Genetic predisposition to increased serum calcium, bone mineral density, and fracture risk in individuals with normal calcium levels: mendelian randomisation study

Agustin Cerani,1,2 Sirui Zhou,1,2 Vincenzo Forgetta,1 John A Morris,1,3 Katerina Trajanońska,4,5 Fernando Rivadeneira,4,5 Susanna C Larsson,6 Karl Michaëllson,7 J Brent Richards1,2,3

ABSTRACT

OBJECTIVE
To determine if genetically increased serum calcium levels are associated with improved bone mineral density and a reduction in osteoporotic fractures.

SETTING
Mendelian randomisation study.

PARTICIPANTS
A genome-wide association meta-analysis of serum calcium levels in up to 61,079 individuals was used to identify genetic determinants of serum calcium levels. The UK Biobank study was used to assess the association of genetic predisposition to increased serum calcium with estimated bone mineral density derived from heel ultrasound in 426,824 individuals who had, on average, calcium levels in the normal range. A fracture genome-wide association meta-analysis comprising 24 cohorts and the UK Biobank including a total of 76,549 cases and 470,164 controls, who, on average, also had calcium levels in the normal range was then performed.

RESULTS
A standard deviation increase in genetically derived serum calcium (0.13 mmol/L or 0.51 mg/dL) was not associated with increased estimated bone mineral density (0.003 g/cm², 95% confidence interval –0.059 to 0.066; P=0.92) or a reduced risk of fractures (odds ratio 1.01, 95% confidence interval 0.89 to 1.15; P=0.85) in inverse-variance weighted mendelian randomisation analyses. Sensitivity analyses did not provide evidence of pleiotropic effects.

CONCLUSIONS
Genetic predisposition to increased serum calcium levels in individuals with normal calcium levels is not associated with an increase in estimated bone mineral density and does not provide clinically relevant protection against fracture. Whether such predisposition mimics the effect of short term calcium supplementation is not known. Given that the same genetically derived increase in serum calcium is associated with an increased risk of coronary artery disease, widespread calcium supplementation in the general population could provide more risk than benefit.

WHAT IS ALREADY KNOWN ON THIS TOPIC
Calcium supplementation in the general population is common and often intended to reduce the risk of fracture. Calcium supplementation has been associated with an increased risk of coronary artery disease and its protective effects on bone health remain unclear.

WHAT THIS STUDY ADDS
Genetic predisposition to increased serum calcium levels in individuals with normal calcium levels is not associated with an increase in estimated bone mineral density and does not provide clinically relevant protection against fracture. Given that the same genetically derived increase in serum calcium is associated with an increased risk of coronary artery disease, widespread calcium supplementation in the general population might provide more risk than benefit.
Another way to overcome confounding is by mendelian randomisation. Mendelian randomisation is an established genetic epidemiology method that uses natural genetic variation to strengthen causal inference by mimicking a lifelong randomised controlled trial. Specifically, genetic variants are identified that are reproducibly associated with the risk factor and are then tested for their combined effect on the disease outcome. Since genetic variants are randomly assigned at conception, this method greatly decreases confounding. Further, since conception always precedes disease onset, such studies are not prone to reverse causation. Mendelian randomisation studies are less prone to regression dilution bias than observational studies because genotypes are measured with a high degree of precision. Lastly, mendelian randomisation provides an estimate of lifelong exposure. Nonetheless, mendelian randomisation studies are limited by potential bias owing to horizontal pleiotropy, where the genetic variant influences the outcome, independently of the exposure, among other limitations.

Our recent mendelian randomisation study found that lifelong genetically predicted increased serum calcium levels were associated with a higher risk of coronary artery disease and myocardial infarction, such that a one standard deviation increase in serum calcium (0.13 mmol/L or 0.51 mg/dL) was associated with an increased odds of coronary artery disease (odds ratio 1.25, 95% confidence interval 1.08 to 1.45, P=0.003), comparable with previous randomised controlled trial meta-analysis estimations. Thus, given the risks of increased serum calcium and the high prevalence of calcium supplementation, it is important to understand the potential beneficial effects of calcium on skeletal health and fracture so that patients and their doctors can balance potential risks against potential benefits.

Clearly calcium is required for normal skeletal development and maintenance since net calcium excretion must be replaced. Indeed, severe hypocalcemia due to deficient calcium or vitamin D intake, or both, leads to diminished bone density and increased risk of fracture, which is improved with increased calcium intake. Yet, what remains unclear is whether additional calcium supplementation to an ordinary diet can lead to clinically relevant improvements in heel ultrasound bone mineral density and prevent fractures in the general adult population, who in general, have normal serum calcium and parathyroid hormone levels. Randomised controlled trial data supporting calcium supplementation to prevent fractures is inconsistent and even large trials, such as the Women’s Health Initiative, have not shown any reduction in the risk of fracture with calcium plus vitamin D in community dwelling older women and men. Calcium supplementation alone might even increase the risk of hip fracture, the most devastating type of fragility fracture. Further, a recent randomised controlled trial using bisphosphonates to prevent bone fractures found profound beneficial effects without calcium supplementation, a result also supported by another randomised controlled trial with bone mineral density as an outcome.

Given the potential risks of calcium supplements and their widespread use, it is important to understand if increasing calcium results in a reduced risk of osteoporosis and fracture. We therefore assessed whether genetically predicted lifelong higher serum calcium levels were associated with bone mineral density and the risk of fracture by using mendelian randomisation. To do so, we identified the genetic determinants of serum calcium levels in 61 079 individuals and tested their effect on estimated bone mineral density (n=426 824) and the risk of fracture (76 549 cases and 470 164 controls).

Methods

Study design and data sources

Selection of instrumental variables

Figure 1 shows that the causal interpretation of mendelian randomisation estimates relies on three assumptions. Firstly, the genetic variants, termed single nucleotide polymorphisms, must be associated with the risk factor of interest. Secondly, the genetic variant must not be associated with confounders (common causes of the risk factor and outcome association), which are not in the causal pathway between the risk factor and the outcome. Thirdly, the genetic variant is independent of the outcome conditional on the risk factor and confounders (that is, absence of horizontal pleiotropy). This means that the genetic variant’s effect on the outcome should only be mediated by the risk factor and, thus, not have a direct effect on the outcome independent of the risk factor. We undertook a two sample mendelian randomisation approach to test the effect of increased serum calcium on bone mineral density and fracture. Two sample mendelian randomisation identifies genetic variants to be associated with the exposure in one dataset and then tests the association of these variants with the outcome in a separate dataset. The advantage of this approach is that it allows for larger sample sizes, providing more precise estimates of effect of the exposure on the outcome. For an overview of the concepts and methods deployed in mendelian randomisation studies, we refer interested readers to a recent review by Holmes and colleagues.

