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Abstract
Objective
To evaluate the associations between maternal 
diabetes diagnosed before or during pregnancy and 
early onset cardiovascular disease (CVD) in offspring 
during their first four decades of life.
Design
Population based cohort study.
Setting
Danish national health registries.
Participants
All 2 432 000 liveborn children without congenital 
heart disease in Denmark during 1977-2016. Follow-
up began at birth and continued until first time 
diagnosis of CVD, death, emigration, or 31 December 
2016, whichever came first.
Exposures for observational studies
Pregestational diabetes, including type 1 diabetes 
(n=22 055) and type 2 diabetes (n=6537), and 
gestational diabetes (n=26 272).
Main outcome measures
The primary outcome was early onset CVD (excluding 
congenital heart diseases) defined by hospital 
diagnosis. Associations between maternal diabetes 
and risks of early onset CVD in offspring were studied. 
Cox regression was used to assess whether a maternal 
history of CVD or maternal diabetic complications 
affected these associations. Adjustments were 
made for calendar year, sex, singleton status, 
maternal factors (parity, age, smoking, education, 
cohabitation, residence at childbirth, history of CVD 
before childbirth), and paternal history of CVD before 
childbirth. The cumulative incidence was averaged 

across all individuals, and factors were adjusted 
while treating deaths from causes other than CVD as 
competing events.
Results
During up to 40 years of follow-up, 1153 offspring 
of mothers with diabetes and 91 311 offspring of 
mothers who did not have diabetes were diagnosed 
with CVD. Offspring of mothers with diabetes had a 
29% increased overall rate of early onset CVD (hazard 
ratio 1.29 (95% confidence interval 1.21 to 1.37); 
cumulative incidence among offspring unexposed to 
maternal diabetes at 40 years of age 13.07% (12.92% 
to 13.21%), difference in cumulative incidence 
between exposed and unexposed offspring 4.72% 
(2.37% to 7.06%)). The sibship design yielded results 
similar to those of the unpaired design based on the 
whole cohort. Both pregestational diabetes (1.34 
(1.25 to 1.43)) and gestational diabetes (1.19 (1.07 
to 1.32)) were associated with increased rates of 
CVD in offspring. Varied increased rates of specific 
early onset CVDs were also observed, particularly 
heart failure (1.45 (0.89 to 2.35)), hypertensive 
disease (1.78 (1.50 to 2.11)), deep vein thrombosis 
(1.82 (1.38 to 2.41)), and pulmonary embolism 
(1.91 (1.31 to 2.80)). Increased rates of CVD were 
seen in different age groups from childhood to early 
adulthood until age 40 years. The increased rates 
were more pronounced among offspring of mothers 
with diabetic complications (1.60 (1.25 to 2.05)). A 
higher incidence of early onset CVD in offspring of 
mothers with diabetes and comorbid CVD (1.73 (1.36 
to 2.20)) was associated with the added influence of 
comorbid CVD but not due to the interaction between 
diabetes and CVD on the multiplicative scale (P value 
for interaction 0.94).
Conclusions
Children of mothers with diabetes, especially 
those mothers with a history of CVD or diabetic 
complications, have increased rates of early onset 
CVD from childhood to early adulthood. If maternal 
diabetes does have a causal association with 
increased CVD rate in offspring, the prevention, 
screening, and treatment of diabetes in women of 
childbearing age could help to reduce the risk of CVD 
in the next generation.

Introduction
Cardiovascular disease (CVD) remains the leading cause 
of mortality and morbidity worldwide.1 2 Incidence 
and mortality rates of CVD have decreased in some 
countries,1-4 but the prevalence of CVD has increased 
in children and young adults in recent decades.5 6 
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What is already known on this topic
The prevalence of cardiovascular disease (CVD) has increased in children and 
young adults in recent decades
Maternal diabetes before or during pregnancy is associated with increased risks 
of metabolic syndrome and congenital heart disease in offspring
Whether prenatal exposure to maternal diabetes affects early onset CVD in 
offspring during their early decades of life is not known

What this study adds
Maternal diabetes during pregnancy was found to be associated with an 
increased rate of early onset CVD among offspring across the first four decades of 
life, especially for the offspring of those mothers with a history of CVD or diabetic 
complications
Preventing, screening, and treating diabetes in women of childbearing age 
could be important not only for improving the health of the women but also for 
reducing long term risks of CVD in their offspring
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The risk factors for CVD change over the course of a 
lifetime,7 and early onset CVD could have a different 
cause than CVD diagnosed in later adulthood. Limited 
but growing evidence suggests intergenerational links 
between maternal health during or before pregnancy 
and risk factors for CVD among offspring.8-11 A better 
understanding of such a link is essential to prevent and 
manage CVD among children and young adults.8 12-14

The prevalence of pregestational and gestational 
diabetes has been increasing globally.15 16 In preg
nancies complicated by diabetes, the diabetic in
trauterine environment could cause placental dys
function and hormonal alterations, leading to disease 
development.15 Prenatal exposure to maternal diabetes 
has also been associated with congenital heart disease, 
obesity, and diabetes in offspring. These diseases 
could, in turn, lead to an increased risk of CVD in later 
life.15 17-20 The offspring of mothers with diabetes also 
have a higher prevalence of metabolic syndrome and 
other risk factors for future CVD.9 21 22 It is unclear, 
however, whether or to what extent prenatal exposure 
to maternal diabetes increases the risk of CVD in 
offspring over a lifetime.

