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Machine learning, artificial intelligence, 
and other modern statistical methods 
are providing new opportunities to 
operationalise previously untapped 
and rapidly growing sources of data for 
patient benefit. Despite much 
promising research currently being 
undertaken, particularly in imaging, the 
literature as a whole lacks 
transparency, clear reporting to 
facilitate replicability, exploration for 
potential ethical concerns, and clear 
demonstrations of effectiveness. 
Among the many reasons why these 
problems exist, one of the most 
important (for which we provide a 

preliminary solution here) is the current 
lack of best practice guidance specific 
to machine learning and artificial 
intelligence. However, we believe that 
interdisciplinary groups pursuing 
research and impact projects involving 
machine learning and artificial 
intelligence for health would benefit 
from explicitly addressing a series of 
questions concerning transparency, 
reproducibility, ethics, and 
effectiveness (TREE). The 20 critical 
questions proposed here provide a 
framework for research groups to 
inform the design, conduct, and 
reporting; for editors and peer 
reviewers to evaluate contributions to 
the literature; and for patients, 
clinicians and policy makers to critically 
appraise where new findings may 
deliver patient benefit. 

Machine learning (ML), artificial intelligence (AI), and 
other modern statistical methods are providing new 
opportunities to operationalise previously untapped 
and rapidly growing sources of data for patient benefit. 
The potential uses include improving diagnostic 
accuracy,1 more reliably predicting prognosis,2 tar
geting treatments,3 and increasing the operational 
efficiency of health systems.4 Examples of potentially 
disruptive technology with early promise include 
image based diagnostic applications of ML/AI, which 
have shown the most early clinical promise (eg, deep 
learning based algorithms improving accuracy in 
diagnosing retinal pathology compared with that of 
specialist physicians5), or natural language processing 
used as a tool to extract information from structured 
and unstructured (that is, free) text embedded in 
electronic health records.2 Although we are only just 
beginning to understand the wealth of opportunities 
afforded by these methods, there is growing concern 
in the academic community that because the products 
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SUMMARY POINTS
Patients and healthcare professionals require clinical prediction models to 
accurately guide healthcare decisions
Larger sample sizes lead to the development of more robust models
Data should be of sufficient quality and representative of the target population 
and settings of application
It is better to use all available data for model development (ie, avoid data 
splitting), with resampling methods (such as bootstrapping) used for internal 
validation
When developing prediction models for binary or time-to-event outcomes, a well 
known rule of thumb for the required sample size is to ensure at least 10 events 
for each predictor parameter
The actual required sample size is, however, context specific and depends not 
only on the number of events relative to the number of candidate predictor 
parameters but also on the total number of participants, the outcome proportion 
(incidence) in the study population, and the expected predictive performance of 
the model
We propose to use such information to tailor sample size requirements to the 
specific setting of interest, with the aim of minimising the potential for model 
overfitting while targeting precise estimates of key parameters
Our proposal can be implemented in a four step procedure and is applicable for 
continuous, binary, or time-to-event outcomes
The pmsampsize package in Stata or R allows researchers to implement the 
procedure
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of these methods are not perceived in the same way as 
other medical (eg, pharmacological) interventions,6 
they do not have well defined guidelines for develop
ment and use and rarely undergo the same degree of 
scrutiny.

Need for guidance
Several high profile publications have shown a 
lack of transparency,7 8 replicability,9 ethics,10 and 
effectiveness11 in the reporting and assessment 
of ML/AI based prediction models. This growing 
body of evidence suggests that while many best 
practice recommendations for design, conduct, 
analysis, reporting, impact assessment, and clinical 
implementation can be borrowed from the traditional 
biostatistics and medical statistics literature,12 they 
are not sufficient to guide the use of ML/AI in research. 
Producing such guidance is a major undertaking due 
to the evergrowing battery of ML/AI algorithms and 
the multifaceted nature of assessing performance and 
clinical impact. Not taking action is unacceptable, 
and if we wait for a more definitive solution, we risk 
wasting valuable work,1317 while allowing futile 
research to continue unchecked, or worse, translation 
of ineffective (or even harmful) algorithms from the 
computer bench to the bedside.

Summary points 

• Clinically relevant research using modern 
statistical methods (such as machine learning 
and artificial intelligence) is too often limited 
by one or more of TREE concerns (transparency, 
reproducibility, ethics, and effectiveness); 
addressing these concerns can facilitate 
appropriate translation from computer bench to 
patient benefit

• Here we propose 20 critical questions that offer 
a framework for users and generators of ML/AI 
research

• For research generators, the 20 questions can 
inform the way research groups design, conduct, 
and report their research

• For editors and peer reviewers, the checklist 
provides a starting point for evaluating the quality 
and clinical relevance of articles 

• For the users of such research findings—including 
healthcare professionals, patients, and the 
public—the 20 questions highlight important 
issues for critical appraisal

Initial framework
We propose a series of 20 critical questions (box 1) 
to help identify common pitfalls that can undermine 
ML/AI based applications in health. The questions 
span issues of transparency, reproducibility, ethics, 
and effectiveness (TREE). Appendix 1 includes a brief 
description of how these questions were generated. 
The questions are not only relevant for those who use 
the findings (that is, patients and policy makers), but 
also for those who generate ML/AI health research. 

