
epilepsy to forecast and detect seizures 
through recognition of electroencephalog-
raphy (EEG) patterns. A recent study used 
9571 routinely collected scalp EEG records 
to train a deep neural network that outper-
formed experts in detecting interictal epi-
leptiform discharges.11 Researchers have 

also used time series based algorithms (for 
example, the line length algorithm used in 
responsive neurostimulation systems12) to 
analyse controlled, continuously acquired, 
intracranial EEG signals to develop seizure 
warning systems.13 If shown to be effective 
in large scale clinical trials, such systems 
could help patients pre-empt and reduce 
injury from seizures.

Recent studies have used drug dispensing 
databases to develop models to predict 
drug treatment responses.14 15 Although 
these are large datasets, the models do not 
capture detailed information about the 
individual or the disease and therefore lack 
potentially important data on treatment 
outcomes. Medical records, on the other 
hand, include comprehensive clinical 
information on epilepsy management and 
are a fuller repository of factors potentially 
linked to treatment outcomes.

In the past five years a more advanced 
subfield of machine learning, called deep 
learning, has achieved impressive gains 
in the areas of image recognition, natural 
language processing, and speech. The 
superior performance of deep learning 
over traditional machine learning mainly 
arises from its depth of architecture and 
the capacity to scale massive amounts 
of data and continuously improve with 
more observations. Extended graphical 
models have shown superiority in 
modelling dynamic and complex graph 
structured data, such as clinical data. 
These models can unravel the hidden 
structure and reveal the complex links 
between clinical variables to derive 
predicted probabilities of the outcome of  
interest. 

In medical AI, models have been shown 
to be capable of automatically discovering 
and learning from complicated “hidden 
(latent) spaces” by encoding multiple 
observed features to fewer representation 
variables that are optimised for predicting 
the outcome of interest.16-19 For instance, 
graphical models recently identified the 
spatiotemporal evolution of epileptic 
seizures by leveraging spatial and temporal 
information in structural longitudinal 
data.20

Key Messages

•   For more than a century the approach 
to epilepsy treatment has been trial 
and error because there is no reliable 
way to predict which medications will 
work

•   Advances in machine learning prom-
ise more accurate models to predict 
treatment outcomes for individual 
patients

•   Genome-wide screening and sophis-
ticated disease models using patient 
derived stem cells may allow precision 
epilepsy treatment in future
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Biomedical Bidirectional Encoder 
Representations from Transformers 
(BioBERT)21 is the latest pretrained 
biomedical language representation 
model based on deep learning techniques 
and designed for biomedical text mining. 
BioBERT, released in early 2020, supports 
model training by facilitating use of 
unstructured data from many additional 
sources, such as electronic health records 
and clinical reports. This is combined with 
powerful deep learning graphical models, 
allowing researchers to include more 
granular and potentially useful information 
in the analysis of treatment outcomes, 
something not possible with traditional 
statistical analysis.

These AI advances raise the hope of 
robust models to predict drug treatment 
responses. A study at the Stanford 
Epilepsy Center is developing AI models 
to predict outcomes of antiseizure 
medication treatment from participants’ 
seizure, genetic, physical, physiological, 
medication, and environmental data.22 
The ideal AI algorithm and input data 
to predict drug treatment responses are 
not yet known. Future studies should 
therefore explore more advanced and 
complex graphical AI models and use data 
from large, longitudinal epilepsy registries 
so that comprehensive information can 
be mined from patients’ medical records. 
Those studies might enhance the models by 
applying natural language processing tools 
to extract unstructured data. 