In this Danish population based cohort study, we 
hypothesised that intrauterine exposure to maternal 
diabetes could lead to an excess risk of early onset CVD 
in offspring from childhood to early adulthood (up to 40 
years). Using data from Danish registers, we examined 
associations between types of maternal diabetes and 
early onset of CVD in offspring, the combined effect 
of maternal diabetes and maternal history of CVD on 
the rate of early onset CVD in offspring, and whether 
pregestational complications of diabetes further 
increased the risk of CVD in offspring.

Methods
Study population
The unique personal identification number assigned 
to all Danish residents allows accurate linkage of 
individual level information from all national registries 
(a detailed description of registers is provided in 
supplementary appendix 1).23 We conducted a popu
lation based cohort study including all live births in 
Denmark during 1977-2016 (n=2 475 209). Our final 
cohort comprised 2 432 000 births after excluding 43 
209 babies with congenital heart disease identified 
at birth or diagnosed later. A total of 27 046 (62.6%) 
of these babies with congenital heart disease were 
diagnosed up to 1 year, 8923 (20.7%) were diagnosed 
between 1 and 4 years of age, 3670 (8.5%) between 5 
and 9 years, 2750 (6.4%) between 10 and 19 years, 
and 820 (1.9%) between 20 and 40 years. Follow-
up started at birth and ended at the first diagnosis 
of a CVD, death, emigration, or 31 December 2016, 
whichever came first. People who emigrated or died 
from a cause other than CVD during follow-up were 
censored at the time of emigration or death.

Exposure
Offspring born to mothers diagnosed with diabetes 
before childbirth were considered to have been 

prenatally exposed to maternal diabetes mellitus.23 
Maternal diabetes was categorised as gestational 
diabetes or pregestational diabetes. Pregestational 
diabetes was further defined as type 1 or type 2 
diabetes before childbirth (a detailed description of 
the methods used to identify diabetes is provided 
in supplementary appendix 2). If a mother was 
diagnosed with more than one type of diabetes during 
one pregnancy, possibly owing to misclassification, 
she was classified in the main analysis in accordance 
with the first type diagnosed. We also used two other 
approaches in sensitivity analyses: hierarchical 
ordering of diabetes types (type 1, type 2, and then 
gestational diabetes)20; and restriction to offspring of 
mothers with only one type of diabetes. Information on 
the diagnosis of diabetes was retrieved from the Danish 
National Diabetes Register, the Danish National Patient 
Registry (DNPR), and the Danish National Prescription 
Registry (supplementary appendix 1).

Because pregestational diabetic complications could 
reflect diabetes severity due to poor glycaemic control, 
we identified mothers with such complications—
namely, diabetic coma; ketoacidosis; diabetes with 
kidney disease; and ophthalmic, neurological, circu
latory, unspecified, or multiple complications. Women 
with pregestational diabetic complications were 
classified into two groups: those with one complication 
and those with multiple complications.

Outcome of interest
The outcome of interest was early onset CVD in 
offspring, defined as the first occurrence of CVD in 
the DNPR or the Danish Register of Cause of Death.23 
Diagnoses of congenital heart disease were excluded. 
We identified the outcome by using ICD-8 and ICD-10 
(international classification of diseases, 8th and 10th 
revisions) codes for CVD (ICD-8: 390-444.1, 444.3-
458, 782.4; ICD-10: I00-I99), or surgery codes for 
coronary artery bypass graft surgery and percutaneous 
coronary interventions (supplementary table S1). We 
also investigated the following types of CVD: ischaemic 
heart disease, cerebrovascular disease, stroke, heart 
failure, atrial fibrillation, hypertensive disease, deep 
vein thrombosis, pulmonary embolism, and other 
types of CVD (table S1).

Covariates
Potential confounders were selected based on 
directed acyclic graphs (fig S1) depicting the best 
known relations between the variables in this study. 
Confounders included maternal age (<20, 20-24, 25-
29, 30-34, or ≥35 years), parity (1, 2, or ≥3 children), 
maternal cohabitation (single or cohabitating), mater
nal education (0-9, 10-14, or ≥15 years), maternal 
residence (Copenhagen, cities with 100 000 or more 
inhabitants, or other), maternal smoking during 
pregnancy (yes or no), maternal and paternal CVD 
history before the birth of their child (yes or no). We 
also included singleton delivery, sex of offspring, and 
calendar period of delivery (before 1980, five year 
intervals during 1981-2010, and the interval 2011-16).
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To deal with the problem of missing data on 
covariates, we used the SAS multiple imputation 
procedure with fully conditional specification to 
impute five replications (chosen to be greater than the 
percentage of data missing as advised by White et al24 
and to make the computation tractable for our large 
dataset with millions of observations). The covariates 
and multiple imputations are described in detail in 
supplementary appendix 3. Missing indicator method 
and complete case analysis were also performed for 
comparison.

