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Use of genetic variation to separate the effects of early and later 
life adiposity on disease risk: mendelian randomisation study
Tom G Richardson, Eleanor Sanderson, Benjamin Elsworth, Kate Tilling, George Davey Smith

ABSTRACT
OBJECTIVE
To evaluate whether body size in early life has an 
independent effect on risk of disease in later life or 
whether its influence is mediated by body size in 
adulthood.
DESIGN
Two sample univariable and multivariable mendelian 
randomisation.
SETTING
The UK Biobank prospective cohort study and four 
large scale genome-wide association studies (GWAS) 
consortiums.
PARTICIPANTS
453 169 participants enrolled in UK Biobank and a 
combined total of more than 700 000 people from 
different GWAS consortiums.
EXPOSURES
Measured body mass index during adulthood (mean 
age 56.5) and self-reported perceived body size at age 
10.
MAIN OUTCOME MEASURES
Coronary artery disease, type 2 diabetes, breast 
cancer, and prostate cancer.
RESULTS
Having a larger genetically predicted body size in 
early life was associated with an increased odds of 
coronary artery disease (odds ratio 1.49 for each 
change in body size category unless stated otherwise, 

95% confidence interval 1.33 to 1.68) and type 2 
diabetes (2.32, 1.76 to 3.05) based on univariable 
mendelian randomisation analyses. However, little 
evidence was found of a direct effect (ie, not through 
adult body size) based on multivariable mendelian 
randomisation estimates (coronary artery disease: 
1.02, 0.86 to 1.22; type 2 diabetes:1.16, 0.74 to 
1.82). In the multivariable mendelian randomisation 
analysis of breast cancer risk, strong evidence was 
found of a protective direct effect for larger body size 
in early life (0.59, 0.50 to 0.71), with less evidence 
of a direct effect of adult body size on this outcome 
(1.08, 0.93 to 1.27). Including age at menarche as an 
additional exposure provided weak evidence of a total 
causal effect (univariable mendelian randomisation 
odds ratio 0.98, 95% confidence interval 0.91 to 
1.06) but strong evidence of a direct causal effect, 
independent of early life and adult body size 
(multivariable mendelian randomisation odds ratio 
0.90, 0.85 to 0.95). No strong evidence was found of 
a causal effect of either early or later life measures on 
prostate cancer (early life body size odds ratio 1.06, 
95% confidence interval 0.81 to 1.40; adult body size 
0.87, 0.70 to 1.08).
CONCLUSIONS
The findings suggest that the positive association 
between body size in childhood and risk of coronary 
artery disease and type 2 diabetes in adulthood 
can be attributed to individuals remaining large into 
later life. However, having a smaller body size during 
childhood might increase the risk of breast cancer 
regardless of body size in adulthood, with timing of 
puberty also putatively playing a role.

Introduction
Obesity in children is widely recognised as a global 
public health crisis, yet its prevalence continues to 
rise.1 2 Having a high body mass index (BMI) in early 
life is thought to increase the risk of various health 
conditions, such as coronary artery disease, type 2 
diabetes, and different types of cancer, in later life.3-7  
Whether an individual can reverse the impact of 
childhood obesity through lifestyle modifications is 
unclear, particularly as those who are obese in early 
life tend to remain obese as adults.8 This makes it 
challenging to discern whether early life adiposity 
has an independent and lasting influence on disease 
risk or if its effect is entirely mediated by later life 
adiposity. If the latter is the case, then the potential 
adverse consequences of childhood obesity could be 
avoided by attaining and maintaining a healthy weight 
in adulthood.

Mendelian randomisation is an approach that 
can help deal with these challenges9 through the 
use of genetic variants as instrumental variables 
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WHAT IS ALREADY KNOWN ON THIS TOPIC
Obesity in childhood is known to have a detrimental impact on various health 
conditions and disease risk in later life
Body size in early life has been associated with increased odds of coronary 
artery disease and type 2 diabetes observationally, but whether this effect is 
immutable or whether lifestyle modifications can help mitigate it is unclear
The influence of early life body size on risk of other diseases, such as breast 
cancer and prostate cancer, has been previously reported but the causal 
relations underlying these observations are complex and require further 
evaluation

WHAT THIS STUDY ADDS
The influence of genetically predicted early life body size on odds of coronary 
artery disease and type 2 diabetes was predominantly mediated through later 
life body size, suggesting that the influence of body size on these outcomes is 
attributed to a cumulative risk conferred throughout the life course
Findings for body size at age 10 suggested that it had a protective effect on 
breast cancer risk independent of later life body size, although timing of puberty 
might play a causal role in this relation
This study focused on cardiometabolic and cancer outcomes, but the analytical 
approach has potential to investigate how risk factor trajectories across life 
influence a range of health outcomes
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to infer causality among correlated traits.10 11 As 
an individual’s genotype is established at zygote 
formation then genetic variation is robust to reverse 
causation and confounding is considerably less 
evident than in conventional observational studies.12 
Furthermore, recent methods have been developed 
to determine whether several exposures influence an 
outcome along the same causal pathway or whether the 
exposures have independent effects.13 14 One of these 
developments is known as multivariable mendelian 
randomisation.13 15