Associations between single nucleotide polymorphisms and serum calcium concentration

We obtained seven single nucleotide polymorphisms associated with total serum calcium concentrations at a genome-wide significant level of $P<5\times10^{-8}$ from the largest serum calcium genome-wide association study meta-analysis to date. Genome-wide significant associations between the single nucleotide polymorphism and serum calcium comply with the first assumption of mendelian randomisation (that is, association between instrument and exposure). The study consisted of a discovery cohort of 39 400 individuals of European descent from 17 population...
Mendelian randomisation assumptions
1. Genetic variants are associated with exposure (calcium levels)
2. Genetic variants are not associated with potential confounders
3. Genetic variants are not associated with outcome (eg, fracture), except through the exposure (such as a lack of horizontal pleiotropic effects)

Fig 1 | Mendelian randomisation assumptions

Table 1 | Summary statistics for calcium estimated bone mineral density (eBMD) and fracture for single nucleotide polymorphisms (SNPs) influencing serum calcium

<table>
<thead>
<tr>
<th>Nearby gene</th>
<th>Chr</th>
<th>Associated SNP</th>
<th>Calcium increasing allele</th>
<th>Calcium serum GWAS</th>
<th>eBMD GWAS *</th>
<th>Fracture GWAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Allele freq</td>
<td>Effect (mmol/L)</td>
<td>p value</td>
<td>Allele freq</td>
</tr>
<tr>
<td>DGKD</td>
<td>2</td>
<td>rs1550532</td>
<td>C</td>
<td>0.32</td>
<td>0.0045</td>
<td>8×10⁻¹¹</td>
</tr>
<tr>
<td>CASR</td>
<td>3</td>
<td>rs1801725</td>
<td>T</td>
<td>0.15</td>
<td>0.0178</td>
<td>9×10⁻⁴⁶</td>
</tr>
<tr>
<td>GATA3</td>
<td>10</td>
<td>rs10491003</td>
<td>T</td>
<td>0.09</td>
<td>0.0068</td>
<td>5×10⁻⁶⁰</td>
</tr>
<tr>
<td>CARS</td>
<td>11</td>
<td>rs7481584</td>
<td>G</td>
<td>0.72</td>
<td>0.0045</td>
<td>1×10⁻³⁰</td>
</tr>
<tr>
<td>DGKH, VW8A</td>
<td>13</td>
<td>rs7336933</td>
<td>G</td>
<td>0.85</td>
<td>0.0055</td>
<td>9×10⁻⁵⁰</td>
</tr>
<tr>
<td>CYP24A1</td>
<td>20</td>
<td>rs1570669</td>
<td>G</td>
<td>0.34</td>
<td>0.0045</td>
<td>9×10⁻¹²</td>
</tr>
<tr>
<td>VKORC1L1</td>
<td>7</td>
<td>rs17711722</td>
<td>T</td>
<td>0.47</td>
<td>0.00375</td>
<td>8×10⁻⁷</td>
</tr>
</tbody>
</table>

*Mean (SD) eBMD is 0.54 g/cm² (0.12 g/cm²)
GWAS=genome-wide association study

Based studies. Serum calcium concentrations were quantified by colorimetric assay in most cohorts.

Discovery analysis identified 14 genome-wide significant single nucleotide polymorphisms associated to serum calcium concentration, of which seven were replicated in a subsequent replication cohort of 21676 individuals of European descent. The replicated single nucleotide polymorphisms were rs1801725 in CASR, rs1550532 in DGKD, rs780094 in GCKR, rs7336933 near VW8A and DGKH, rs10491003 near GATA3, rs7481584 in CARS, and rs1570669 near CYP24A1 (table 1). In addition to the seven replicated single nucleotide polymorphisms, we included a genetic variant, rs17711722: VKORC1L1 locus, which failed replication as defined by O’Séaghdha and colleagues (P>0.05 for replication), although the single nucleotide polymorphism remained genome-wide significant after meta-analysis of their discovery and replication results. In addition, rs17711722: VKORC1L1 locus displayed functional plausibility given that it encodes an enzyme involved in vitamin K physiology, which is associated with calcium homeostasis.

Bone mineral density and fracture genome-wide association study
Bone mineral density is a clinically relevant measure used to diagnose osteoporosis and to risk-stratify for fracture. Estimated bone mineral density is derived from two heel ultrasound measures, velocity of sound, and broadband ultrasound attenuation, which is highly heritable (50% to 80%), and is a strong predictor of risk of fracture. To estimate the effect of serum calcium level on estimated bone mineral density and fracture we obtained summary statistics for the associations between the eight calcium modifying single nucleotide polymorphisms and estimated bone mineral density and fractures risk from our recent genome-wide association study on estimated bone mineral density consisting of 426824 white British individuals from the UK Biobank. In this well powered genome-wide association study, 518 genome-wide significant loci accounted for 20% of the total variance in estimated bone mineral density, using 13.7 million single nucleotide polymorphisms imputed to the Haplotype Reference Consortium panel.