Statistical analysis
Cox regression was used to estimate hazard ratio with 
95% confidence intervals to assess the association 
between exposure to maternal diabetes and overall CVD/
specific types of CVD in offspring, with offspring’s age 
as the time scale. Evaluation of log-minus-log survival 
curves showed that the curves were roughly parallel 
(fig S2). Although they appeared to be converging 
slightly, no obvious evidence was seen to support the 
interaction between hazard ratio and time (P value 
for interaction 0.70). Thus, we find it reasonable to 
assume that proportional hazard assumption was not 
violated. Treating deaths from causes other than CVD 
as competing events, we performed competing risk 
analysis to estimate the cumulative incidence and 
cumulative incidence difference between exposed and 
unexposed offspring averaged across the distribution 
of the covariates, described above using the inverse 
probability of treatment weighting approach.25-27 We 
evaluated the joint effect of maternal diabetes and 
maternal history of CVD on early onset CVD in offspring 
by including the interaction term between maternal 
diabetes and maternal history of CVD. Furthermore, we 
examined the association between maternal diabetes 
and CVD in offspring stratified by maternal diabetic 
complications and the age group of the offspring (0-9, 
10-14, 15-19, 20-24, and 25-40 years).

In sensitivity analyses, we evaluated risks of CVD 
in offspring in relation to the timing of diagnosis of 
maternal type 1 diabetes with respect to childbirth 
(pregestational diagnoses and diagnoses ≤2, 2-5, and 
>5 years after childbirth). Corresponding risks were 
also evaluated in relation to the timing of diagnosis of 
pregestational (type 1 and type 2) diabetes. Further
more, we restricted analyses to offspring born at term 
(≥37 completed gestational weeks).

We used a sibship design to evaluate the influence 
of uncontrolled confounding due to shared genetic or 
familial characteristics by analysing the data of sibling 
pairs and comparing the outcome of each sibling 
exposed to maternal diabetes with the outcome of 
their unexposed sibling.28 We performed conditional 
Poisson regression for the sibling subcohort analysis. 
Similar to the stratified Cox regression,29 the 
conditional Poisson regression included a separate 
stratum for each family identified by the mother’s 
unique civil registration number, in which only 
sibling pairs discordant for both maternal diabetes 
and offspring CVD were informative and contributed 

to the effect estimate. Thus, each family had its own 
baseline rate function reflecting the family’s shared 
genetic or familial characteristics. The association 
between maternal diabetes during pregnancy and 
early onset CVD in offspring was analysed only among 
siblings. Thus, the analysis controlled for genetic 
or familial characteristics shared among family 
members. As type 1 and type 2 diabetes would not 
change between pregnancies, and gestational diabetes 
was more common in older women with higher parity, 
the sibship design was appropriate for gestational 
diabetes in a second pregnancy or later pregnancies. 
We further analysed the data to assess the influence of 
possible uncontrolled confounding. We evaluated also 
whether parental factors, including maternal country 
of origin, maternal body mass index before pregnancy, 
and paternal diabetes before the child’s birth, affected 
the observed associations. In addition, we used 
paternal diabetes as an exposure to explore potential 
confounding by genetic and familial factors. We used 
inverse-probability-of-selection weighting to evaluate 
possible live birth bias due to maternal diabetes and 
other (uncontrolled or unmeasured) risk factors for 
CVD in offspring.30 These risk factors could lead to 
fetal loss such that naive analysis of data on live births 
could be misleading.30 31

We performed subanalyses stratified by sex of 
offspring, and restricted to primiparous women, and 
singleton offspring. Owing to ICD code changes (ICD-
10 was adopted in 1994) and the availability of data 
on confounders (maternal smoking and maternal 
pregnancy body mass index became available since  
1991 and 2004, respectively), we restricted sub
analyses to offspring born after 1991, 1994, and 
2004. All analyses were conducted using SAS 9.4 (SAS 
Institute, Cary, NC) and Stata 14 (StatCorp, College 
Station, TX).

Patient and public involvement
No patients were involved in setting the research 
question or the outcome measures, nor were they 
involved in developing plans for design or imple
mentation of the study. No patients were asked to 
advise on interpretation or writing up of results. There 
are no plans to disseminate the results of the research 
to study patients or the relevant patient community.