Although clinicians may be getting used 
to software being incorporated into their 
workflow, the “black box” nature of deep 
learning based AI systems could still hamper 
uptake. There have, however, been recent 
advances in the visualisation of AI based 
support of clinical decision making processes 
across multiple areas.23 Determining the 
interoperability of models that visualise 
knowledge encoded within deep neural 
networks, and how this is affected by the data 
input, is also important for the development 
of novel treatment models.24

Genomics, stem cells, and precision treatment
Genome-wide screening of patients has 
identified a growing list of genes, sin-
gle nucleotide gene variants (SNVs), and 
genome hotspots associated with epilepsy. 
Around 70% of epilepsy cases may be due 
to one or more genetic factors.25 26 Even as 
examples emerge,27 28 it remains unclear to 
what extent identification of pathogenic 
genetic variants will influence treatment 
decisions in clinical practice. To address 
that knowledge gap, a randomised con-
trolled trial is investigating the clinical util-
ity and cost effectiveness of whole genome 
sequencing in patients with refractory epi-
lepsy.29

If genetic knowledge is to translate 
into better treatment it is critical to have 
a clearer understanding of the functional 
role of genetic variation. Researchers have 

traditionally studied this using animal 
and cellular disease models that insert 
the errant gene into an organism’s DNA. 
Pathophysiological changes are then 
established by comparison with a control, 
or wildtype, state. 

In epilepsy, disease modelling studies 
of SCN1A mutations (a gene responsible 
for most cases of Dravet syndrome30) have 
pinpointed the pathology as a reduction 
in the sodium ion channel function of 
inhibitory interneurons.31 That finding has 
led to a reassessment of drug selection in 
Dravet syndrome, avoiding drugs that block 
sodium ion channels as they could further 
reduce interneuron function and aggravate 
seizures.32

In most cases, however, the pathogenicity 
of SNVs has not been established because 
of the limited scope of disease modelling 
studies. If precision medicine is to be 
widely adopted in epilepsy, patients 
identified as having a genetic variant must 
get expedited testing. The genetic variant 
should be investigated using in vitro 
models to assess its pathophysiological 
consequences and tailor testing and 
selection of drug treatment.

One promising disease model uses 
neurons derived from induced pluripotent 
stem cells (iPSCs) generated from 
the patient. iPSCs carry the patient’s 
genetic information and can be grown 

Box 1: Current treatment practice
Jane is a 30 year old woman with newly diagnosed temporal lobe epilepsy. Her EEG appears 
normal but an MRI shows right hippocampal sclerosis, the likely source of her seizures. In line 
with guidelines,10 Jane’s general practitioner prescribes lamotrigine, one of the many drugs 
shown to be effective against focal seizures. Jane has more seizures and a few months later 
visits her GP who, appropriately, refers her to a general neurologist. Over the next few years 
Jane tries various drugs, some of which are stopped because of side effects, and is eventually 
maintained on three drugs. Despite this, ongoing seizures mean Jane cannot drive, loses her 
job, and becomes depressed. The neurologist refers her to an epilepsy centre to be evaluated 
for surgery.

Current treatment

Personalised treatment

A

B

C

$

Fig 1 | Simplified conceptual view of how personalised treatment may be applied in epilepsy. 
Instead of the present trial and error approach (a) physicians could consult the decision 
supporting software for drug selection and identifying patients with high risk of drug 
resistance (b). Blood cells are obtained from patients to derive personalised disease models 
for drug screening to identify targeted and effective treatment (c)
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or “differentiated” into a variety of cell 
lineages, including multiple neural 
subtypes (fig 2). These patient derived 
neural models allow the study of genetic 
variation for a broad range of neural 
phenotypes, such as abnormal neural 
morphology or synaptic transmission, 
which is not possible with traditional 
models. The models have been used 
to identify the abnormal behaviour of 
neurones that carry highly pathogenic gene 
variants, as seen in early developmental 
encephalopathies.33

The advantages of iPSC based disease 
models include the ability to explore the 
combined effects of multiple SNVs in a 
single patient and cases where the genetic 
lesion is unknown.34 There are, however, 
important hurdles to be overcome before 
these models can be used routinely in 
clinical decision making. More research 
is needed to show whether a hyperactive 
network phenotype, a hallmark of clinical 
epilepsy, can be reproduced in a dish. 
More study, too, is required to establish 
the relation between electrical activity 
measured in these in vitro models and 
epileptiform activity observed on EEG.