In this mendelian randomisation study we evaluated 
whether genetically predicted early life body size has 
an effect on four disease outcomes that have been 
linked to childhood adiposity: coronary artery disease, 
type 2 diabetes, breast cancer, and prostate cancer.3 4 7 

16 We identified genetic instruments by undertaking a 
genome-wide association study of 453 169 participants 
in the UK Biobank study with measures of BMI in 
adulthood (mean age 56.5) and who self-reported 
perceived body size at age 10 years. This allowed us to 
conduct both univariable and multivariable mendelian 
randomisation analyses to discern whether the 
predicted causal influence of early life body size has 
an independent effect on disease risk, or whether the 
effect is mediated through later life body size.

We postulated that if body size in early life has a 
causal influence on disease risk, then there are likely 
three main categories that such effects could be grouped 
into in a multivariable framework after accounting for 
body size during adulthood (fig 1). Firstly, the influence 
of early life body size on disease risk could be mediated 
by later life body size. As such, early life body size only 
has an indirect effect on disease risk through adult body 
size, which, for example, could be attributed to those 
with a large body size at age 10 remaining overweight 
into adulthood (fig 1 top panel). Secondly, early life 
body size might have only an independent (ie, direct) 
effect on disease risk, which is not mediated through 
adult body size (fig 1 middle panel). Thirdly, body 
size at separate time points might influence disease 
risk through alternate causal pathways (ie, early life 
body size has both a direct and an indirect effect on 
outcome; fig 1 bottom panel). These scenarios are 
possible to investigate using multivariable mendelian 
randomisation given that a genome-wide association 
study has recently shown that genetic variation might 
have varying effects on body size at different stages 
in the life course.17 Supplementary figure 1 provides 
additional descriptions of direct, indirect, and total 
effects within a multivariable framework.

Methods
UK Biobank and disease outcome datasets
Between 2006 and 2010 the UK Biobank study 
enrolled 500 000 adults aged between 40 and 69 years 
at baseline across 22 assessments centres in the United 
Kingdom.18 Data were collected based on clinical 
examinations, assays of biological samples, detailed 
information on self-reported health characteristics, 
and genome-wide genotyping.19 BMI was derived 

using height (measured in whole centimetres) and 
weight (to the nearest 0.1 kg) measured at baseline. 
Participants were also asked “When you were 10 
years old, compared to average would you describe 
yourself as thinner, plumper, or about average?” 
This measure is referred to as early life body size. 
We performed validation and simulation analyses to 
account for possible limitations of using perceived 
body size rather than a measured variable. Only those 
with measures in both early life and later life were 
included in analyses. BMI in adults was converted into 
a categorical variable with three groups based on the 
same proportions as the early life body size variable 
(ie, thinner, plumper, and about average). This was 
to ensure that both measures were as comparable as 
possible. This measure is referred to as adult body size. 
Effect estimates from our results can be interpreted as 
the increase in odds conferred for each additive change 
in body size category. All individual participant data 
used in this study were obtained from the UK Biobank 
study. Participants enrolled in UK Biobank have signed 
consent forms.

In total, 12 370 749 genetic variants in 463 005 
people were available for analysis, as described 
previously.20 Briefly, UK Biobank participants were 
selected based on those of European descent (using 
K means clustering (K=4)) after standard exclusions, 
including withdrawn consent, mismatch between 
genetic and reported sex, and putative sex chromosome 
aneuploidy.21 Effect estimates for genome-wide genetic 
variants on coronary artery disease, type 2 diabetes, 
breast cancer, and prostate cancer were obtained using 
findings from large scale consortiums, which did not 
include data from the UK Biobank (supplementary table 
1).22-25 Since earlier age at menarche is an established 
risk factor for breast cancer we also obtained summary 
statistics from a genome-wide association study of age 
at menarche that did not include individual’s from the 
UK Biobank, which was used in additional analyses 
relating to this outcome.26

Avon Longitudinal Study of Parents and Children
The Avon Longitudinal Study of Parents and Children 
(ALSPAC) is a population based cohort study 
investigating genetic and environmental factors that 
affect the health and development of children. The 
study methods are described in detail elsewhere.27 28 
Briefly, 14 541 pregnant women residing in the former 
region of Avon, UK, with an expected delivery date 
between 1 April 1991 and 31 December 1992 were 
eligible to take part in ALSPAC. Detailed phenotypic 
information, biological samples, and genetic data 
have been collected from the participants, which 
are available through a searchable data dictionary 
(http://www.bristol.ac.uk/alspac/researchers/our-
data/). Written informed consent was obtained for all 
study participants. Ethical approval for the study was 
obtained from the ALSPAC ethics and law committee and 
the local research ethics committees. Supplementary 
note 1 provides further details on genotyping and trait 
measurements in the ALSPAC cohort.