Results
Of 2 432 000 liveborn offspring without congenital 
heart disease, 54 864 (2.3%) were exposed to maternal 
pregestational diabetes (type 1: 0.9%, type 2: 0.3%) or 
gestational diabetes (1.1%). The proportion of offspring 
born to mothers with diabetes increased over time (fig 
S3). A total of 93 881 offspring (3.9%) were censored 
at the end of follow-up owing to emigration (n=74 377) 
or non-cardiovascular death (n=19 504). Compared 
with mothers who did not have diabetes, mothers 
with diabetes were more likely to be older, to have had 
higher education, to have higher parity, to live alone, 
and to smoke less during pregnancy. Compared with 
unexposed offspring, offspring exposed to maternal 
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Outcome* and exposure No of offspring with CVD Rate per 1000 person years Hazard ratio (95% CI), model 1 Hazard ratio (95% CI), model 2
Overall CVD
No diabetes 91 311 2.01 1.0 (ref) 1.0 (ref)
Maternal diabetes: 1153 2.02 1.47 (1.39 to 1.56) 1.29 (1.21 to 1.37)
  Pregestational diabetes 792 2.28 1.45 (1.35 to 1.56) 1.34 (1.25 to 1.43)
  Pregestational diabetes, type 1 531 2.13 1.46 (1.34 to 1.59) 1.31 (1.20 to 1.43)
  Pregestational diabetes, type 2 261 2.68 1.44 (1.27 to 1.62) 1.39 (1.23 to 1.57)
  Gestational diabetes 361 1.60 1.51 (1.36 to 1.67) 1.19 (1.07 to 1.32)
Ischaemic heart disease
No diabetes 3753 0.08 1.0 (ref) 1.0 (ref)
Maternal diabetes: 28 0.05 1.21 (0.83 to 1.75) 1.18 (0.82 to 1.72)
  Pregestational diabetes 26 0.07 1.38 (0.94 to 2.03) 1.37 (0.93 to 2.01)
  Pregestational diabetes, type 1 16 0.06 1.35 (0.83 to 2.21) 1.35 (0.83 to 2.21)
  Pregestational diabetes, type 2 10 0.10 1.42 (0.76 to 2.64) 1.40 (0.75 to 2.61)
  Gestational diabetes <3 0.01 0.46 (0.11 to 1.83) 0.43 (0.11 to 1.71)
Cerebrovascular disease
No diabetes 7113 0.15 1.0 (ref) 1.0 (ref)
Maternal diabetes: 102 0.18 1.49 (1.22 to 1.81) 1.38 (1.13 to 1.68)
  Pregestational diabetes 67 0.19 1.46 (1.15 to 1.86) 1.39 (1.10 to 1.77)
  Pregestational diabetes, type 1 48 0.19 1.54 (1.16 to 2.05) 1.46 (1.10 to 1.94)
  Pregestational diabetes, type 2 19 0.19 1.30 (0.83 to 2.03) 1.25 (0.79 to 1.96)
  Gestational diabetes 35 0.15 1.54 (1.10 to 2.14) 1.36 (0.97 to 1.90)
Stroke
No diabetes 4678 0.10 1.0 (ref) 1.0 (ref)
Maternal diabetes: 67 0.12 1.39 (1.09 to 1.77) 1.27 (1.00 to 1.62)
  Pregestational diabetes 43 0.12 1.37 (1.01 to 1.85) 1.29 (0.96 to 1.74)
  Pregestational diabetes, type 1 30 0.12 1.38 (0.97 to 1.98) 1.29 (0.90 to 1.85)
  Pregestational diabetes, type 2 13 0.13 1.34 (0.77 to 2.30) 1.28 (0.74 to 2.21)
  Gestational diabetes 24 0.11 1.43 (0.96 to 2.13) 1.23 (0.82 to 1.85)
Heart failure
No diabetes 1222 0.03 1.0 (ref) 1.0 (ref)
Maternal diabetes: 17 0.03 1.48 (0.92 to 2.40) 1.45 (0.89 to 2.35)
  Pregestational diabetes 11 0.03 1.42 (0.78 to 2.58) 1.40 (0.77 to 2.54)
  Pregestational diabetes, type 1 5 0.02 0.95 (0.40 to 2.29) 0.95 (0.39 to 2.28)
  Pregestational diabetes, type 2 6 0.06 2.41 (1.08 to 5.38) 2.32 (1.04 to 5.19)
  Gestational diabetes 6 0.03 1.61 (0.72 to 3.60) 1.54 (0.68 to 3.47)
Atrial fibrillation
No diabetes 2339 0.05 1.0 (ref) 1.0 (ref)
Maternal diabetes: 17 0.03 1.17 (0.73 to 1.89) 1.12 (0.69 to 1.81)
  Pregestational diabetes 16 0.05 1.36 (0.83 to 2.22) 1.33 (0.81 to 2.18)
  Pregestational diabetes, type 1 11 0.04 1.51 (0.83 to 2.73) 1.48 (0.82 to 2.67)
  Pregestational diabetes, type 2 5 0.05 1.12 (0.47 to 2.69) 1.10 (0.46 to 2.64)
  Gestational diabetes <3 0.00 0.36 (0.05 to 2.56) 0.31 (0.04 to 2.23)
Hypertensive disease
No diabetes 9615 0.21 1.0 (ref) 1.0 (ref)
Maternal diabetes: 135 0.23 2.10 (1.77 to 2.49) 1.78 (1.50 to 2.11)
  Pregestational diabetes 100 0.28 1.99 (1.63 to 2.42) 1.78 (1.46 to 2.17)
  Pregestational diabetes, type 1 58 0.23 1.81 (1.40 to 2.35) 1.57 (1.22 to 2.04)
  Pregestational diabetes, type 2 42 0.42 2.29 (1.69 to 3.10) 2.18 (1.61 to 2.95)
  Gestational diabetes 35 0.15 2.50 (1.79 to 3.48) 1.77 (1.27 to 2.48)
Deep vein thrombosis
No diabetes 4514 0.10 1.0 (ref) 1.0 (ref)
Maternal diabetes: 50 0.09 1.86 (1.41 to 2.46) 1.82 (1.38 to 2.41)
  Pregestational diabetes 44 0.13 1.99 (1.48 to 2.68) 1.97 (1.47 to 2.66)
  Pregestational diabetes, type 1 22 0.09 1.62 (1.07 to 2.47) 1.60 (1.05 to 2.43)
  Pregestational diabetes, type 2 22 0.22 2.56 (1.68 to 3.89) 2.58 (1.70 to 3.93)
  Gestational diabetes 6 0.03 1.26 (0.57 to 2.82) 1.17 (0.53 to 2.62)
Pulmonary embolism
No diabetes 2246 0.05 1.0 (ref) 1.0 (ref)
Maternal diabetes: 27 0.05 1.85 (1.26 to 2.70) 1.91 (1.31 to 2.80)
  Pregestational diabetes 21 0.06 1.82 (1.18 to 2.80) 1.86 (1.21 to 2.85)
  Pregestational diabetes, type 1 7 0.03 0.97 (0.46 to 2.04) 1.01 (0.48 to 2.12)
  Pregestational diabetes, type 2 14 0.14 3.22 (1.90 to 5.44) 3.22 (1.90 to 5.45)
  Gestational diabetes 6 0.03 1.95 (0.87 to 4.36) 2.14 (0.96 to 4.79)
Other CVDs†
No diabetes 69 915 1.53 1.0 (ref) 1.0 (ref)
Maternal diabetes: 876 1.53 1.40 (1.31 to 1.50) 1.22 (1.14 to 1.30)
  Pregestational diabetes 582 1.67 1.36 (1.26 to 1.47) 1.25 (1.15 to 1.35)
  Pregestational diabetes, type 1 397 1.59 1.38 (1.26 to 1.53) 1.23 (1.12 to 1.36)