We envision this checklist of questions as providing 
a framework for journal editors, peer reviewers, and 
those who critically evaluate contributions to the 
literature; for researchers as a reference to inform 
the way that research groups design and conduct 
ML/AI research; for regulators judging algorithm 
approval; and for educators of clinicians and academic 
disciplines involved. Current practice in research 
publication is heterogeneous with relevant questions 
not clearly dealt with. Clearly further work is needed 
to build consensus on what constitutes acceptable 
practice and reporting, but we believe that adoption 
of this framework as a starting point, and of other 
related publications,18 will help to build trust in the 
underlying processes and results of health related ML/
AI research.

Critical questions
Inception (questions 1-2)
What is the health question relating to patient 
benefit?
The vast majority of published clinical prediction 
models are never used in clinical practice.19 One 
reason for this is the lack of a specific clinical decision 
making process that the model could meaningfully 
inform or optimise; simply predicting future events 
on their own might not help a clinician do anything 
differently20 (in other words: just because we can, 
it does not mean we should). This is an important 
departure from the lone wolf attitude, which has 
helped foster innovation over the past few decades 
in ML/AI for health. However, it is being increasingly 
recognised that such research needs to be seen in a 
wider organisational context to be made most useful. 
Therefore, we strongly urge researchers embarking 
on a new project, at the outset, to clarify and state 
the relevance of their work to healthcare system and 
patients. In essence, researchers should be cognisant 
of the path from development to implementation, and 
be able to describe which parts of the healthcare data 
science cycle their proposed research engages with. 
Note that this does not preclude theoretical, proof 
of concept, or operational research, which either 
only occupies a small angle of the healthcare data 
science cycle or only tangentially affects patients 
(eg, efficiency related gains in an administrative 
task). What is important, much like the principles 
on which registration of research is built, is that this 
expectation is stated up front.

What evidence is there that the development of the 
algorithm was informed by best practices in clinical 
research and epidemiological study design?
Similar themes to that of historical issues with 
clinical research are beginning to present in ML/
AI based research, such as using outcome variables 
are predictors, paying little attention to causal 
pathways, insufficiently detailed descriptions of 
the conceptualisation of an inception cohort, and 
documenting exactly what sort of patients made 
their way into the analysis.21 The PECO principles of 
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epidemiological study design (that is, defining a study 
population, the exposures used, the key comparators, 
and the clinical outcomes) have an important role in 
some these issues when they originally arose in health 
research, and have now become a useful guide for 
assessments of the quality and relevance of research 
evidence.22 Although developed in the clinical 
domain, these principles are still highly relevant to 
ML/AI research, especially in providing a framework 
on which to ground large scale projects involving 
electronic health records. This is just one example of 
how researchers can use clinical frameworks that exist 
to inform best practice research in the development of 
ML/AI based projects.

Study (questions 3-6)
When and how should patients be involved in data 
collection, analysis, deployment, and use?
With the growing use of routinely collected individual 
participant data (in addition to re searcher collected 
data), often with an alternative legal basis (that is, 
legitimate interests) to individual consent, it is more 
important now than ever that patient and public 
involvement is seen as an adjunct to all research in 
healthcare, including work related to machine learning. 
The exemption from seeking individual consent 

does not mean that the researchers are exempt from 
engaging patients and public altogether. Thus (where 
appropriate), healthcare ML/AI projects should include 
a clear mechanism to evaluate the acceptability of the 
proposed model and outcomes to those individuals 
from whom the data was collected, the users (that is, 
clinicians), and the affected individuals (that is, those 
for whom the model will be used to inform clinical 
management).

Several established frameworks23 illustrate how 
patients and the public might be involved in a research 
project. We would highly encourage researchers to 
determine which stages of their project, if any, are 
amenable to patient and public involvement (at 
inception), for example, identifying the need for 
a predictive modelling solution, supporting the 
development of the algorithm (that is, selection 
of relevant targets, framing of how outcomes are 
presented), and determining the acceptability of the 
algorithm in practice. Arguments suggesting that 
policies pertaining to patient and public involvement 
should be decided at the political or institutional 
level does not recognise the agency of individual 
researchers, and it is for that reason we have included 
this question, in an effort to reassign the responsibility 
to those undertaking the work.

Box 1: Critical questions for health related technology involving machine learning and artificial intelligence

Inception
1. What is the health question relating to patient benefit?
2.  What evidence is there that the development of the algorithm was informed by best practices in clinical research and epidemiological study 

design?
Study

1. When and how should patients be involved in data collection, analysis, deployment, and use?
2.  Are the data suitable to answer the clinical question—that is, do they capture the relevant real world heterogeneity, and are they of sufficient 

detail and quality?
3. Does the validation methodology reflect the real world constraints and operational procedures associated with data collection and storage?
4. What computational and software resources are required for the task, and are the available resources sufficient to tackle this problem?

Statistical methods
1. Are the reported performance metrics relevant for the clinical context in which the model will be used?
2. Is the ML/AI algorithm compared to the current best technology, and against other appropriate baselines?
3. Is the reported gain in statistical performance with the ML/AI algorithm justified in the context of any trade-offs?