 on 10 A
pril 2024 by guest. P

rotected by copyright.
http://w

w
w

.bm
j.com

/
B

M
J: first published as 10.1136/bm

j.m
1203 on 6 M

ay 2020. D
ow

nloaded from
 

http://www.bristol.ac.uk/alspac/researchers/our-data/
http://www.bristol.ac.uk/alspac/researchers/our-data/
http://www.bmj.com/


RESEARCH

the bmj | BMJ 2020;369:m1203 | doi: 10.1136/bmj.m1203 3

Statistical analysis
Identifying instruments
We used the software BOLT-LMM to assess the 
association between genetic variants across the 
human genome and both measures of body size.20 29 
This approach applies a bayesian linear mixed model 
to evaluate the association between each genetic 
variant with each measure of body size in turn, while 
accounting for both relatedness and population 
stratification. We added age at baseline and type of 
genotyping array as covariates in the model. Analyses 
were undertaken three times, once in all eligible 
participants after additionally adjusting for sex, and 
then stratifying by sex and analysing each separately. 
This allowed us to identify genetic variants that could 
be used as instrumental variables for outcomes based 
on populations of women only (ie, breast cancer), 
populations of men only (ie, prostate cancer), and 
mixed populations (ie, coronary artery disease and 
type 2 diabetes). Analyses of early life body size 
were additionally adjusted for month of birth as we 
hypothesised that peoples’ relative age within their 
school year might bias self-reporting. Effect estimates 
from this analysis were used in the subsequent 

mendelian randomisation analyses. We used linear 
regression—that is, assuming that the effect of a given 
single nucleotide polymorphism on moving from the 
lowest to the middle category of the body size variables 
is the same as its effect on moving from the middle to 
the highest.

We used bivariate GREML analysis with GCTA 
software to calculate the genetic correlation between 
the early life and adult body size results from a genome-
wide association study.30 A genetic relation matrix was 
derived from 10 000 randomly selected UK Biobank 
participants who were unrelated and of European 
descent. To identify independent variants from our 
genome-wide association study we undertook linkage 
disequilibrium clumping using the software PLINK.31 
This was based on a threshold of r2<0.001 using 
genotype data from European individuals from phase 
3 (version 5) enrolled in the 1000 genomes project as a 
reference panel.32 For independent variants associated 
with either early life or adult body size in our genome-
wide association study of all participants (based on 
P<5×10−08), we compared the effect estimates of these 
variants between time points. This was undertaken 
by stacking observations (ie, so that each individual 

Early life body
size instruments

Early life and adult
body size instruments

Adult body
size instruments

Early life
body size

Adult
body size

Confounders

Indirect effect of early life body size only

Disease

Early life body
size instruments

Early life and adult
body size instruments

Adult body
size instruments

Early life
body size

Adult
body size

Confounders

Direct effect of early life body size only

Disease

Early life body
size instruments

Early life and adult
body size instruments

Adult body
size instruments

Early life
body size

Adult
body size

Confounders

Both indirect and direct effects of early life body size

Disease

Fig 1 | Directed acyclic graphs depicting three possible scenarios that could explain a causal effect between body 
size at age 10 years and disease outcomes in adulthood. (Top) Early life body size has an indirect effect on disease 
risk only through body size in adulthood, (middle) early life body size has a direct effect on disease risk independent 
of body size in adulthood, and (bottom) early life body size exerts both direct and indirect effects on disease risk in 
adulthood
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had two body size measurements) and then regressing 
the categorical body size outcomes on each variant in 
turn adjusting for age, sex, and time (ie, early life or 
later life). This analysis was then repeated along with 
adjustment for the interaction between genetic variant 
and time period. To account for multiple testing, we 
applied a Bonferroni correction to the P values of the 
interaction terms (ie, P<0.05/number of individual 
variants assessed) as a heuristic to highlight genetic 
loci with the strongest evidence of an interaction 
with time. This analysis was undertaken to show that 
various genetic variants seemingly appear to have a 
stronger influence on body size at different time points 
in the life course.

Validation of genetic scores using external datasets
Data on clinically measured BMI from the ALSPAC 
cohort was used to validate the scores we generated 
in the UK Biobank study. BMI data were obtained at 
three time points; two based on the ALSPAC offspring 
(at mean ages 9.9 and 17.9 years) and one in the 
ALSPAC mothers (mean age 50.8 years). Measures of 
BMI were dichotomised to classify individuals higher 
than the 85th centiles as overweight. Receiver operator 
characteristic curves were generated using the R 
package plotROC to compare the predictive ability of 
the scores for both early life and adult body size at all 
three time points.

We also undertook linkage disequilibrium score 
regression33 to evaluate the genetic correlation between 
the two measures of body size from our analysis with 
directly measured BMI in adulthood,34 and childhood 
obesity35 using large scale external populations based 
on data from the linkage disequilibrium hub.36 This was 
undertaken to further validate our early life measure of 
body size by showing that it is more strongly correlated 
with measured obesity in childhood than with BMI in 
adulthood. This was particularly important to show 
given that the early life body size score in UK Biobank 
was derived using questionnaire recall data, which 
could lead to bias if not appropriately validated using 
external datasets.