Table 1 | Associations between maternal diabetes and early onset of overall CVD and specific types of CVD in offspring
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diabetes were more likely to have a parental history of 
CVD and to have a higher rate of developing diabetes, 
obesity, hypertension, hypercholesterolaemia, and 
chronic kidney diseases (tables S2-3).

During up to 40 years of follow-up, 1153 offspring 
of mothers with diabetes and 91 311 offspring of 
mothers who did not have diabetes were diagnosed 
with CVD. Exposed offspring had a higher rate of 
overall CVDs than unexposed offspring (hazard 
ratio 1.29 (95% confidence interval 1.21 to 1.37); 
cumulative incidence among unexposed offspring 
at 40 years of age (13.07% (12.92% to 13.21%), 
cumulative incidence difference between the 
exposed and the unexposed offspring (4.72% 
(2.37% to 7.06%); table 1, fig 1, and fig S4). An 
increased rate of early onset CVD was seen in 
offspring exposed to pregestational diabetes (1.34 
(1.25 to 1.43)) or gestational diabetes (1.19 (1.07 to 
1.32)). Early onset of CVD in offspring was of similar 
magnitude in maternal type 1 and type 2 diabetes. 
The rates for most specific types of CVD were also 
increased in offspring exposed to maternal diabetes, 
with higher rates seen for heart failure (1.45 (0.89 
to 2.35)), hypertensive disease (1.78 (1.50 to 2.11)), 
deep vein thrombosis (1.82 (1.38 to 2.41)), and 
pulmonary embolism (1.91 (1.31 to 2.80); table 1). 
We generally observed increased hazard ratios for 
offspring exposed to maternal diabetes in each age 
group in childhood (before 20 years of age) and early 
adulthood (from 20 to 40 years of age), regardless of 
the type of maternal diabetes (fig 2).

We found a higher incidence of CVD in offspring of 
mothers with both diabetes and comorbid CVD (1.73 
(1.36 to 2.20)) than in offspring of mothers with 
diabetes only (1.29 (1.21 to 1.37)). This increased 
incidence was due to the added influence of comorbid 
CVD but not their interaction on the multiplicative 
scale (P value for interaction 0.94; table 2). Offspring 
of mothers with pregestational diabetes and diabetic 
complications had a higher incidence of CVD (1.60 
(1.25 to 2.05)) than the offspring of mothers with 
pregestational diabetes but no diabetic complications 
(1.31 (1.16 to 1.48); table 3), representing a 22% 
increased rate (1.22 (0.92 to 1.62)) due to diabetic 
complications. Our study population for this analysis 
was young (up to 21 years of age with a median age of 
11), and only a limited number of CVD events (n=62) in 
offspring of mothers with diabetes with complications 
were available for this analysis.

Sensitivity analysis yielded similar findings to those 
of the main analyses (tables S4-6), including use of 
hierarchical ordering of diabetes types (type 1, type 2, 
and gestational diabetes), and restriction to offspring 
of mothers diagnosed with only one diabetes type 
during their pregnancy; or offspring born at term. 
The results from sibship design in the sibling cohort 
(1.26 (1.18 to 1.35)) were similar to those of the main 
analysis in the unmatched whole population cohort. 
Moreover, for the timing of the diagnosis of maternal 
type 1 diabetes, the association between maternal 
type 1 diabetes and CVD was strongest when mothers 
were diagnosed before childbirth (1.35 (1.23 to 1.48)). 
The association was attenuated with greater time to 
diagnosis after birth (table S7). The pattern was similar 
when type 1 and type 2 diabetes were combined. The 
results were essentially unchanged when we controlled 
for maternal country of origin, maternal body mass 
index before pregnancy, and paternal diabetes before 
the birth of the child, either separately or together in 
the model (table S8). In addition, paternal diabetes 
remained weakly associated with early onset CVD in 
offspring (table S9).

In our evaluation of live birth bias, the inverse-
probability-weighting approach yielded results simi
lar to those of the primary analyses, showing that 
maternal diabetes increased the rate of early onset CVD 
in offspring (table S10). The analysis stratified by sex 
of the offspring showed similar results. Results from 
separate analyses restricted to singletons, offspring of 
primiparous women, individuals with complete data, 
and offspring born after 1991, 1994, or 2004, and 
using the missing indicator method, were similar to 
those obtained in the primary analyses (table S11).