We performed an updated fracture fixed effect meta-analysis comprising a total of 24 cohorts from two recently published fracture genome-wide association studies, which included 23 cohorts from Genetic Factors for Osteoporosis consortium (GEFOS), EPIC-Norfolk study, and UK Biobank’s full release. The meta-analysis involved a total of 76549 cases and 470164 controls (table 2). Fracture cases in GEFOS and EPIC-Norfolk cohorts included adults who had any fractures confirmed by medical, radiological, or questionnaires with the exclusion of skull, fingers, and toes as well as high trauma fractures, when available. The details of case ascertainment of each cohort were described previously. For UK Biobank, we included fracture cases reported from either hospital based fracture diagnosis according to ICD-10 (international classification of diseases, 10th revision) codes, or questionnaire based self reported fracture. Fractures located at skull, face, hands and feet, pathological, and atypical fractures; periprosthetic fractures were excluded. Detailed description of fracture ascertainment in UK Biobank was described previously. Controls from all cohorts were defined as patients without a history of fracture. Approximately 69.5% of all fracture cases and 78.1% of all samples in the 24 cohorts were from UK Biobank, whereas GEFOS
Table 2 | Cohort descriptions

<table>
<thead>
<tr>
<th>Source</th>
<th>Study design</th>
<th>Country of origin/origin</th>
<th>Ethnicity</th>
<th>Mean (SD) age</th>
<th>Study type</th>
<th>Assessment method</th>
<th>Fracture</th>
<th>Non-fracture</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated bone mineral density cohort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK Biobank</td>
<td>Cohort</td>
<td>UK</td>
<td>Mixed (white British subset used for analysis)</td>
<td>56.6 (8.1)</td>
<td>Cohort</td>
<td>Heel quantitative ultrasound (heel BMD)</td>
<td>NA</td>
<td>NA</td>
<td>426 824</td>
</tr>
<tr>
<td>Fracture cohort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, Gene/Environment Susceptibility Reykjavik Study</td>
<td>Cohort</td>
<td>Iceland</td>
<td>Northern European</td>
<td>76.4 (5.5)</td>
<td>Population based</td>
<td>Medical and radiographic records</td>
<td>1458</td>
<td>1727</td>
<td>3185</td>
</tr>
<tr>
<td>Anglo-Australasian Osteoporosis Genetics Consortium</td>
<td>Population cohort, and case control for fracture cases</td>
<td>Australia</td>
<td>North western European</td>
<td>69.6 (8.6)</td>
<td>Population based, clinical based</td>
<td>Questionnaire, radiography</td>
<td>685</td>
<td>1113</td>
<td>1798</td>
</tr>
<tr>
<td>B-vitamins for the Prevention Of Osteoporotic Fractures</td>
<td>Intervention study</td>
<td>Netherlands</td>
<td>North western European</td>
<td>74.3 (6.5)</td>
<td>General population</td>
<td>History of fractures before baseline: questionnaire. Incident fractures: self report, validated at GP or hospital</td>
<td>715</td>
<td>1483</td>
<td>2198</td>
</tr>
<tr>
<td>Cardiovascular Health Study</td>
<td>Cohort</td>
<td>US</td>
<td>European American</td>
<td>73.2 (5.9)</td>
<td>Population based</td>
<td>Self report of incident fracture of the hip, leg, arm, or vertebra</td>
<td>519</td>
<td>2742</td>
<td>3261</td>
</tr>
<tr>
<td>DeCODE Genetics Study</td>
<td>Cross sectional</td>
<td>Iceland</td>
<td>North western European</td>
<td>60.7 (13.9)</td>
<td>Population based, clinical based</td>
<td>Medical records, radiographic documentation, questionnaire</td>
<td>1836</td>
<td>14560</td>
<td>16396</td>
</tr>
<tr>
<td>Estonian Genome Center University of Tartu-I</td>
<td>Cohort</td>
<td>Estonia</td>
<td>Northern European</td>
<td>55.4 (20.2)</td>
<td>Population based</td>
<td>Medical records, questionnaire</td>
<td>217</td>
<td>4296</td>
<td>4513</td>
</tr>
<tr>
<td>Estonian Genome Center University of Tartu-II</td>
<td>Cohort</td>
<td>Estonia</td>
<td>Northern European</td>
<td>40.3 (16.1)</td>
<td>Population based</td>
<td>Medical records, questionnaire</td>
<td>71</td>
<td>1717</td>
<td>1788</td>
</tr>
<tr>
<td>Erasmus Rucphen Family</td>
<td>Cohort</td>
<td>Netherlands</td>
<td>North western European</td>
<td>48.8 (14.4)</td>
<td>Family based isolate</td>
<td>Interview</td>
<td>260</td>
<td>1342</td>
<td>1602</td>
</tr>
<tr>
<td>Framingham Heart Study</td>
<td>Cohort</td>
<td>US</td>
<td>European American</td>
<td>64.7 (11.2)</td>
<td>Population and family based</td>
<td>Medical records, questionnaire</td>
<td>1520</td>
<td>2782</td>
<td>4302</td>
</tr>
<tr>
<td>Gothenburg Osteoporosis and Obesity Determinants Study</td>
<td>Cohort</td>
<td>Sweden</td>
<td>Northern European</td>
<td>18.9 (0.6)</td>
<td>Population based</td>
<td>Radiographic document</td>
<td>273</td>
<td>597</td>
<td>870</td>
</tr>
<tr>
<td>Health Aging and Body Composition</td>
<td>Cohort</td>
<td>US</td>
<td>European American</td>
<td>73.8 (2.9)</td>
<td>Population based</td>
<td>Radiographic</td>
<td>308</td>
<td>1353</td>
<td>1661</td>
</tr>
<tr>
<td>Hong Kong Southern Chinese</td>
<td>Case control</td>
<td>China</td>
<td>Southern Chinese</td>
<td>48.9 (15.6)</td>
<td>Population based, clinic based</td>
<td>Medical records, radiographic, and questionnaire</td>
<td>79</td>
<td>627</td>
<td>706</td>
</tr>
<tr>
<td>MROS</td>
<td>Cohort</td>
<td>US</td>
<td>European American</td>
<td>73.9 (5.9)</td>
<td>Clinic based</td>
<td>Questionnaire, radiographic documentation</td>
<td>918</td>
<td>3555</td>
<td>4473</td>
</tr>
<tr>
<td>The PROpective Study of Pravastatin in the Elderly at Risk</td>
<td>Cohort, randomised controlled trial</td>
<td>Netherlands/UK, Ireland</td>
<td>North western European</td>
<td>75.4 (3.4)</td>
<td>Clinic based</td>
<td>Medical records</td>
<td>426</td>
<td>4816</td>
<td>5242</td>
</tr>
<tr>
<td>Rotterdam Study I</td>
<td>Cohort</td>
<td>Netherlands</td>
<td>North western European</td>
<td>69.4 (9.0)</td>
<td>Population based</td>
<td>Medical records, questionnaire</td>
<td>2163</td>
<td>3574</td>
<td>5737</td>
</tr>
<tr>
<td>Rotterdam Study II</td>
<td>Cohort</td>
<td>Netherlands</td>
<td>North western European</td>
<td>63.8 (7.1)</td>
<td>Population based</td>
<td>Medical records, questionnaire</td>
<td>932</td>
<td>1220</td>
<td>2152</td>
</tr>
<tr>
<td>Rotterdam Study III</td>
<td>Cohort</td>
<td>Netherlands</td>
<td>North western European</td>
<td>56.1 (5.4)</td>
<td>Population based</td>
<td>Medical records, questionnaire</td>
<td>505</td>
<td>2421</td>
<td>2926</td>
</tr>
<tr>
<td>Study of Osteoporotic Fractures</td>
<td>Cohort</td>
<td>US</td>
<td>European American</td>
<td>71.5 (5.2)</td>
<td>Clinic based</td>
<td>Questionnaire, radiographic documentation</td>
<td>1611</td>
<td>1698</td>
<td>3309</td>
</tr>
<tr>
<td>TwinsUK</td>
<td>Cohort</td>
<td>UK</td>
<td>North western European</td>
<td>49.9 (13.6)</td>
<td>Population based, family based</td>
<td>Medical records, radiographic, and questionnaire</td>
<td>839</td>
<td>4111</td>
<td>4950</td>
</tr>
<tr>
<td>Women’s Genome Health Study</td>
<td>Cohort</td>
<td>US</td>
<td>European American</td>
<td>54.1 (7.1)</td>
<td>Population based</td>
<td>Questionnaire</td>
<td>1832</td>
<td>20498</td>
<td>22330</td>
</tr>
<tr>
<td>Women’s Health Initiative Clinical Trial</td>
<td>Quasi case/control</td>
<td>US</td>
<td>European American</td>
<td>69.0 (6.4)</td>
<td>Population based</td>
<td>Medical records</td>
<td>1058</td>
<td>647</td>
<td>1705</td>
</tr>
<tr>
<td>Women’s Health Initiative Observational Study</td>
<td>Quasi case/control</td>
<td>US</td>
<td>European American</td>
<td>69.0 (6.5)</td>
<td>Population based</td>
<td>Medical records</td>
<td>1603</td>
<td>989</td>
<td>2592</td>
</tr>
<tr>
<td>CV Risk in Young Finns Study</td>
<td>Cohort</td>
<td>Finland</td>
<td>Northern European</td>
<td>58.0 (5.0)</td>
<td>Population based</td>
<td>Medical records</td>
<td>611</td>
<td>975</td>
<td>1586</td>
</tr>
<tr>
<td>European Prospective Investigation into Cancer, Norfolk study</td>
<td>Cohort</td>
<td>UK</td>
<td>North western European</td>
<td>59.1 (9.3)</td>
<td>Population based</td>
<td>Medical records</td>
<td>2926</td>
<td>17710</td>
<td>20636</td>
</tr>
<tr>
<td>UK Biobank</td>
<td>Cohort</td>
<td>UK</td>
<td>Mixed (white British subset used for analysis)</td>
<td>56.8 (8.0)</td>
<td>Cohort</td>
<td>Questionnaire, based on answering yes to the question “Have you fractured/broken any bones in the last 5 years?” at either baseline or first follow up</td>
<td>53 184</td>
<td>373 611</td>
<td>426 795</td>
</tr>
</tbody>
</table>
cohorts represented 26.7% of cases and 18.2% of all samples and EPIC-Norfolk provided 2.8% of all cases and 3.8% of all samples. Table 2 shows the mean age of the GEFOS and EPIC-Norfolk cohorts.