Mendelian randomisation
Univariable mendelian randomisation analyses were 
conducted using the MR-Base platform37 to investigate 
total effect estimates between genetically predicted 
early life and adult body size individually with each 
disease outcome in turn. This was based on the inverse 
variance weighted method, which estimates the causal 
effect of an exposure on an outcome by combining 
ratio estimates using each variant in a fixed effect 
meta-analysis model.38 Effect estimates on early life 
body size were used for the analysis, with additional 
adjustment for month of birth. However, the “total” 
effect of adult body size should be interpreted with 
caution. A strong correlation is likely to exist between 
genetic determinants of early and adult body size, and 
thus the total effect of adult body size is likely to be 
driven by pleiotropy if there is also a direct effect of 
early body size on the outcome. For this reason we only 

discuss the total effect of early body size and the direct 
effects of early and adult body size. Supplementary 
figure 1 shows a direct acyclic graph illustrating direct, 
indirect, and total effects as investigated within a 
multivariable mendelian randomisation framework.

We undertook multivariable mendelian 
randomisation analyses to estimate the direct effect of 
early life body size on each outcome in turn. Variants 
from the univariable analysis were used again here after 
undertaking further linkage disequilibrium clumping 
to account for instrument correlation between the two 
sets. We also undertook a negative control analysis 
with early life and adult body size as exposures in a 
multivariable framework and age at menarche as an 
outcome using findings from a genome-wide association 
study published before the release of UK Biobank.26 
We hypothesised that early life body size should only 
influence age at menarche directly in this framework as 
an individual’s adult body size cannot influence timing 
of puberty (supplementary figure 2). As such, direct 
and total effects derived from a univariable framework 
should be comparable for early life body size on this 
outcome, whereas evidence of an indirect effect (ie, 
through adult body size) should be weak.

Furthermore, we undertook a sensitivity analysis for 
the breast cancer outcome to discern whether timing 
of puberty might also play a role in disease risk. This 
involved repeating analyses on breast cancer with age 
at menarche as a third exposure (along with early life 
and adult body size). We also repeated the univariable 
and multivariable mendelian randomisation analyses 
using findings derived from women with oestrogen 
receptor positive and oestrogen receptor negative breast 
cancer. Moreover, we undertook various sensitivity 
analyses to investigate results from the univariable and 
multivariable analyses, such as assessing instrument 
strength by deriving F statistics,39 examining 
heterogeneity using Cochran’s Q,40 and investigating 
horizontal pleiotropy using the MR-Egger method.41 42 
Finally, we undertook a simulation study to investigate 
how misclassification of early life body size could 
affect our results (supplementary note 2).

All analyses were undertaken using R (version 
3.5.1). Plots were created using the packages ggplot243 
and metaphor.44

Patient and public involvement
This research did not involve patients or the public 
as it uses data from the UK Biobank study that were 
previously obtained from a cohort of people who 
had already been recruited. As such, no patients or 
member of the public were involved in the design or 
implementation of this study or the research questions 
addressed.

Results
In a genome-wide association study of 453 169 UK 
Biobank participants, 295 and 557 independent 
associations were detected with early life and adult 
body size, respectively, based on conventional genome-
wide corrections (ie, P<5×10−08; supplementary tables 
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2 and 3). A genetic correlation coefficient of rG=0.61 
was calculated between these two sets of results. 
Using individual level data from the ALSPAC cohort, a 
genetic score based on the early life body size variants 
was found to be a stronger predictor of childhood BMI 
(mean age 9.9 years) compared with a score based 
on the adult variants (fig 2 left panel). Investigating 
the prediction of both early life and adult body size 
scores during later adolescence (mean age 17.8 years) 
suggested that neither score was optimal at this time 
point (fig 2 middle panel). During the adulthood time 
point (mean age 50.8 years), the adult body size score 
was a better predictor than using the early life body 
size variants (fig 2 right panel). These findings show 
the ability of these genetic instruments to separate 
early life size from adult body size.

Linkage disequilibrium score regression analyses 
identified strong genetic correlation between our 
derived early life measure of body size and a previous 
genome-wide association study of childhood obesity 
(rg=0.85) (supplementary figure 3). In contrast, our 
adult body size measure was considerably more 
strongly genetically correlated with a previous genome-
wide association study of BMI in adulthood (rg=0.96) 
than to obesity in childhood (rg=0.64). Evaluating the 
difference between the genetic variant associations at 
the two different time points suggested that 75 genetic 
variants had stronger effect estimates on body size 
in adulthood compared with body size in early life, 
whereas 23 genetic variants had a stronger effect in 
early life compared with adult body size estimates 
(at P<7.19×10−05 (ie, 0.05/694 tests), supplementary 
table 4). Demonstrating that the magnitude of effect 
for these genetic variants differs with respect to early 
life and adult body size further suggests that they 
can be separated as two exposures in a multivariable 
framework. Plotting the relation between early life 
body size and adult body size in UK Biobank did not 
indicate a non-linear relation between them in line 
with the assumptions of multivariable mendelian 
randomisation (supplementary figure 4). Linear 
trajectories between childhood and adulthood have 
also been presented previously in cohorts, such as the 
Fels Longitudinal Study.45