Discussion
In this large population based cohort study, we found 
that maternal diabetes before or during pregnancy 
was associated with increased rates of early onset 
CVD in general, and with most specific types of early 
onset CVD in offspring, persisting from childhood 
through early adulthood. The strongest associations 
were found among offspring of mothers with diabetic 
complications or with diabetes and a history of CVD.

Comparisons with other studies
During pregnancies complicated by diabetes, large 
amounts of maternal glucose freely cross the placenta, 
which could lead to increased secretion of fetal 

Outcome* and exposure No of offspring with CVD Rate per 1000 person years Hazard ratio (95% CI), model 1 Hazard ratio (95% CI), model 2
  Pregestational diabetes, type 2 185 1.89 1.31 (1.14 to 1.51) 1.28 (1.11 to 1.47)
  Gestational diabetes 294 1.30 1.50 (1.34 to 1.68) 1.16 (1.04 to 1.30)
CVD=cardiovascular disease; ICD-8, ICD-10=international classification of disease, 8th revision, 10th revision; ref=reference; model 1=offspring’s age as time scale; model 2=offspring’s age 
as time scale, and controlled for calendar year, sex, singleton status, parity, maternal smoking, maternal education, maternal cohabitation, maternal residence at birth, maternal history of CVD 
before childbirth, paternal history of CVD before birth of the child, and maternal age (restricted cubic spline with five knots at five evenly spaced centiles).
*Ischaemic heart disease (ICD-8 codes: 410-414; ICD-10 codes: I20-I25), cerebrovascular disease (ICD-8 codes: 430-438; ICD-10 codes: I60-I69), stroke (ICD-8 codes: 430-436; ICD-10 codes: 
I61-I64), heart failure (ICD-8 codes: 427.0, 427.1,782.4; ICD-10 codes: I110, I130, I132, I50), atrial fibrillation (ICD-8 codes: 427.93, 427.94; ICD-10 code: I48), hypertensive disease (ICD-8 
codes: 400-404; ICD-10 codes: I10-I15), deep vein thrombosis (ICD-8 codes: 451.00; ICD-10 codes: I80.1-I80.3), pulmonary embolism (ICD-8 codes: 450.99; ICD-10 codes: I26), other types of 
CVD (the remainder of the codes included under CVD overall (ICD-8 codes: 390-444.1, 444.3-458, 782.4; ICD-10 codes: I00-I99)).
†The most important diagnostic entities contributing to this category: cardiomyopathy, cardiac arrest, paroxysmal tachycardia, complications and ill-defined descriptions of heart disease, 
diseases of capillaries, varicose veins of other sites, non-specific lymphadenitis, and hypotension.

Table 1 | Continued
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insulin.15 This increase would result in a state of 
hyperinsulinaemia and hyperglycaemia in the fetal 
circulation.15 Exposure to hyperinsulinaemia and 
hyperglycaemia in utero could have longlasting effects 
on fetal vascular gene expression and result in changes 
in vascular function, thereby contributing to higher  
CVD risks in offspring.15 32 The results of animal 
studies33 34 indicated abnormalities in vascular re
activity and increased risks of hypertension and 
cardiovascular dysfunction in offspring of diabetic 
rats. Several human studies have shown that the 
diabetic intrauterine environment could have a pro
gramming effect on fetal vascular dysfunction, 
leading to a poor CVD risk profile after birth.15 32 
This profile would include increased concentrations 
of markers of endothelial dysfunction, macrosomia, 
increased aortic intima-media thickness, and arterial 
stiffening.15 32 Poor glycaemic control in pregnant 
women could result in more unhealthy fetuses with 
more adverse birth outcomes,15 35-37 which are risk 
factors for future CVD.38 In addition, offspring of 
mothers with diabetes tend to be at increased risk of 
exposure to many classic cardiovascular risk factors, 
such as hypercholesterolaemia, hypertension, obesity, 
diabetes, chronic kidney disease, and metabolic 
syndrome.9 10 15 32 37 39-41 Moreover, factors such as 
genetic susceptibility, family environment variables, 
or lifestyle characteristics might also contribute to the 
increased risk of CVD in children born to mother with 
diabetes.15 37

Empirical evidence is lacking for an association of 
maternal diabetes during pregnancy with the overall 
risk of early onset CVD in offspring, with the exception 
of an increased risk of congenital heart diseases.18 42 
One study reported that the risk of congenital heart 
disease was higher among offspring exposed to 
pregestational diabetes than among those exposed 
to gestational diabetes.18 A Swedish study found 

that pregestational and gestational diabetes were 
associated with congenital heart defects.42 In our large 
study, we found increased rates of early onset CVD in 
offspring prenatally exposed to three types of maternal 
diabetes (pregestational type 1 and type 2, and ges
tational diabetes). The variation in the magnitudes of 
the estimated effect size might be due to the different 
mechanisms underlying different types of diabetes.15 43 
The similarity in disease risk due to maternal type 
1 versus type 2 diabetes for early onset CVD and 
congenital heart disease, respectively, suggests a 
shared pathological process between both types of 
diabetes in fetal heart development.18 43 The higher 
CVD rate in offspring of those with pregestational 
diabetes, compared with offspring of mothers with 
gestational diabetes, suggests that a high glucose level 
in early pregnancy has a major role in CVD development 
in offspring.18 44 45 The difference in associations found 
between maternal diabetes and specific types of CVD 
could stem from different underlying mechanisms for 
CVD.46 47

Notably, an almost twofold risk of higher early onset 
of CVD was seen in offspring of mothers with diabetes 
and a history of CVD, compared with the offspring of 
mothers with no such history. The greater effect of 
coexisting maternal CVD and maternal diabetes on 
CVD risk in offspring requires additional research 
to examine the burden of multimorbidity during 
pregnancy.