Reproducibility
1. On what basis are data accessible to other researchers?
2. Are the code, software, and all other relevant parts of the prediction modelling pipeline available to others to facilitate replicability?
3. Is there organisational transparency about the flow of data and results?

Impact evaluation
1. Are the results generalisable to settings beyond where the system was developed (that is, results reproducibility/external validity)?
2. Does the model create or exacerbate inequities in healthcare by age, sex, ethnicity, or other protected characteristics?
3. What evidence is there that clinicians and patients find the model and its output (reasonably) interpretable?
4.  How will evidence of real world model effectiveness in the proposed clinical setting be generated, and how will unintended consequences be 

prevented?
Implementation

1.  How is the model being regularly reassessed, and updated as data quality and clinical practice changes (that is, post-deployment  
monitoring)?

2. Is the ML/AI model cost effective to build, implement, and maintain?
3. How will the potential financial benefits be distributed if the ML/AI model is commercialised?
4. How have the regulatory requirements for accreditation/approval been addressed?
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Are the data suitable to answer the clinical 
question—that is, do they capture the relevant real 
world heterogeneity, and are they of sufficient detail 
and quality?
The key issue here is whether the clinical question 
can be answered with the data available. For example, 
a dataset not containing the (known) relevant or 
important predictors of an outcome is unlikely to 
satisfactorily answer questions about it. No ML/AI 
algorithm can produce something from nothing. To 
help illustrate some of the potential issues involved 
in determining whether data are of sufficient qua
lity and detail to inform the clinical question of 
interest, we have briefly described two core areas 
where researchers frequently have difficulties when 
attempting to apply ML methods to healthcare related 
data:

• Intrinsic sample characteristics. If data are 
available, but are of poor quality or are not 
relevant, development of a good ML/AI application 
is unlikely.24 The accuracy of data collection 
methods, sampling of participants, eligibility 
criteria, and missing data all need to be considered 
when assessing the potential of developing useful 
and generalisable ML/AI algorithms.

• Relevance to task. Models are often unable to 
attain the levels of accuracy seen in training, 
owing to the likelihood of failure when operating 
outside the training data range. For example, the 
decision making system for an image recognition/
selfdriving car could fail when encountering a 
cyclist at night for the first time. Hence, the data—
including timescale, heterogeneity (differences 
in data collection such as measuring devices or 
compliance), population, and situation—should 
accord with and represent the envisioned clinical 
application scenario.

Does the validation methodology reflect the real 
world constraints and operational procedures 
associated with data collection and storage?
Increasingly, ML/AI research is making use of 
routinely collected data, including healthcare data 
(eg, electronic health records, clinical imaging, and 
genomic information), civil administrative data (eg, 
death records, and educational achievement), and 
data25 from mobile and wearable devices. Information 
from these sources can arrive in batches, or via a 
continuous stream, and is often stored in different 
locations requiring reconciliation, which in and of 
itself introduces a delay in when specific pieces of data 
are available for use. In contrast to these real world 
constraints, ML/AI algorithms are often validated 
on historical data, yielding performance guaranteed 
only under the assumption that the data generating 
process does not change (eg, over time, or across 
hospitals). In practice, these assumptions are often 
violated and result in ML/AI models underperforming 
when deployed in comparison to performance reported 
during development.26

Researchers could consider this problem as two 
different but related difficulties. The first is the issue  
of ensuring that a robust validation scheme is 
developed. For example, methods that take time into 
account and create temporally disjointed training and 
test sets27 28 might be needed to account for how the 
data are collected and stored. The second issue is to 
prevent a useful solution from becoming redundant 
owing to drift in institutional data collection, or 
storage methods. However, little can be done by 
developers and researchers to future proof their work, 
other than using best practices for reproducibility (that 
is, clear descriptions of dependencies and modular 
development of the data ingress pathway, cleaning, 
preprocessing, and modelling), in order to reduce 
the amount of work necessary to redeploy a relevant 
version of the solution.

What computational and software resources are 
required for the task, and are the available resources 
sufficient to tackle this problem?
Working with millions of parameters is common in 
many areas of health related prediction modelling, 
such as image based deep learning29 and statistical 
genetics.30 Therefore, it is common practice to 
ascertain not only the complexity of the data, but also 
the computational resources available, because these 
resources can be the limiting factor (much more often 
than with traditional statistical models) in determining 
what analyses can be undertaken.31 In some situations, 
more computational resources could in fact allow 
better models to be trained. For example, without 
sufficient computer resources, use of models based 
on complex neural networks could be prohibitively 
difficult, especially if these large scale models require 
additional complex operations (eg, regularisation) to 
prevent overfitting.32 33 Ideally, analysis would not be 
limited by the availability of computational resources, 
but researchers should understand the constraints 
within which they are working so that any analysis can 
be tailored to requirements. Similar problems can arise 
when using secure computer environments, such as 
data enclaves or data safe havens, where the relevant 
software frameworks might not be available and thus 
would warrant implementation from scratch. Therefore, 
it is also important to understand the implications of 
using specific software, because the underlying licence 
can have far reaching consequences on the commercial 
potential and other aspects of the algorithm’s future. 
A brief overview of software licensing for scientist 
programmers has been published elsewhere.34