Linear regression involving UK Biobank’s fracture cohort was performed using BOLT-LMM, an algorithm that allows for large scale mixed model association testing. Our genome-wide association study analysis included adjustment for sex, age, assessment centre, genotyping array, and first 20 principle components. Before meta-analysis with GEFOS and EPIC-Norfolk, and owing to the use of BOLT-LMM, the effect size estimate and standard error of each genetic variant (single nucleotide polymorphism) from UK Biobank’s genome-wide association study analysis was transformed to odds ratios by using the following approximation: log odds ratio = β/μ∗(1−μ), where μ is the case fraction in UK Biobank’s fracture cohort.

The UK Biobank full release fracture genome-wide association study was performed on its white British subpopulation, which included 53,184 fracture cases and 373,611 controls. The mean age of the UK Biobank fracture cohort is 56.8±8.0 (table 2). The study cohorts involved in the serum calcium genome-wide association study were mostly of European descent. The estimated bone mineral density genome-wide association study cohort consisted of all white British patients from the UK. Fracture cohorts were predominantly of European descent: Europe (91.6%), North America (8.0%), Australia (0.3%), and East Asia (0.1%).

We used METAL to perform fixed effects meta-analysis of these results. Individual genome-wide association studies were corrected by genomic control, and a total of 8,818,767 autosomal single nucleotide polymorphisms were included in the meta-analysis. The average genomic inflation λ of 24 cohorts was 1.025 and was adjusted accordingly when performing the meta-analysis. Finally, summary statistics from the eight calcium associated single nucleotide polymorphisms (table 1) were extracted from the fracture meta-analysis described above.

Single nucleotide polymorphism validation and pleiotropy assessment
We next undertook sensitivity analysis to understand if any of the single nucleotide polymorphisms might violate assumptions of mendelian randomisation.

Linkage disequilibrium
Single nucleotide polymorphisms used for mendelian randomization analysis are assumed to be independent of each other. Given that the eight identified calcium associated single nucleotide polymorphisms are located on different chromosomes, they would segregate independently of each other and, hence, are not in linkage disequilibrium.