Figure 3  illustrates findings from both early life and 
adult body size genome-wide association studies using 
a bidirectional Manhattan plot (sometimes referred to 
as a Miami plot) where some examples of time point 
specific effects have been highlighted. Repeating 
our genome-wide association study stratified by sex 
identified 135 and 215 variants that survived genome-
wide association study corrections (ie, P<5×10−08) 
in women only with early life and adult body size, 
respectively (n=246 511) (supplementary tables 5 and 
6). In the analysis restricted to men only, 69 genetic 
variants were associated with early life body size and 
159 genetic variants were associated with adult body 
size (n=206 658) (supplementary tables 7 and 8). 
Repeating early life body size analyses with additional 
adjustment for month of birth did not seem to materially 
influence overall findings (supplementary tables 9-11).

Univariable and multivariable mendelian 
randomisation analyses
Odds ratios from these analyses reflect the change 
in odds for each change in category for our derived 
early life and adult body size variables. Univariable 
analyses provided strong evidence that early life body 
size is associated with risk of coronary artery disease 
(univariable mendelian randomisation odds ratio 
1.49, 95% confidence interval 1.33 to 1.68). However, 
the direct effect of early life body size (ie, not mediated 
through adult body size) was much smaller than the 
total effect (multivariable mendelian randomisation 
odds ratio 1.02, 95% confidence interval 0.86 to 
1.22), whereas strong evidence of a direct effect was 
identified for adult body size (multivariable mendelian 
randomisation odds ratio 1.82, 1.59 to 2.09). Similar 
findings were identified for analyses of type 2 diabetes, 
as the magnitude of the direct causal effect for early 
life body size was much smaller than the total effect 
(multivariable mendelian randomisation odds ratio: 
early life body size 1.16, 0.74 to 1.82, adult body size 
2.80, 1.89 to 4.15). Figure 4 shows effect estimates 
from both univariable and multivariable mendelian 
randomisation analyses (supplementary table 12 also 
provides a full list). The results from this analysis were 
robust to the various sensitivity analyses applied in 
this study (supplementary tables 13-15).

The univariable analysis evaluating the effect of 
early life body size on age at menarche as an outcome 
provided strong evidence that having a larger body 
size at age 10 might result in earlier puberty (β −0.93 
standard deviation change in age at menarche for each 
change in body size category, 95% confidence interval 
−0.66 to −1.20). When adult body size was included in 
the multivariable framework, along with early life body 
size as an exposure, the direct effect estimate for early 
life body size was found to be essentially unchanged 
(table 1). In contrast, evidence that adult body size has 
an effect on timing of puberty was weak. These findings 
reflect the scenario depicted in supplementary figure 
2, suggesting that early life body size can only affect 
timing of puberty directly and not indirectly through 
adult body size. This analysis serves as a proof of 
concept for our multivariable framework, given that 
adult body size cannot influence timing of puberty as it 
occurs at a later time point in the life course.

In the univariable analysis strong evidence was 
found that higher genetically predicted early life body 
size was associated with a reduction in risk of breast 
cancer (univariable mendelian randomisation odds 
ratio 0.63, 0.55 to 0.72). When both measures of body 
size were analysed in a multivariable framework, the 
direct effect of adult body size (multivariable mendelian 
randomisation odds ratio 1.08, 0.93 to 1.27) was 
smaller in magnitude than the direct protective effect 
of early life body size (0.59, 0.50 to 0.71). Similar 
findings were identified in the analysis of women with 
oestrogen receptor positive and oestrogen receptor 
negative breast cancer (supplementary table 16).

Evaluating the relation between genetically 
predicted age at menarche and risk of breast cancer 
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in a univariable analysis provided weak evidence of a 
total effect (univariable mendelian randomisation odds 
ratio 0.98, 0.90 to 1.06). However, when modelled 
together with both early and adult body size (ie, all 
three exposures in the multivariable model) there was 
strong evidence that later age at menarche might lower 
the risk of breast cancer (multivariable mendelian 
randomisation odds ratio 0.90, 0.85 to 0.95). Effect 
estimates for predicted early life body size had a larger 
effect in this multivariable analysis compared with 
the direct effect of adult body size (table 1). Evidence 
that early life body size has a predicted causal effect 
on prostate cancer directly was weak (multivariable 
mendelian randomisation odds ratio 1.06, 0.81 to 
1.40), which was also the case for adult body size 
(0.87, 0.70 to 1.08).