Statistical methods (questions 7-9)
Are the reported performance metrics relevant for 
the clinical context in which the model will be used?
The choice of performance metric matters in order 
to translate good performance in the (training data) 
evaluation setup to good performance in the eventual 
clinical setting with patient benefit. This discrepancy 
in model performance can arise for multiple reasons; 
the most common of which is that the evaluation 
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metrics are not good proxies for demonstrating 
improved outcomes for patients (eg, misclassification 
error for a screening application with imbalanced 
classes). Another common mistake is choosing a 
performance metric that is vaguely related to, but 
not indicative or demonstrative of, improved clinical 
outcomes for patients. For example, IBM’s Watson 
For Oncology (WFO)35 is an expert system used in 
several hospitals worldwide to support decision 
making. However, published works describing WFO 
do not report relevant statistical (eg, discrimination, 
calibration) and clinically oriented (eg, net benefit 
type) performance metrics. Instead, they focus on 
concordance (true positive rate where the ground truth 
is provided by physician—that is, the proportion of 
instances where WFO’s recommendation agrees with 
that of the treating physician3638). We recommend 
the following guidance for researchers to avoid such 
pitfalls:

• Consult all relevant parties (eg, patients, data 
scientists/statisticians, clinicians) to determine 
the most appropriate formulation of the statistical 
goal, such as predicting the absolute risk of an 
event, or establishing a rank ordering or a pattern 
detection or classification (see question 3).

• Select the appropriate performance metrics. Each 
goal has its own unique requirements, and making 
explicit the statistical goal will help researchers 
ascertain what the relevant measures of predictive 
performance are for each specific situation. For 
example, if prediction (not classification) is 
the goal, then calibration and discrimination 
are the minimum requirements for reporting. 
Furthermore, for comparing two models, proper 
scoring rules should be used (or at least sideby
side histograms). The TRIPOD explanation and 
elaboration paper provides a reasonable starting 
point for researcher seeking more information on 
this issue.12

• Report all results. Although training results are 
unlikely to be sufficient to evidence the usefulness 
of the model, they provide important insights in 
the context of the sample characteristics and 
any outofsample results that are also provided. 
However, unbiased estimates (that is, those that 
have been adjusted appropriately for overfitting) 
are the most important to report.

Is the ML/AI algorithm compared to the current 
best technology, and against other appropriate 
baselines?
ML/AI algorithms should be viewed as health 
technologies, and at the design stage consideration 
should be given to identifying the approach that 
the algorithm might replace. One common way to 
exaggerate the benefit of ML/AI approaches is to 
avoid any comparison of ML/AI with null models or 
the currently used approach and instead compare 
to subpar competitors (including inappropriately 
or weakly developed statistical models), or to avoid 

a comparison altogether. This “weak comparator” 
bias has been generally seen in reports of new versus 
existing prognostic models.33 One such example comes 
from a systematic review of proposed modifications 
to the Framingham risk score for predicting the risk 
of a heart attack within 10 years; the review found 
that most proposed alternatives had flaws in their 
design, analyses, and reporting that cast doubt on the 
reliability of the claims for improved prediction.39 To 
simplify this process, we have summarised the three 
baselines that together form the basis of a robust 
comparison:

• Model proxies for uninformed guessing, such as 
predicting the majority class in a classification 
task. This is the simplest form of sanity check that 
researchers can use to demonstrate that their ML/
AI model is actually learning something. In some 
instances, probabilistic guessing could be a more 
appropriate baseline, but the decision of which 
one to use should be task specific.

• For almost all clinical questions, there will 
be a standard statistical approach that is well 
accepted from decades of biostatistics research, 
for example, proportional hazards models for 
survival modelling. The impetus is on developers 
and researchers to show some demonstrable 
value in using machine learning instead of the 
standard approach. Recent evidence has shown 
that these comparisons are often not fair, and 
favour one set of methods (commonly ML) over 
classical statistical methods.40 We would urge 
researchers to keep this in mind when carrying 
out such comparisons.

• The current preferred method standard, whether 
it is a clinical diagnosis, biochemical test, or pre
existing model. Researchers should show how the 
model compares to a relevant gold standard. The 
ML/AI tool does not need to be better than the gold 
standard, but it is informative to know how the 
model compares to it. There might be use cases 
outside of improved accuracy (eg, prediction can 
be made on a larger class of patients because 
less data are required). It is the responsibility of 
the researcher to articulate this in their specific 
circumstances.