Pleiotropy
To avoid a biased estimation of the effect of serum calcium (risk factor) on either the risk of estimated bone mineral density or fracture (outcomes), the genetic variants (instruments) used in the mendelian randomisation analysis should only affect the outcome only through serum calcium. Thus, we evaluated potential associations of our selected calcium associated single nucleotide polymorphisms with known determinants of bone mineral density and fracture by searching the selected single nucleotide polymorphisms in Phenoscaner, a database of genome-wide association study results. We further assessed whether each of the eight single nucleotide polymorphisms were expression quantitative trait loci for genes that could be associated with known determinants of bone mineral density and fracture by using the GTEx database. Although direct pleiotropic effects that influence the outcome independently of the risk factor violate mendelian randomisation assumptions (red arrow in fig 1), vertical pleiotropy does not. Vertical pleiotropy is defined as the association of a single nucleotide polymorphism with more than one phenotype in the same biological pathway. For example, genetically lowered calcium at CASR could lead to increased parathyroid hormone, which itself might influence bone mineral density and fracture. But since calcium directly influences parathyroid hormone, which influences the outcome, this is not a violation of mendelian randomisation assumptions.

Comparison of genetically derived effects with pharmacological effects of calcium supplementation
We modelled the effect of a one standard deviation genetically derived increase in serum calcium on estimated bone mineral density and fracture. We compared this one standard deviation increase with the magnitude of increase in serum calcium levels after calcium supplementation. To do so, we compared data from a recent randomized crossover trial of calcium supplementation.

Mendelian randomisation
Individual mendelian randomisation estimates from the seven independent serum calcium associated single nucleotide polymorphisms were calculated by using the Wald method. We meta-analysed individual mendelian randomisation estimates by using both inverse-variance weighted and a random effects models using R and the package MendelianRandomization and RStudio. The estimated associations of genetically predicted serum calcium with estimated bone mineral density and odds of fracture were expressed with respect to one standard deviation increase in serum calcium levels, which is equivalent to 0.51 mg/dL or 0.13 mmol/L. This standard deviation equivalence was derived from serum calcium’s pooled variance calculation involving the 30 cohorts reported in O’Séaghdha and colleagues and included in the serum calcium genome-wide association study.

Sensitivity analyses
To explore potential pleiotropic effects, we carried out three sensitivity meta-analyses: simple and
known biology at associated loci
Among these single nucleotide polymorphisms, rs1801725 (CASR) and rs1570669 (CYP24A1) are located nearby genes whose functions are involved in calcium homeostasis. The most strongly associated calcium locus includes CASR, a calcium sensing receptor. CASR encodes a protein whose main function is to capture small changes in circulating calcium concentrations and consequently modify parathyroid hormone secretion and renal cation handling. CYP24A1 encodes an enzyme that plays a role in calcium homeostasis and the metabolism of the active form of vitamin D. The diacylglycerol kinase genes DGKD and DGKH genes have recently been implicated in calcium signaling. GATA3 and the CARS locus are reportedly associated with hypocalcemia in the hypoparathyroidism, sensorineural deafness, and renal dysplasia (hypoparathyroidism, deafness, and renal dysplasia syndrome) and Beckwith-Wiedemann syndromes, respectively. The remaining single nucleotide polymorphism, rs17711722, used for sensitivity analysis is located in VKORCLL, is also associated with calcium homeostasis. Thus, all loci associated with calcium levels contained genes with plausible biological effects on calcium levels.

Pleiotropy evaluation
Single nucleotide polymorphisms rs1801725 in CASR, rs7336933 near VWA8 and DGKH, rs10491003 nearby GATA3, rs7481584 in CARS, and rs1570669 near CYP24A1 were not associated with any phenotypes other than serum calcium in the Phenoscanner and MRate databases. Besides its association with calcium levels, rs1550532 in DGKH showed evidence of association with bilirubin levels, but is not associated with bone mineral density or with fracture. Single nucleotide polymorphism rs17711722 (VKORCLL) showed genome-wide level associations with corneal structure and central corneal thickness, yet these phenotypes are not known to be related to a calcium-independent effect on estimated bone mineral density and fracture. Single nucleotide polymorphism rs780094 in GCKR had genome-wide level associations with triglycerides levels, cholesterol, waist circumference, and several other lipid-related phenotypes. Waist circumference is highly associated with weight and BMI, which are known determinants of lower extremity bone density and potentially heel bone mineral density. Thus, the highly pleiotropic nature of rs780094 in GCKR represents a calcium-independent effect on our outcomes of interest and was removed from all subsequent analyses.

Association of calcium levels modifying single nucleotide polymorphisms with estimated risk of bone mineral density and fracture
Table 1 shows that the summary statistics for the association between seven calcium increasing single nucleotide polymorphisms and estimated bone mineral density and fracture odds were directly weighted median and mendelian-randomisation-Egger regression methods using the R package MendelianRandomization. Simple and weighted median meta-analyses provide estimations that are robust to the inclusion of up to 50% invalid instruments in a mendelian randomisation analysis. The intercept estimate from mendelian-randomisation-Egger regression analysis provides a useful estimation of directional horizontal pleiotropy, that is, the magnitude and direction of the effect of the single nucleotide polymorphisms on the outcome not mediated through the exposure.

In addition to the primary analysis, we performed two additional sensitivity analyses. Firstly, we repeated our analysis including rs17711722 near VKORCLL. rs17711722 is associated with serum calcium levels at a genome-wide significant level, but it was not included in the main findings because it did not meet replication criteria. Lastly, we performed an additional analysis by excluding rs1801725 (CASR), which contributed the most weight in the inverse-variance weighted primary meta-analysis (CASR single nucleotide polymorphism explained 0.49% of the serum calcium variance). This single nucleotide polymorphism is in LD with single nucleotide polymorphism rs73186030, which has been associated with parathyroid hormone levels. The rationale was to test whether, in its absence, the estimated calcium on bone mineral density and on fracture effects were similar to those from primary analyses or if they were mostly driven by CASR.

In addition, to assess whether Asian ancestry influenced our fracture mendelian randomisation results, we performed the fracture genome-wide association study meta-analysis removing the HKOS (Southern Chinese) cohort and repeated the mendelian randomisation.

Patient and public involvement
No patients or member of the general public were directly involved in the design, recruitment, or conduct of the study. After publication, dissemination of the results will be sought across different countries involving respective patient organisations, the general public, and other stakeholders; typically, across social media, scientific meetings, and media interviews.