Early life body size was self-reported later in life and 
so is prone to misclassification, whereas adult body 
size is directly measured and is likely to be subject only 
to random error. A simulation was therefore conducted 
to identify how such misclassification, affecting only 
one exposure, could influence the effect estimation in 
the multivariable mendelian randomisation analyses. 
The simulation study (see supplementary note 2) 
shows that misclassification of early life body size is 
associated with a weakening in strength of association 
between the single nucleotide polymorphisms and 
our measure of early life body size and so potentially 
biases the estimated effect of early life body size in 
the multivariable mendelian randomisation analysis. 
These simulations do not cover all of the potential 
scenarios for measurement error. In the scenarios 
considered, however, misclassification of early life 
body size only introduces bias in the estimated 
effect of adult body size on the outcome when the 
misclassification in early life body size is dependent on 
actual adult body size and there is an effect of early life 
body size on the outcome. The simulations also show 
that the direction of this bias on the estimated effect of 
the adult variable depends on the direction of effect of 
the adult body size relative to the early life measure. 
Furthermore, the effect of adult body size is unbiased 
when early life body size has no associated effect on 
the outcome.

The simulation study also shows that the potential 
measurement error in self-reported body size at 
age 10 has the potential to bias adult effects in the 
multivariable mendelian randomisation when the 
measurement error depends on observed adult BMI 
and early life body size has a causal effect on the 
outcome. This therefore has the potential to affect 
the results we obtain for adult body size and risk of 
breast cancer. These simulations show that the bias 
from misclassification depends on both the type of 
misclassification and the size and direction of the 
effects of both exposures on the outcome. However, 
they suggest that this misclassification only masks the 
adult effect when it acts in the same direction as the 
early life effect on the outcome. We therefore do not 
believe that this measurement error is hiding a risk 
increasing effect of adult body size on breast cancer, 
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Fig 2 | Receiver operator characteristic curves to compare the predictive capability 
of early life and adult body size scores across three time points in Avon Longitudinal 
Study of Children and Parents (ALSPAC). (Top) Mean age 9.9 years in the ALSPSAC 
offspring; (middle) mean age 17.9 years in the ALSPAC offspring; and (bottom) mean 
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although it is possible that it is masking a larger 
protective effect.

Discussion
In this study we examined the influence of body size 
in early life (age 10 years) on risk of disease in later 
life and whether this putative causal effect occurs 
independently (direct effect) or through the same 
causal pathway (indirect effect) as later life body size. 
Our univariable mendelian randomisation analysis 
suggested that genetically predicted early life body size 
is associated with an increased risk of coronary artery 
disease and type 2 diabetes. When early life body 
size was analysed together with adult body size in a 
multivariable framework, however, the direct effect 
estimates for early life body size were considerably 
attenuated and fully compatible with, and close to, the 
null compared with the estimates of the total effects, 
suggesting that the influences of early life adiposity 
on these outcomes are mediated by body size in later 
life (see fig 1). These findings imply that observed 
associations between early life obesity and increased 
risk of coronary artery disease and type 2 diabetes 
are likely attributed to those with a large body size in 
childhood that persists into later life. This suggests 
that a window of opportunity exists to mitigate the 
detrimental impact of early life body size on risk of 
these disease outcomes.46 47 These findings corroborate 

those from previous studies suggesting that there is 
no persistent influence of childhood obesity on risk 
of type 2 diabetes and cardiovascular disease unless 
adiposity is sustained.48 49 Furthermore, these findings 
highlight the importance of taking into account adult 
body size to assess whether childhood body size has a 
direct or persistent effect on disease risk over the life 
course.50 51

Our results also provide strong evidence that 
early life body size has a protective effect on risk of 
breast cancer, as has been previously reported from 
both observational and mendelian randomisation 
studies that have not taken into account later life 
body size.52-55 This was identified as both a total and 
a direct effect using univariable and multivariable 
mendelian randomisation analyses, respectively, 
suggesting that the effect of early life body size might 
persist into later life regardless of interventions 
that influence variation in body size. Furthermore, 
reported protective effect estimates from mendelian 
randomisation studies between later life body size 
and breast cancer risk could be attributed to effects 
from childhood. This is in contrast to observational 
estimates suggesting that higher BMI in adulthood 
might increase the risk of breast cancer, which could be 
attributed to confounding factors to which mendelian 
randomisation analyses are more robust.55 This effect 
requires further investigation in subpopulations of 
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premenopausal and postmenopausal women with 
breast cancer from large scale genome-wide association 
studies. This is particularly crucial given observational 
evidence suggesting that higher BMI increases the risk 
of invasive breast cancer in postmenopausal women.56

As an additional test of our multivariable 
framework, we undertook a negative control analysis 
to investigate the effect of early life body size on age 
at menarche in both a univariable and a multivariable 
framework accounting for adult body size. We found 
that estimates were consistent from both analyses for 
early life body size, whereas the effect estimates for 
adult body size in the multivariable analyses had a 
much smaller magnitude of effect in comparison. This 
provides a powerful proof of concept for our analytical 
framework, given that body size can only influence 
timing of puberty in early life whereas adult body size 
cannot as it occurs earlier in the life course. Moreover, 
our results support findings from the literature 
suggesting that higher BMI in childhood can lead to 
earlier timing of puberty.57 Evidence is particularly 
strong in women, where an evolutionary mechanism 

rendering adequate fat storage to sustain both mother 
and growing fetus has been postulated.58