Higher insulin resistance is also associated with  
an increased risk of pregestational diabetic compli
cations.48 Therefore, diabetic complications due to 
poor glycaemic control might reflect the severity of 
pregestational diabetes. Our observation suggests that 
children of mothers with diabetic complications have 
a higher risk of very early onset CVD. This result is 
consistent with earlier studies that found a higher risk 
of genital anomalies and congenital heart diseases in 
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Fig 1 | Adjusted cumulative incidence of early cardiovascular disease (CVD) onset among offspring exposed versus 
unexposed to maternal diabetes. The adjusted cumulative incidence was averaged across the distribution of the 
covariates—calendar year, sex, singleton status, parity, age, smoking, education, cohabitation, residence at 
childbirth, history of CVD before childbirth, and paternal history of CVD before birth of the child—using the inverse 
probability of treatment weighting approach
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offspring of mothers with diabetic complications.18 20 
Since the diagnostic code for diabetic complications 
was available only in ICD-10 (since 1994), our study 
population was relatively too young for enough CVD 
events to have occurred for this analysis. Further 
follow-up and investigation in other study settings 
would be valuable to confirm these findings.

Strengths and limitations of this study
The main strength of our study is the high quality, 
prospectively collected data covering all Danish 
residents with nearly complete follow-up, thus 
minimising the possibility of recall or selection bias. The 
large sample size and long follow-up of up to 40 years 

provide an opportunity to investigate specific types 
of CVD and to evaluate the long term consequences 
of maternal diabetes for offspring of different ages. 
In addition, we used a sibship design to evaluate the 
influence of uncontrolled confounding due to shared 
familial (genetic or environmental) characteristics. 
Such (unmeasured) characteristics are often difficult to 
control in a conventional cohort study. We could also 
adjust for a wide range of covariates, such as maternal 
sociodemographic and lifestyle variables, and history 
of CVD. Previous studies have reported that maternal 
diabetes could increase the risks of preterm birth, 
pre-eclampsia, and macrosomia15 35-37; therefore, 
these factors could lie in the pathway from maternal 
diabetes during pregnancy to early onset CVD in 
offspring. Thus, we considered these variables to be 
primarily potential mediators, and did not adjust for 
these factors in the main analysis, as reported in the 
main text. Nevertheless, for explorative purposes, in 
an additional analysis, we did adjust for maternal pre-
eclampsia, preterm birth, and large for gestational age, 
and found that only slightly attenuated associations 
were seen, compared with the main analysis (table 
S11).

Several limitations must also be noted. Firstly, 
although we adjusted for a wide range of confounders, 
we could not rule out the possibility of residual 
confounding by some uncontrolled genetic or familial 
environment or lifestyle characteristics, such as 
maternal alcohol consumption, glycaemic control, 
folic acid supplementation, prenatal care, physical 
inactivity, psychological stress, offspring smoking, and 
genetic variants, in fetal susceptibility to the diabetic 
intrauterine environment. Residual confounding of 
unmeasured factors may partially account for the 
association between maternal diabetes and early 
onset CVD in offspring. However, our sibship design 
yielded results similar to those of the unpaired design 
based on the whole cohort. We have to acknowledge 
that, although the sibship design has a number 
of methodological strengths, it also has several 
drawbacks.49-51 For example, compared with an 
unpaired design (which was also used in our study), the 
sibship design may lead to bias in estimating exposure 
effects if carryover or spillover effects are present.50 51 
In addition, a sibship design cannot adequately con
trol for unmeasured confounders that change across 
pregnancies. Moreover, the sibship design restricts 
the analysis to women who have had at least two 
pregnancies, leading to loss of generalisability to the 
target population. Thus, the sibship design could 
not fully rule out the possibility of uncontrolled 
confounding, possibly requiring bias analysis.49-52 
The strongest associations were for offspring born to 
mothers with a diagnosis of diabetes before childbirth. 
This association was attenuated when maternal 
diabetes was diagnosed after childbirth. These fin
dings suggest that non-genetic effects are important 
determinants of early onset CVD in offspring, and that 
the observed associations are not entirely attributable 
to confounding by genetics and familial environment. 
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Fig 2 | Associations between maternal diabetes and early onset of cardiovascular 
disease (CVD) in offspring by offspring age and diabetes type.Maternal diabetes 
included gestational diabetes and pregestational diabetes. Pregestational diabetes 
included type 1 and type 2 diabetes. Associations were controlled for calendar 
year, sex, singleton status, parity, maternal smoking, maternal education, maternal 
cohabitation, maternal residence at birth, maternal history of CVD before childbirth, 
paternal history of CVD before birth of the child, and maternal age (restricted cubic 
spline with five knots at five evenly spaced centiles). Arrows indicate a lower limit of 
<0.8
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In addition, the considerably greater influence of 
maternal diabetes, compared with paternal diabetes, 
on the risk of CVD in offspring, further suggests that 
our findings are unlikely to be attributable entirely to 
uncontrolled confounding. 