Results
Single nucleotide polymorphism selection
Table 1 shows that the single nucleotide polymorphisms in eight loci previously identified to be associated with serum calcium were rs1801725 in CASR (P=9×10^-85), rs1550532 in DGKD (P=8×10^-11), rs780094 in GCKR (P=1×10^-10), rs7336933 near VWA8 and DGKH (P=9×10^-10), rs10491003 nearby GATA3 (P=5×10^-9), rs7481584 in CARS (P=1×10^-10), rs1570669 near CYP24A1 (P=9×10^-12), and rs17711722 near VKORCLL (P=8×10^-9). The selected single nucleotide polymorphisms collectively explained 0.77% of the variance in total serum calcium levels, which is sufficient to influence the risk of coronary artery disease.
Obtained without the use of proxy single nucleotide polymorphisms from their respective studies. None of the seven calcium single nucleotide polymorphisms had genome-wide significant associations with either estimated bone mineral density or odds of fracture (all P>0.08).

Comparison of genetically derived effects with pharmacological effects of calcium supplementation
A previous crossover randomised controlled trial showed that 500 mg of calcium citrate in a fasting state lead to a maximal increase in total serum calcium levels by approximately 0.07 mmol/L, four hours after administration. The mendelian randomisation analyses here represent a change in total serum calcium of one standard deviation, which is 0.13 mmol/L. Therefore, the effects of total serum calcium presented include the anticipated effects of calcium supplementation.

Mendelian randomisation analysis: serum calcium on estimated bone mineral density
Table 3 and figure 2 show that when performing mendelian randomisation analyses, a one standard deviation (that is, 0.51 mg/dL or 0.13 mmol/L) increase in serum calcium concentration was not associated with a clinically relevant change in estimated bone mineral density (change per standard deviation increase in serum calcium was not associated with a standard deviation increase in serum calcium and estimated bone mineral density).

Table 3 shows that the sensitivity meta-analyses with six single nucleotide polymorphisms involving simple median (0.009 g/cm², 0.95% confidence interval −0.052 to 0.070; P=0.76) and weighted median estimation (0.030 g/cm², −0.006 to 0.067; P=0.10) supported the inverse-variance weighted primary analysis. The mendelian-randomisation-Egger regression intercept, which provides an approximate estimation of directional pleiotropic effects on estimated bone mineral density through pathways independent of serum calcium, showed no significant evidence for such effects (−0.003 g/cm², −0.006 to 0.001; P=0.11).

Table 3 shows that the inclusion of an additional serum calcium increasing single nucleotide polymorphism (rs17711722, VKORC11) to the primary analysis also indicated that a one standard deviation increase in serum calcium was not associated with clinically relevant change in estimated bone mineral density of 0.011 g/cm² (95% confidence interval −0.050 to 0.073; P=0.72).

To assess the degree to which our primary mendelian randomisation inverse-variance weighted estimate would change by removing the single nucleotide polymorphism that provided most weight to the inverse-variance weighted analysis, we ran an additional sensitivity analysis excluding rs1801725 (CASR). Results were, as expected, less precise but did not differ materially from the results of the primary analyses (eg, inverse-variance weighted estimate −0.049 g/cm², 95% confidence interval −0.144 to 0.047; P=0.32; table 3).

Mendelian randomisation analysis: serum calcium association with fracture
We estimated the effect of a genetically average increased serum calcium on odds of fracture by implementing a random effects model and inverse-variance weighted method, which included six calcium-increasing alleles described in table 1. Figure 3 and table 3 show that a one standard deviation increase in serum calcium concentration was not associated with odds of fracture (odds ratio 1.01, 95% confidence interval 0.89 to 1.15; P=0.85).

Table 3 | Mendelian randomisation results for effect of serum calcium on estimated bone mineral density (eBMD) and fracture risk

<table>
<thead>
<tr>
<th>Method</th>
<th>6 serum calcium associated SNPs</th>
<th>Including rs17711722 (VKORC11)</th>
<th>Excluding rs1801725 (CASR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean eBMD (95% CI)</td>
<td>P value</td>
<td>Fracture odds ratio (95% CI)</td>
</tr>
<tr>
<td>IVW</td>
<td>0.003 (-0.059 to 0.066)</td>
<td>0.92</td>
<td>1.01 (0.89 to 1.15)</td>
</tr>
<tr>
<td>Simple median</td>
<td>0.009 (-0.052 to 0.070)</td>
<td>-0.76</td>
<td>3.11 (0.93 to 1.33)</td>
</tr>
<tr>
<td>Weighted median</td>
<td>0.030 (-0.006 to 0.067)</td>
<td>-0.10</td>
<td>0.99 (0.89 to 1.11)</td>
</tr>
<tr>
<td>MR-Egger intercept</td>
<td>-0.003 (-0.006 to 0.001)</td>
<td>-0.11</td>
<td>1.00 (1.00 to 1.01)</td>
</tr>
</tbody>
</table>

Results are expressed per one standard deviation (0.51 mg/dL or 0.13 mmol/L) increase in serum calcium concentration. Estimated bone mineral density (eBMD) is expressed in g/cm². IVW=inverse-variance weighted meta-analysis.
Figure 2 shows the estimates from individual level single nucleotide polymorphism mendelian randomisation analysis. Mendelian randomisation estimates after Bonferroni correction for multiple hypothesis testing involving six tests did not show a change in odds of fracture per one standard deviation increase in serum calcium.

Table 3 shows that sensitivity meta-analyses with six single nucleotide polymorphisms involving simple median (odds ratio 1.11, 95% confidence interval 0.93 to 1.33; P=0.24) and weighted median estimation (0.99, 0.89 to 1.11; P=0.91) supported inverse-variance weighted primary analysis results. Mendelian-randomisation-Egger intercept regression results (1.00, 1.00 to 1.01; P=0.39) provided no evidence of directional pleiotropic effects on fracture odds through pathways independent of serum calcium.

The inclusion of an additional serum calcium increasing single nucleotide polymorphism (rs17711722, VKORC1) to our primary analysis with one standard deviation increase in serum calcium (inverse-variance weighted odds ratio 1.01, 95% confidence interval 0.93 to 1.13; P=0.91) supported inverse-variance weighted primary analysis results. Mendelian randomisation analysis. As observed in table 4 and figure 4, our instrumental variables’ summary statistics and mendelian randomisation results were virtually identical to those obtained in our primary analysis. The genomic inflation factor (λ) without and with the inclusion of HKOS cohort remained unchanged at 1.025. Therefore, inclusion of the HKOS cohort of Southern Chinese ancestry did not affect our results.