We undertook an additional analysis to investigate 
timing of puberty with respect to the putative 
protective effect of early life body size on risk of breast 
cancer. To do this we incorporated age at menarche as 
an additional exposure in our multivariable mendelian 
randomisation analysis. Our findings corroborate 
similar analyses undertaken using a multivariable 
framework, which suggest that later age at menarche 
has a protective effect on breast cancer risk but only 
when accounting for early life body size.59 Evidence 
from the literature of a relation between timing of 
puberty and later life BMI is, however, strong.60 61 
Notably, our results build on previous findings by 
modelling early life and adult body size as two separate 
exposures, with the direct effect of early life body size 
providing strong evidence of a protective effect when 
accounting for age at menarche. Similar observational 
findings have been reported recently in premenopausal 
women after adjusting for age at menarche.62 
Developing insight into the underlying biological 
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mechanisms explaining this effect could highlight 
potentially modifiable pathways. In terms of proposed 
explanations, the earlier pubertal onset attributed 
to higher childhood adiposity has been postulated 
to result in slower pubertal growth.63 This might 
therefore protect against rapid pubertal growth during 
adolescence, which has been linked to an increased 
risk of breast cancer.64 Hormonal mechanisms might 
also play a role, such as higher oestrogen levels in 
early life produced by an increase in adipose tissue.62 
Oestrogenic effects have been reported to induce breast 
differentiation in early life, as well as to increase the 
expression of tumour suppressor genes.65

We were unable to support previous evidence of 
an effect between genetically predicted body size 
and prostate cancer risk.66 67 This relation is complex 
owing to the effect of obesity on various hormones in 
men, such as an inverse relation with prostate specific 
antigen68 and a positive relation with oestrogen 
concentrations.69 This outcome is therefore worth 
revisiting using this study’s analytical framework 
when findings from a forthcoming large scale genome-
wide association study of prostate cancer become 
available. A greater number of genetic instruments 
in men only is also likely to improve power for future 
endeavours. Evaluating the influence of pubertal 
development on this outcome would also be a 
worthwhile undertaking.70

We used univariable mendelian randomisation 
to estimate total effects of early body size, and 
multivariable mendelian randomisation to estimate 
direct effects of early and adult body size. In theory, 
the univariable estimate of the effect of adult body size 
(the total effect) and the multivariable estimate (the 
direct effect) should be equal. However, if some genetic 
variants influence both early and adult body size (albeit 
with different effect sizes), and early life body size has 
a direct effect on the outcome, then this will potentially 
generate bias in the univariable estimate of adult body 
size. This can be seen in the univariable estimate of the 
effect of adult body size on breast cancer risk, which is 
quite different to the multivariable estimate, probably 
related to the direct effect of early body size on breast 
cancer risk. For coronary artery disease, where there is 
no direct effect of early body size on the outcome, the 

univariable and multivariable effects of adult body size 
are the same. This highlights one of the problems with 
mendelian randomisation of time varying exposures—
the univariable analyses cannot identify critical or 
sensitive periods of exposure but only an effect of a 
difference in the cumulative lifetime exposure.9 71-73 
Moreover, we assume that childhood body size has 
an effect on adulthood body size in all scenarios (see 
fig 1). Therefore, those who, for example, reduce their 
body size between childhood and adulthood might 
effectively break this mediated causal chain and reduce 
their increased risk for diseases such as coronary artery 
disease or type 2 diabetes.

Strengths and limitations of this study
The key strengths of our investigation include the large 
number of participants from the UK Biobank study 
with measures of both early life and later life adiposity 
(n=453 169). Although this sample size is large, a 
caveat is reliance on retrospective questionnaire based 
data for the early life variable. Our early life variable is 
therefore based on perceived early life body size, which 
also meant that for harmonisation purposes we had 
to generate a similarly categorised adult variable. As 
such there will likely be additional measurement error 
in the early life variable, which could be differential 
with respect to adult body size (ie, larger adults might 
misremember their size at age 10 differently from those 
who are thinner). The statistical power in our genome-
wide association study therefore comes at a cost, 
although s we were able to recapitulate evidence of 
association between genetic variants and early life body 
size measurements in the literature.74 75 Furthermore, 
we were able to validate our scores using individual 
level data from the ALSPAC cohort, showing that the 
score in early life was a superior predictor of childhood 
adiposity, whereas the score in adulthood performed 
better in adults. Along with the large sample size in 
UK Biobank, other benefits of this approach included 
being able to harmonise our early life and adult 
measures within the same sample of participants. This 
was undertaken to reduce the likelihood of bias from 
differing samples—for example, between two separate 
genome-wide association study consortiums involving 
differing populations. Moreover, measurements of BMI 
in childhood taken from current generations might not 
reflect those of older populations that contributed to 
the outcome estimates in our analysis, whereas the UK 
Biobank participants and the outcome genome-wide 
association studies are from similar birth cohorts.