Is the reported gain in statistical performance with 
the ML/AI algorithm justified in the context of any 
trade-offs?
For a new diagnostic or prognostic tool to be justified 
for routine use, it must offer a (clinically) meaningful 
advantage over existing approaches in addressing a 
specific need,41 which requires the use of an appropriate 
performance metric as discussed previously. Although 
necessary, the presence of a (clinically) meaningful 
advantage alone is not sufficient justification, because 
any improvement must be weighed against the 
cost of any changes it necessitates (eg, the resource 
requirement to collect additional data). In a recent 
paper published by Google, researchers investigated 
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the accuracy of deep learning methods in combination 
with electronic health records for predicting mortality, 
readmission, and length of stay.2 In the appendix, the 
paper’s authors compared their deep learning model 
against a logistic regression model. The areaunder
thecurve improvement reported for each of the three 
tasks ranged from 0.01 to 0.02. If we assume that all 
caveats pertaining to statistical significance, and the 
sufficiency of the reported metric for making this next 
decision are met, is the marginal gain of implementing 
a complex ML/AI solution worth it, and is the need any 
more effectively addressed by the deep learning model? 
Although the answer to that question will certainly be 
situation specific, it will (at minimum) need to justify 
the following:

• The cost of developing, deploying, using, and 
maintaining a deep learning model such as 
the one described relative to the improvement 
observed; and

• The need for additional subsidiary models to 
increase the explainability lost in the transition 
away from a model with a human interpretable 
model (eg, with simple coefficients or consisting 
of a decision tree)

Reproducibility (questions 10-12)
On what basis are data accessible to other 
researchers?
Data sharing is not an endpoint in itself but rather 
a means to enhance, verify, and distribute the 
knowledge generated by the ML/AI algorithm.42 Most 
major funding sources now require applicants to 
outline a data management and data sharing plan; this 
can entail (among other things) storing the data in a 
convenient format along with a data dictionary, a long 
term archiving plan, and providing an independent 
access mechanism (eg, a university ethics committee, 
or a research and development department). Where 
data used to develop the ML/AI algorithm have been 
accessed via national data custodians (eg, Clinical 
Practice Research Datalink,43 NHS Digital,44 Healthcare 
Quality Improvement Partnership45), clear data access 
processes have been put in place for independent 
validation by other researchers. Additionally, data 
sharing can be undertaken by a wide range of 
mechanisms, including:

• Making the data available in open repositories 
such as datadryad.org46 (after being anonymised 
using tools such as Amnesia47), or restricted 
access repositories such as the UK Data Archive48;

• Signing data sharing agreements;
• Providing remote access to local computing 

facilities where the data are stored, as is possible 
with specific restricted access data enclaves 
such as NORC at the University of Chicago,49 
and the electronic Data Research and Innovation 
Service;50

• Open sharing of data modified by privacy
preserving methods.51

We acknowledge that free and open sharing of all 
data are a distant goal, however, our expectation of the 
near future is that all descriptions of ML/AI algorithm 
development will be accompanied by clear statements 
of what tools and mechanism will be used to support 
access to the data used, for the purposes of replication 
of reported results. The advent of the facilities 
described above means that there are fewer reasons to 
be unable to share data from publicly funded research 
with other researchers, and as such, we would strongly 
recommend that investigators establish early on what 
mechanisms they think are most appropriate and 
ensure their relevant partners are in agreement.

Are the code, software, and all other relevant parts 
of the prediction modelling pipeline available to 
others to facilitate replicability52?
Reproducibility of research has become a growing 
concern across many scientific domains,53 54 and in the 
ML/AI field, access to the underlying code and raw data 
are central to preventing and mitigating reproducibility 
concerns. A recent example of how concerns regarding 
reproducibility in medical modelling research have 
manifested comes from a review of studies published 
using the Massachusetts Institute of Technology 
critical care database (MIMIC), which illustrates 
the degree to which inadequate reporting can affect 
replication in the prediction modelling.9 Specifically, 
the reproducibility issues that have been identified 
in the literature occur not only in attempts to recreate 
reported findings, but also in how authors report data 
characteristics, such as the inclusion and exclusion 
criteria used to arrive at the final population of interest. 
In the review,28 studies based on the same core dataset 
(MIMIC) predicting mortality were investigated, and 
two important results were identified. For more than 
half of the studies examined, the reproduced sample 
size differed by more than 25% from the reported 
sample size because of insufficiently clear descriptions 
of the inclusion or exclusion criteria. The result of 
inadequate reporting was that in the replication, the 
use of offtheshelf logistic regression and boosted 
trees on the reproduced samples produced better 
results in 64% and 82% of the 28 studies, respectively, 
than the ML/AI model reported in the original study.

These problems could have been easily avoided 
by providing the project code, specifically the code 
relating to data cleaning and preprocessing. The 
RECORD reporting guidelines for studies using 
routinely collected health data already recommend 
providing detailed information to this effect,55 and 
several potential solutions can facilitate this process, 
including code sharing and project curation platforms 
such GitHub. However, we acknowledge that the ideal 
level of sharing is not always achievable for many 
different reasons.56 We would highly recommend that, 
where possible, researchers archive annotated code 
and include adequate information about software 
version control to support attempts to reproduce their 
results.57
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Is there organisational transparency about the flow 
of data and results?
Patients have strong views about transparency in the 
flow of data, and how their data are secured.58 For 
patients and their clinicians to trust ML/AI models, 
they need to understand the interactions that led 
to the development of the model, whether they are 
between organisations in the public, notforprofit 
and industrial sectors, or within them (eg, transfer 
from one hospital department to another). Complying 
with the aforementioned legislative frameworks 
(eg, the European Union’s General Data Protection 
Regulation) is necessary, but is not sufficient to show 
the transparency required to produce trustworthy 
ML/AI research. The degree of detail needed will 
differ depending on the institutions involved and the 
nature of the work being undertaken. Therefore, the 
responsibility lies with ML/AI algorithm developers 
and those involved in accessing, transferring, or 
storing the data, to engage key stakeholders to 
understand what is required in each particular case. 
One aspect of the reporting procedure that can help 
ensure transparency regarding the aforementioned 
interactions is the inclusion of clear declarations of 
interest by all involved parties.