Current iPSC based neural models lack 
sufficient cellular complexity to establish 
seizure-like activity. Researchers are 
therefore turning to cerebral organoids 
that contain organised, multicellular 
tissue structures found in the brain.35 More 
complex disease models will be essential to 
accurately model dysfunction in the broad 
range of cell types and brain regions that 
cause epilepsy in humans. In addition, 
multielectrode arrays, which record the 
coordinated interplay of networked neurons, 
have been used to detect EEG-like signatures 
from cultured cerebral organoids.36

Since iPSC based models can be grown 
indefinitely without risk to the patient, 
they will be important for high throughput 
screening of candidate compounds in 
patient specific conditions. The aim is 
to identify novel, targeted antiseizure 
medications. Indeed, these models have 
been successfully used for high throughput 
drug screening in other central nervous 
system diseases.37 Such drug screening 
platforms could overcome our heavy 
reliance on traditional rodent models, 
which has hindered the development of 
antiseizure medications and helps explain 
why more than a third of patients with 
epilepsy lack effective treatment.

Future of personalised epilepsy management
If personalised epilepsy management is to 
become a reality technological advances 

must be coupled with improved health 
education and access to specialist care. 
The Australian Epilepsy Project (https://
epilepsyproject.org.au) aims to build a 
network of centres to improve access for 
people living with epilepsy, especially in 
rural regions. It will recruit 8000 patients 
over five years to develop clinical decision 
support models by training AI algorithms 
on advanced imaging, neurocognitive 
functions, genetics, and other clinical fea-
tures. The outcome prediction models will 
not only be of value to specialists but help 

general practitioners, who can use them to 
triage patients for early referral to epilepsy 
centres (box 2). Instead of the current trial 
and error approach physicians will consult 
decision support software that incorporates 
multimodal data for machine learning 
modelling. Personalised disease models 
derived from patients with drug resistant 
epilepsy will integrate clinical data for deci-
sion making and screen for novel, approved 
compounds as precision treatment. Fields 
such as oncology38 have shown that com-
bining in vitro models with clinical char-

Box 2: The near future
AI based clinical decision support models accurately predict the likely success of each 
antiseizure medication for an individual patient. The models are converted to software, 
approved by the US Food and Drug Administration and other regulatory authorities, under 
the category “software as a medical device.” Used standalone or integrated into electronic 
medical record systems, the software improves performance using real world feedback. It 
identifies patients at high risk of drug resistant epilepsy and expedites early, targeted access 
to costly specialised care or surgical evaluation. The software proves cost effective and is used 
to prioritise patients for access to specialised epilepsy centres.

Jane’s GP diagnoses epilepsy and enters Jane’s data into the AI based treatment decision 
support software. The information includes seizure type and frequency, epilepsy risk factors, 
EEG and MRI results, medical history, and demographic and other relevant data. Within 
seconds, the software concludes there is an 80% chance Jane’s epilepsy will not respond to 
the available antiseizure medications and recommends she is prioritised for specialised care. 
The GP promptly refers Jane to an epilepsy centre. She has a blood sample taken for screening 
using cerebral organoids against a library of compounds. The screening shows a drug currently 
used to treat another condition may be effective. Based on a favourable assessment of the 
risks and benefits, the drug is “repurposed” to treat Jane’s epilepsy. Her seizures stop and her 
life is back on track.

Fig 2 | “Epilepsy in a dish” models comprise human neurons derived from patient iPSCs. Here 
they grow as small clusters of neurones (red) and from which project long ranging axons 
(green). The nuclei of supporting astrocytes and senescent cells are shown in blue. These 
models will advance precision medicine and identification of new targeted drugs for epilepsy
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acteristics can yield predictive models more 
powerful than those using either data type 
alone. Our hope is that a convergence of 
technologies could, within five to 10 years, 
make personalised epilepsy management a 
clinical reality.
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