Another strength of this study was that we used 
two sample mendelian randomisation to harness 
large scale summary statistics from genome-wide 
association studies. This circumvents the necessity 
of having both exposures and outcomes measured in 
the same sample. Moreover, along with using genetic 
variants to mitigate the influence of confounding 
and reverse causation, a multivariable mendelian 
randomisation framework enabled us to investigate 
the independent effect of early life body size, which 
is extremely challenging in an observational setting. 

Table 1 | Estimates from univariable and multivariable mendelian randomisation 
analysis assessing effect of predicted early life and adult body size on age at menarche, 
and sensitivity analysis to investigate how both these exposures influence breast cancer 
risk when modelled with age at menarche as an additional third exposure

Outcomes and 
 exposures No of SNPs*

Univariable analysis Multivariable analysis
β† (SE) P value β† (SE) P value

Age at menarche26:
 Early life body size 102 −0.93 (0.14) 1.42×10−10 −0.94 (0.15) 3.87×10−10

 Adult body size 142 - - −0.03 (0.14) 0.82
Breast cancer24:
 Early life body size 124 −0.46 (0.07) 3.84×10−11 −0.64 (0.10) 1.57×10−10

 Adult body size 191 - - 0.06 (0.09) 0.52
 Age at menarche 60 −0.02 (0.04) 0.58 −0.10 (0.03) 4.84×10−03

SNPs=single nucleotide polymorphisms.
*Number used as instrumental variables.
†Effect estimate coefficient for each standardised unit change in exposure.
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This framework therefore presents a powerful means 
to investigate many other questions in epidemiology. 
These could be related to the effect of the same 
exposure at different time points in the life course, as 
investigated in this study of body size, or examining 
whether different risk factors influence disease risk 
independently or along the same causal pathway. 
Particularly given the large scale summary level data, 
which current health data researchers are fortunate to 
have access to, this presents an attractive opportunity 
to analyse the life course structure of the causes of 
disease using mendelian randomisation.

Our univariable analysis used all the single 
nucleotide polymorphisms associated with each 
exposure. Although there are variations in the single 
nucleotide polymorphisms associated with each 
of early life and adult BMI, considerable overlap 
also exists in the single nucleotide polymorphisms 
associated with each time point. Our univariable 
mendelian randomisation analyses therefore 
capture pleiotropic effects of the single nucleotide 
polymorphisms through the other time point as well as, 
for childhood BMI, the effect mediated by adult body 
size. This is a limitation of our univariable mendelian 
randomisation analyses but highlights the importance 
of the multivariable mendelian randomisation to 
disentangle the direct effects of child and adult body 
size. It should also be emphasised that we have used 
genetically determined body size as exposure in this 
work, which might not directly equate to weight loss 
or gain from lifestyle modifications. Moreover, we 
acknowledge that survival bias can distort findings 
from mendelian randomisation analyses, as discussed 
in a recent study.76 Although this is more likely to be 
a problem for outcomes that typically have a later 
onset of disease than those studied in this work (eg, 
Alzheimer’s disease), replication of our results is 
necessary to rule out the possibility of survival bias.

Another limitation of our study is that participants 
from the UK Biobank could have also contributed to 
the large scale genome-wide association study, the 
results of which were used in this study. Overlapping 
exposure and outcome samples in a two sample 
mendelian randomisation analysis might result in 
overfitting, although currently there is no way to 
discern whether this is the case unless anonymous 
identifiers between the UK Biobank and genome-
wide association studies consortium can be linked 
together.77 Moreover, estimates used in this study are 
based solely on body size and BMI data from the UK 
Biobank. These findings should therefore be evaluated 
in future cohorts when sample sizes make this possible. 
This is particularly important as it has been shown 
that UK Biobank participants are highly selected, 
which can be problematic for instrumental variables 
analyses.78 79 However, severe selection bias that can 
result in reversed estimates is unlikely to be a problem 
in our study given that the analyses are consistent 
with previous mendelian randomisation studies.55 80 

81 Lastly, capturing non-linear effects between body 
size at different points in the life courses and disease 

outcomes is challenging in a two sample setting.82 
Development of methods is therefore warranted.

Conclusions
Using multivariable mendelian randomisation, we 
have provided strong evidence suggesting that early 
life adiposity has a causal influence on risk of breast 
cancer that acts independently of later life BMI. 
Conversely, our results suggest that the association 
between early life adiposity and risk of coronary artery 
disease and type 2 diabetes is likely due to those with 
a high BMI remaining overweight in later life. Our 
approach therefore yields insight into the pathway 
between early life risk factors such as BMI and disease 
outcomes. Furthermore, our approach provides scope 
to differentiate between effects when the conferred risk 
is or is not reversible by achieving and maintaining a 
healthy BMI in adulthood.
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