Discussion

This mendelian randomisation study showed that a standard deviation increase in lifelong serum calcium levels was not associated with increased estimated bone mineral density or reduced risk of fracture in individuals with normal calcium levels. The magnitude of a one standard deviation increase in genetically predicted serum calcium includes the increase in serum calcium that would be anticipated after calcium supplementation. Assuming a linear effect between calcium levels and the studied outcomes, this suggests that widespread efforts to use calcium supplements in the general population for long periods of time are unlikely to have any substantial effect on bone health outcomes. Further, we have recently shown that genetically determined increase in serum calcium derived from the same instruments (that is, single nucleotide polymorphisms) is associated with a clinically relevant increase in the risk of coronary artery disease. Thus, the cardiovascular risks of...

Table 4 | Summary statistics for fracture single nucleotide polymorphisms (SNPs) influencing serum calcium including and excluding HKOS cohort of Asian descent

<table>
<thead>
<tr>
<th>Nearby gene</th>
<th>Chr</th>
<th>Associated SNP</th>
<th>Calcium increasing allele</th>
<th>Allele freq</th>
<th>Odds ratio (95% CI)</th>
<th>P value</th>
<th>Allele freq</th>
<th>Odds ratio (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGKD</td>
<td>2</td>
<td>rs1550532</td>
<td>C</td>
<td>0.32</td>
<td>1.004 (0.992 to 1.016)</td>
<td>0.51</td>
<td>0.32</td>
<td>1.004 (0.992 to 1.017)</td>
<td>0.53</td>
</tr>
<tr>
<td>CASR</td>
<td>3</td>
<td>rs1801725</td>
<td>T</td>
<td>0.13</td>
<td>0.993 (0.976 to 1.011)</td>
<td>0.45</td>
<td>0.13</td>
<td>0.993 (0.976 to 1.011)</td>
<td>0.44</td>
</tr>
<tr>
<td>GATA3</td>
<td>10</td>
<td>rs10491003</td>
<td>T</td>
<td>0.09</td>
<td>1.013 (0.993 to 1.034)</td>
<td>0.21</td>
<td>0.09</td>
<td>1.013 (0.993 to 1.034)</td>
<td>0.21</td>
</tr>
<tr>
<td>CARS</td>
<td>11</td>
<td>rs7481584</td>
<td>G</td>
<td>0.71</td>
<td>1.003 (0.990 to 1.016)</td>
<td>0.62</td>
<td>0.71</td>
<td>1.004 (0.991 to 1.017)</td>
<td>0.59</td>
</tr>
<tr>
<td>DGKH, VW8</td>
<td>13</td>
<td>rs7336933</td>
<td>G</td>
<td>0.85</td>
<td>1.018 (1.000 to 1.033)</td>
<td>0.05</td>
<td>0.85</td>
<td>1.017 (1.000 to 1.033)</td>
<td>0.05</td>
</tr>
<tr>
<td>CYP26A1</td>
<td>20</td>
<td>rs1570669</td>
<td>G</td>
<td>0.34</td>
<td>0.993 (0.981 to 1.005)</td>
<td>0.25</td>
<td>0.34</td>
<td>0.993 (0.980 to 1.005)</td>
<td>0.24</td>
</tr>
<tr>
<td>VKORC1</td>
<td>7</td>
<td>rs17711722</td>
<td>T</td>
<td>0.45</td>
<td>0.998 (0.986 to 1.010)</td>
<td>0.68</td>
<td>0.45</td>
<td>0.998 (0.986 to 1.010)</td>
<td>0.71</td>
</tr>
</tbody>
</table>

GWAS=genome-wide association study.
increasing serum calcium in the general population are unlikely to be offset by beneficial effects on bone density and fracture.

Calcium is vital to many biological processes, and its serum concentration is tightly regulated. Net calcium excretion must be replaced, but the amount of calcium needed is debated. What is not well understood is whether increases in serum calcium amongst individuals who have a normal varied diet and normal calcium levels lead to a decrease in the risk of fracture. As outlined above, there is conflicting observational epidemiological evidence that calcium supplementation does not reduce the risk of fracture, yet such studies could be prone to bias since the individuals most likely to use calcium supplements are those more likely to be at a higher risk of fracture.81

The mendelian randomisation approach employed here overcomes this potential confounding by relying on the random assignment of alleles at conception, thereby preventing associations with such potentially confounding factors.

One way to improve the quality of evidence in medical research is to employ the principles of triangulation of different sources of evidence. If results are consistent across different types of study designs, and these different types of designs have different sources of potential bias, then the results can be combined in the framework of triangulation to provide a higher standard of evidence.82 83 Of importance, our recent mendelian randomisation analysis that

<table>
<thead>
<tr>
<th>SNP</th>
<th>Nearby gene</th>
<th>Fracture OR (95% CI)</th>
<th>Fracture OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs1550532</td>
<td>DGKD</td>
<td>1.13 (0.79 to 1.61)</td>
<td>0.95 (0.84 to 1.08)</td>
</tr>
<tr>
<td>rs1801725</td>
<td>CASR</td>
<td>1.28 (0.87 to 1.88)</td>
<td>1.10 (0.76 to 1.59)</td>
</tr>
<tr>
<td>rs10491003</td>
<td>GATA3</td>
<td>1.47 (1.00 to 2.14)</td>
<td>0.81 (0.57 to 1.16)</td>
</tr>
<tr>
<td>rs7481584</td>
<td>CARS</td>
<td>0.81 (0.57 to 1.16)</td>
<td>1.01 (0.89 to 1.15)</td>
</tr>
<tr>
<td>rs7336933</td>
<td>DGKH.VWA8</td>
<td>1.12 (0.79 to 1.61)</td>
<td>0.95 (0.84 to 1.08)</td>
</tr>
<tr>
<td>rs1570669</td>
<td>CYP24A1</td>
<td>1.28 (0.87 to 1.88)</td>
<td>1.10 (0.76 to 1.59)</td>
</tr>
</tbody>
</table>