Impact evaluation (questions 13-16)
Are the results generalisable to settings beyond 
where the system was developed (that is, results 
reproducibility/external validity59)?
Even before ML/AI had become established, few 
validation studies had been done on diagnostic and 
prognostic tools.60 In external validation studies, 
reductions in the predictive accuracy of models (relative 
to their original performance in development studies) 
is expected.61 62 Systematic reviews have repeatedly 
observed this reduced accuracy in the applications of 
classical statistical models to various healthcare related 
prediction tasks, from mortality risk prediction in patients 
with acute kidney injury63 to risk prediction of falls in 
older people.64 How this phenomenon is associated 
with results reproducibility (that is, the production of 
corroborating results in a new study, having followed 
the same experimental methods65), whether it is a 
consequence of the inadequate reporting observed in 
the modelling literature,59 or other related issues is 
unclear. Given the additional complexities introduced 
by ML/AI algorithms, developers should be proactive in 
ensuring that sufficient information is provided to allow 
their models to undergo rigorous but fair66 external 
validation (ideally by independent investigators). This 
work could include identifying potential datasets for 
validation experiments at the planning stage, parallel 
data collection of a validation dataset, or using simulated 
data to illustrate that the model performs as expected.

Does the model create or exacerbate inequities in 
healthcare by age, sex, ethnicity, or other protected 
characteristics?
Systematic testing for bias and fairness is the first 
decision making step in informed model selection, 

to minimise inequities that could be caused by ML/
AI algorithms use.67 Although many of the ML/AI 
algorithms developed will often have bias, it should be 
compared with the bias in the existing systems being 
used. One way in which ML/AI algorithms result in 
bias is by making disproportionate errors in different 
populations. Depending on how the ML/AI algorithm 
has been developed (including whether key populations 
(defined by sex, age, and ethnicity) are sufficiently 
represented in the data, and included in the training of 
the algorithm) can influence the predictive accuracy of 
the algorithm in different subgroups. Thus, when these 
predictions are used to take actions on individuals, 
they can create or exacerbate inequities.68 The issue 
of data that are not truly representative of the entire 
target population is particularly important,69 because 
it highlights the importance of fairness considerations 
at every point in the project cycle. Other examples 
of how these issues can manifest in the real world 
can be found in ProPublica’s analysis of a recidivism 
prediction tool (the Correctional Offender Management 
Profiling for Alternative Sanctions software)10 and the 
United States’ diabetes screening criterion,70 which 
both illustrate variation in performance of an algorithm 
based on race.

The types of performance variation to be investigated 
depend on the consequent actions (or interventions) 
that the algorithm is helping to decide between. If the 
interventions are expensive or have unwanted side
effects, then we would want to minimise disparities 
in the number of false positive predictions from 
different subgroups, to prevent unnecessary harm. 
If the interventions are predominantly assistive, we 
should be more concerned with disparities in false 
negatives, to prevent individuals missing out on a 
potentially beneficial input. The explanation above 
presupposes that a decision threshold has been set, 
which might sometimes be outside of a developer’s 
remit. However, developers still need to demonstrate 
that when using sensible thresholds, the algorithm 
does not create or exacerbate inequalities. In fact, 
several methodological developments in the area of 
fairness evaluation support this type of analysis,7173 
and ML/AI developers and health practitioners 
should engage with these tools. One way in which 
researchers might demonstrate bias in key subgroups 
(eg, in minority ethnic groups, or by age) would be to 
explicitly present these findings so that users of the 
algorithm know where it has good or poor predictive 
accuracy.

What evidence is there that clinicians and patients 
find the model and its output (reasonably) 
interpretable?
Clinical adoption of an algorithm depends on two main 
factors: its clinical usefulness and its trustworthiness. 
When the outputs of a prediction model do not directly 
answer a specific clinical question, its usefulness is 
limited (as discussed in earlier questions), whereas 
models whose processing pipeline is difficult to explain 
and justify to a general audience will invariably limit 

 on 10 A
pril 2024 by guest. P

rotected by copyright.
http://w

w
w

.bm
j.com

/
B

M
J: first published as 10.1136/bm

j.l6927 on 20 M
arch 2020. D

ow
nloaded from

 

http://www.bmj.com/


RESEARCH METHODS AND REPORTING

8 doi: 10.1136/bmj.l6927 | BMJ 2020;368:l6927 | the bmj

the trust placed in its outputs,74 despite robust and 
demonstrated statistical gains. However, trust is not 
the only reason that interpretability in important.75 
Recent changes in legislation (eg, the EU General Data 
Protection Regulation) have introduced additional 
protections for individuals (including a right to an 
explanation for how a decision was made and where it 
pertains them76), thereby creating a legal requirement 
to provide insight into the underlying decision making 
process an algorithm learns. Several partial solutions, 
including model specific and model agnostic methods 
(eg, LIME77), can be used to claw back interpretability 
when using ML/AI methods. Legal and moral burdens 
of explanation to establish trust will vary with the 
nature of the decision—that is, ML/AI applications 
in health that influence the allocation of potentially 
lifeprolonging treatments will necessitate a much 
higher explanatory burden to satisfy those individuals 
who are affected. Therefore, the sufficiency of any 
explanations and adequacy of any insight producing 
method can only be determined through consultation 
and collaboration with the end users (clinicians), and 
target audience (patients).