Secondly, there is a possibility of live birth selection 
bias, which we assessed using information available 
on stillbirths. Our sensitivity analyses provided reas
surance that restricting our sample to live births was 
unlikely to affect the observed associations appre
ciably. 

Thirdly, potential misclassification bias might 
remain, because the same code (ICD-8:250) was 
used to record type 1 and type 2 diabetes before 
1986.18 However, the ascertainment and verification 
of diabetes in Denmark are considered highly 
reliable, implying that misclassification of maternal 
diabetes overall is unlikely.53 A validation study that 
examined cardiovascular diagnoses in the DNPR in 
2010-2012 indicated that cardiovascular diagnoses 
were of overall high quality and adequate for 
epidemiological research.54 Although we could not 
rule out misclassification bias, we think that it would 
probably be non-differential, would tend to attenuate 
our estimates, and would not change our conclusion 
substantially. 

Finally, our study could not examine the risk of CVD 
offspring in late adulthood because the longest follow-
up period so far is 40 years. The maximum follow-up 
period for CVD events in offspring of mothers with 
diabetic complications was only 21 years, which might 

prevent us from obtaining stable risk estimates for some 
subgroup analyses. However, this is the best available 
evidence and we expect the associations to be even 
stronger when older offspring can be studied. Future 
studies with longer follow-up are well warranted.

Conclusion and policy implications
The diabetic intrauterine environment could have a 
programming effect on the development of CVD in 
offspring. Our study provides evidence that children 
of mothers with diabetes, especially those with a 
history of CVD or with diabetic complications, had 
increased rates of early onset CVD throughout the 
early decades of life. These findings highlight the 
importance of effective strategies for screening and 
preventing diabetes in women of childbearing age. 
We need to monitor CVD risks in offspring of mothers 
with diabetes and investigate possible life course 
interventions that could reduce the occurrence of 
CVD. A history of CVD or diabetic complications in 
women with diabetes should be taken into account in 
designing public health strategies that target offspring 
at increased risk of early onset CVD. Future research 
should examine the degree of glycaemic control during 
pregnancy that would minimise the risk of CVD in 
offspring throughout their life.
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Table 3 | Associations between maternal pregestational diabetes with or without diabetic complications and early onset 
of CVD in offspring born during 1996-2016*

Exposure
No of offspring  
with CVD 

Rate per 1000 
person years

Hazard ratio (95% CI), 
model 1

Hazard ratio (95% CI), 
model 2

No pregestational diabetes 16 251 1.22 1.0 (ref) 1.0 (ref)
Pregestational diabetes without  
diabetic complications 266 1.64 1.38 (1.23 to 1.56) 1.31 (1.16 to 1.48)

Pregestational diabetes with  
diabetic complications 62 1.99 1.67 (1.30 to 2.14) 1.60 (1.25 to 2.05)

  1 complication 24 1.90 1.59 (1.07 to 2.37) 1.55 (1.04 to 2.32)
  ≥2 complications 38 2.05 1.73 (1.25 to 2.37) 1.63 (1.18 to 2.24)
Pregestational diabetes with diabetic  
complication v without diabetic complication — — 1.21 (0.91 to 1.59) 1.22 (0.92 to 1.62)

CVD, cardiovascular disease; HR, hazard ratio; ICD-10=international classification of disease, 10th revision; model 1=offspring’s age as time scale; 
model 2=offspring’s age as time scale, and controlled for calendar year, sex, singleton status, parity, maternal smoking, maternal education, maternal 
cohabitation, maternal residence at birth, maternal history of CVD before childbirth, paternal history of CVD before birth of the child, and maternal age 
(restricted cubic spline with five knots at five evenly spaced centiles).
*Pregestational diabetic complications: ICD-10 codes (E10.0–E10.8, E11.0–E11.8, and H36.0). Women with pregestational diabetic complications were 
classified as having one or multiple complications (ICD-10: E10.7, E11.7; ≥2 complications as provided above)

Table 2 | Joint effect of maternal diabetes and maternal CVD history before childbirth on early CVD onset in offspring

Exposure
No of offspring  
with CVD 

Rate per 1000  
person years

Hazard ratio (95% CI),  
model 1

Hazard ratio (95% CI),  
model 2

No maternal diabetes and CVD 89 372 2.00 1.0 (ref) 1.0 (ref)
Maternal diabetes only 1086 1.99 1.45 (1.37 to 1.54) 1.29 (1.21 to 1.37)
Maternal CVD only 1939 2.23 1.41 (1.35 to 1.48) 1.33 (1.27 to 1.39)
Joint effect of maternal diabetes and CVD 67 2.46 2.10 (1.65 to 2.67) 1.73 (1.36 to 2.20)
Maternal diabetes×CVD — — 1.02 (0.80 to 1.31) 1.01 (0.79 to 1.30)
P value for interaction (maternal diabetes×CVD) — — 0.86 0.94
CVD=cardiovascular disease; model 1=offspring’s age as time scale; model 2=offspring’s age as time scale, and controlled for calendar year, sex, 
singleton status, parity, maternal smoking, maternal education, maternal cohabitation, maternal residence at birth, maternal history of CVD before 
childbirth, paternal history of CVD before birth of the child, and maternal age (restricted cubic spline with five knots at five evenly spaced centiles).
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