Fig 3 | Serum calcium effects on odds of fracture. Two sample mendelian randomisation: individual and inverse variance weighted (IVW) results

Strengths of this study include the large sample size for estimated bone mineral density and fracture.50 52 Further, multiple sensitivity analyses, including removing the single nucleotide polymorphisms most strongly associated with calcium levels, led to similar findings. Despite multiple sensitivity analyses, we did not identify pleiotropic effects of the single nucleotide polymorphisms on the skeletal outcomes, independent of serum calcium, as a potential source of bias. Of relevance, the serum calcium genome-wide association study from where we obtained serum calcium instruments was composed of population based cohorts that, on average, are normocalcemic, thus our reference population is normocalcemic adults. Hence, our study conclusions are applicable to normocalcemic adult populations similar to those in the general population, not to subpopulations, for example, with extremely low calcium level, which could benefit from calcium supplementation.

Limitations

These findings cannot provide insight into the effects of hypocalcemia and its correction on estimated bone mineral density and the risk of fractures. We have assumed a linear effect between calcium levels and the studied outcomes and tested these effects on individuals from the general population, who on average, have normal serum calcium levels. Thus, these findings can only provide insight into the effect of further increases in serum calcium levels in eucalcemic individuals. Most individuals studied for bone mineral density and fracture outcomes did not have osteoporosis as defined by bone mineral density measurement. Thus, the effects of genetically increased calcium in such individuals should be tested separately.

Most randomised controlled trials for prevention of fracture have used calcium and vitamin D supplements in conjunction with fracture preventive therapies and it is not clear whether giving such drugs in the absence of calcium supplements would provide the same protective benefits as were shown in these randomised controlled trials. Nonetheless, many randomised controlled trials for fracture prevention have given calcium and vitamin D supplements in the control arm of the study. Further, a recent randomised controlled trial of zoledronate showed marked reductions in the risk of fracture without the use of calcium.90

Regarding study populations, there is no overlap between the fracture genome-wide association study and the estimated bone mineral density genome-wide association study. Fracture genome-wide association
study overlapped in a 2.8% with the calcium genome-wide association study population. However, we do not expect a substantial impact given the low degree of overlap. Confounding by ancestry, also known as population stratification, can bias mendelian randomisation studies. A method to overcome such confounding is to limit the study to people of the same ancestry. Although most individuals in the fracture study were of European ancestry, ~1% of individuals were of Asian descent. However, removal of this Asian cohort did not impact on our results.

Our study provides insights into serum calcium levels and not tissue level concentrations. While these different compartments of calcium homeostasis might have different effects on the risk of fracture, calcium supplementation acts on the skeleton by first influencing serum calcium. Thus, the results presented here can provide insight into the expected effects of calcium supplementation by serum calcium. Further, the mendelian randomisation estimate for fracture, a binary outcome, was expressed as an odds ratio, which is a non-collapsible measure, yet this estimator still provides a valid test of the null hypothesis. Canalization, which is the sum of compensatory feedback mechanisms returning a physiological system to homeostasis, can bias mendelian randomisation results towards the null. However, it is plausible the same mechanisms which maintain calcium homeostasis would act in a similar fashion on serum calcium raised by supplementation and by genetic effects. Further, the genetic predisposition to increased serum calcium used in our study is of sufficient biological and clinical relevance because of its association with increased risk of coronary artery disease.

Conclusions
A genetic predisposition to increased serum calcium, amongst individuals with normal calcium levels, was not associated with increased estimated bone mineral density or decreased risk of fracture. The degree to which lifelong genetically derived increased serum calcium mimics the effect of long term calcium supplementation is not known. Since genetically elevated serum calcium is strongly associated with an increased risk of coronary artery disease, widespread calcium supplementation in the general population does not appear to have a favourable risk-benefit profile.

AUTHOR AFFILIATIONS
1Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
2Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 3755 Côte Ste-Catherine Road, Suite H-413, Montréal, Québec, H3T 1E2, Canada
3Department of Human Genetics, McGill University, Montréal, Québec, Canada
4Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
5Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
6Unit of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
7Department of Surgical Sciences, Uppsala University, Uppsala, Sweden

We thank the individuals who participated in the studies that made this study possible.

Contributors: AC, SZ, and JBR were involved in the design of the study. AC and SZ carried out statistical analysis and wrote the first draft of the manuscript with JBR’s support. All authors participated in further drafts and approved final manuscript. The corresponding author confirms that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted. AC is the guarantor.

Funding: JBR and AC are supported by CIHR and FRQS. The funding sources had no role in: a. the design or conduct of the study, b. the collection, management, analysis, and interpretation of the data, or c. preparation, review, or approval of the manuscript. The Richards research group is supported by the Canadian Institutes of Health Research (CIHR), the Lady Davis Institute of the Jewish General Hospital, the Canadian Foundation for Innovation and the Fonds de Recherche Québec Santé (FRQS). JBR is supported by a FRQS Clinical Research Scholarship. TwinUK is funded by the Welcome Trust, Medical Research Council, European Union, the National Institute for Health Research (NIHR)-funded BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust in partnership with King’s College London. AC and JAM are funded by CIHR’s Frederick Banting and Charles Best Canada Graduate Scholarships Doctoral Award and AC was funded by FRQS’s Doctoral Award. SZ is funded by a CIHR Fellowship. This research and the Genetic Factors for Osteoporosis (GEFOS) consortium have been funded by the European Commission (HEALTH-F2-2008-201865-GEFOS). KT and FR are supported by the Netherlands Scientific Organization (NWO) and ZonMW Project number: NW 0/20NWV-WID-0 16-136-367. This research has been conducted using the UK Biobank Resource (project number: 24268) and GEFOS.

Competing interest statement: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Ethical approval: No separate ethical approval was required due to the use of publicly available summary data.

Data sharing: No additional data are available.

The manuscript’s guarantor (AC) affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

High extracellular Ca\(^2+\) stimulates Ca\(^2+\)-activated Cl\(^-\) currents in frog parathyroid cells through the mediation of arachidonic acid cascade.

Team R. RsStudio: Integrated Development for R. RsStudio, Inc, Boston, MA 2015