How will evidence of real world model effectiveness 
in the proposed clinical setting be generated, and 
how will unintended consequences be prevented?
ML/AI tools often carry the misleading aura of self
evident advanced technology, which falsely limits the 
perceived need for careful validation and verification 
of their performance, clinical use, and overall use once 
they begin being used in the routine clinical practice. 
A recent systematic review showed that only a couple 
of hundred randomised clinical trials (of a million 
trials in total) examined how the use of diagnostic 
tests affected clinical outcomes (and therefore clinical 
utility).78 With regards to the ML/AI domain, Babylon 
Health’s symptom checker for triage was piloted at 
a small number of general practices. During early 
testing, patient focus groups had concerns that there 
might be “gaming [of] the symptom checker to achieve 
a GP appointment.”4 This example demonstrates how 
algorithms are not always used as intended in the real 
world, and that these factors need to be assessed using 
pragmatic clinical trials.79 Early consideration of what 
the potential pitfalls are of the proposed ML/AL based 
solution and how it could be manipulated (among 
other issues) would help researchers develop a better 
informed framework with which to decide how their 
tool should be built.

Implementation (questions 17-20)
How is the model being regularly reassessed, 
and updated as data quality and clinical practice 
changes (that is, post-deployment monitoring)?
Even if evidence of efficacy and real world effectiveness 
of a model is sufficient to endorse its widespread 
use in clinical practice, the effectiveness requires 
constant review given the dynamic landscape of the 
healthcare environment. For example, computer aided 
diagnosis programs have become an integral part 

of breast cancer screening programmes worldwide 
since the US Food and Drug Administration (FDA) 
first approved one for use in 1998,80 but are they 
still as useful as they were 20 years ago? Most of the 
commercially available tools are based on neural 
networks which identify regions of interest, and 
diagnose the identified abnormality (eg, calcification 
or mass). Early studies showed modest increases 
in detection rates of breast cancer using computer 
aided diagnosis or detection (CAD), compared with 
clinicians working without the aid of a CAD system.1 81  
However, almost 20 years after the FDA’s first license 
for a mammography based CAD system, national 
registry based studies have shown no significant 
improvement in diagnostic accuracy associated with 
CAD use in mammography interpretation.82 Moreover, 
researchers have recently demonstrated that incorrect 
prompts from mammography based CAD systems can 
actually decrease the sensitivity of more discerning 
users by up to 0.145 (95% confidence interval 0.034 
to 0.257) for difficult diagnoses.83 Although the work 
discussed is not a comprehensive review of CAD in 
breast cancer, the results suggest the importance 
for constant reevaluation of technologies, as their 
usefulness can change over time. Researchers should 
aim to plan and develop model performance with the 
intention to reassess; thus, they need to discuss early 
on what the necessary mechanisms are to facilitate this 
process, and how these mechanisms can be integrated 
at the start of implementation (instead of unplanned 
additional years later).

Is the ML/AI model cost effective to build, 
implement, and maintain?
Although ML/AI algorithms might offer transforma
tional benefits to healthcare systems and patients, 
substantial costs can be associated with the develop
ment of software, generation and use of data, imple
mentation of a new system in practice, and acting on 
the additional information provided. Understanding 
the potential clinical benefit of new models (over and 
above current practice) alongside the cost or savings 
introduced by using these models should form part 
of any healthcare decision maker’s appraisal of ML/
AI based technologies. Effective appraisal will require 
the development of assessment frameworks that 
take into account both the evidence for effectiveness 
and the evidence for economic impact. In this area, 
healthcare decision makers (such as the National 
Institute for Health and Care Excellence and the 
FDA) are crucial. They can help developers of ML/AI 
models by providing clear guidance on the appropriate 
evidence that should be generated to demonstrate both 
effectiveness and economic impact, including: credible 
evidence relating to technical accuracy of the models; 
the relevant outcomes that show clinical effectiveness 
in general practice; and, as appropriate, evidence to 
inform decision makers on the budget impact or the 
cost effectiveness. Researchers should plan projects 
with an understanding of how their tool or algorithm 
will eventually be operationalised.
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How will the potential financial benefits be 
distributed if the ML/AI model is commercialised?
Like all technologies, ML/AI algorithms could have a 
market value. In situations where commercialisation is a 
goal, health systems and governmental research funding 
can make a substantial contribution to the creation of 
an algorithm via the associated unrecoverable costs, 
such as data acquisition (clinicians’ time, scanners), 
data annotation (training clinicians who eventually 
interpret the data generated), and developers’ time 
(that is, when they are publicly funded researchers). 
This issue is even more important in a publicly funded 
health system, because the symbiotic relationship 
between datagenerating institutions and those with the 
capabilities to create ML/AI algorithms is only possible 
because of expectation that benefits arising from the 
data use will be retained (to some degree) by the health 
system, thereby satisfying the social contract with the 
public. Therefore, the investment and contributions of 
a health system or institution to an algorithm should 
be recognised, and a mechanism to compensate them 
for having done so should be put in place. Answering 
this question after the development of an algorithm 
or ML/AI based tool is often fraught with complexities 
that can take years to untangle, and thus, we would 
strongly advise researchers and developers near the 
end of the planning stages of any project to clarify their 
institution’s innovation pathway, including the routes 
to commercialisation and the framework through which 
this could be achieved.

How have the regulatory requirements for 
accreditation/approval been addressed?
Software products including ML/AI algorithms can be 
subject to many regulatory requirements, depending 

on the setting in which the product will be used, from 
research and development to placing the product on 
the market (box 2 provides a high level overview of the 
UK’s regulatory framework). In our experience, while 
most clinicians are aware of “CE” marking of physical 
devices (the regulatory framework in the EU and the 
UK), its application to software products can often be 
a surprise, which is also true of software developers. 
Given that the regulatory landscape for health related 
ML/AI based software has changed substantially 
over the past decade, and will continue to respond 
dynamically to innovation for the foreseeable future, 
discussions regarding the regulatory requirements 
for products in development should be made early in 
the planning process of a research project. However, 
having this conversation once is clearly not sufficient. 
For example, devices that are developed and used in
house (in the UK) are not currently subject to device 
regulations, but this will change in 2020 when new 
updated regulations apply,87 88 and as such, regular 
review of regulatory compliance is necessary.

Conclusion: from critical questions to a consensus TREE 
framework
Similar to how clinicians have been aided by 
frameworks to evaluate the strength of evidence over 
previous decades, the ML/AI field should usefully 
build on what has been learned in traditional 
statistical approaches for clinical evidence and the 
quality assurance pipeline.6 19 8993 However, as shown 
here, some of the challenges are new and different. 
Encouraging patients, clinicians, academics, and 
all manner of healthcare decision makers to ask the 
challenging questions raised here will hopefully 
contribute to the development of safe and effective ML/

Box 2: Overview of the UK’s regulatory framework for health related algorithms involving machine learning (ML) and artificial  
intelligence (AI)

Developers should determine whether their ML/AI algorithm falls under the Medical Device Regulations’ remit,84 which until 2010 did not regulate 
independent software products. These regulations cover products that make claims with a medical nature such as: providing diagnostic information, 
making recommendations for treatment, or providing risk predictions of disease. The Medicines and Healthcare products Regulatory Agency has 
published guidance for developers that covers this in greater detail.85 If an algorithm does fall within the remit of the aforementioned regulation, the 
developer must then seek regulatory approval or accreditation in the form of a “CE” mark before marketing it. To CE mark an algorithm, the developer 
must follow one of the applicable conformity assessment routes that, for medium and high risk products, will require the involvement of a notified 
body to assure the process. The developer must ensure that the device meets the relevant essential requirements before applying the CE mark. These 
requirements include:
• Benefits to the patient shall outweigh any risks
• Manufacture and design shall take account of the generally acknowledged gold standard
• Devices shall achieve the performance intended by the manufacturer
• Software must be validated according to the gold standard, taking into account the principles of development lifecycle, risk management, 

validation, and verification
• Confirmation of conformity must be based on clinical data; evaluation of these data must follow a defined and methodologically sound procedure.
In addition to the above, manufacturers are required to have post market surveillance provision to review experience gained from device use and to 
apply any necessary corrective actions.
Moreover, the use of ML/AI algorithms might be regulated indirectly by other legislation or regulatory agencies. The highest profile additional 
legislative framework to be aware of might be the European Union’s General Data Protection Regulations, the relevance of which has been discussed 
elsewhere (questions 3 and 16). In terms of other regulatory agencies who have an important role in the regulation of ML/AI software in health, the 
United Kingdom’s Care Quality Commission is one group to be aware of, as they are tasked with monitoring compliance with NHS Digital’s Clinical risk 
management standards86; a contractual requirement placed on developers engaging in service provision to the UK’s health service.
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AI based tools in healthcare. Developing a definitive 
framework for how to undertake effective and ethical 
research in ML/AI will involve many challenges. These 
challenges include finding common terminology 
(where key terms partly or fully overlap in meaning), 
balancing the need for robust empirical evidence of 
effectiveness without stifling innovation, identifying 
how best to manage the many open questions regarding 
best practices of development and communication of 
results, the role of different venues of communication 
and reporting, simultaneously providing sufficiently 
detailed advice to produce actionable guidance for 
nonexperts, and balancing the need for transparency 
against the risk of undermining intellectual property 
rights. Addressing these challenges of transparency, 
reproducibility, ethics, and effectiveness are important 
in delivering health benefits from ML/AI.
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