Effect of breakfast on weight and energy intake: systematic review and meta-analysis of randomised controlled trials

Katherine Sievert,1 Sultana Monira Hussain,1 Matthew J Page,2 Yuanyuan Wang,1 Harrison J Hughes,1 Mary Malek,1 Flavia M Cicuttini1

ABSTRACT

OBJECTIVE
To examine the effect of regular breakfast consumption on weight change and energy intake in people living in high income countries.

DESIGN
Systematic review and meta-analysis.

DATA SOURCES
PubMed, Ovid Medline, and CINAHL were searched for randomised controlled trials published between January 1990 and January 2018 investigating the effect of breakfast on weight or energy intake. ClinicalTrials.gov and the World Health Organization’s International Clinical Trials Registry Platform search portal were also searched in October 2018 to identify any registered yet unpublished or ongoing trials.

ELIGIBILITY CRITERIA FOR SELECTING STUDIES
Randomised controlled trials from high income countries in adults comparing breakfast consumption with no breakfast consumption that included a measure of body weight or energy intake. Two independent reviewers extracted the data and assessed the risk of bias of included studies. Random effects meta-analyses of the effect of breakfast consumption on weight and daily energy intake were performed.

RESULTS
Of 13 included trials, seven examined the effect of eating breakfast on weight change, and 10 examined the effect on energy intake. Meta-analysis of the results found a small difference in weight favouring participants who skipped breakfast (mean difference 0.44 kg, 95% confidence interval 0.07 to 0.82), but there was some inconsistency across trial results (I²=43%). Participants assigned to breakfast had a higher total daily energy intake than those assigned to skip breakfast (mean difference 259.79 kcal/day, 78.87 to 440.71; 1 kcal=4.18 kJ), despite substantial inconsistency across trial results (I²=80%). All of the included trials were at high or unclear risk of bias in at least one domain and had only short term follow-ups (mean period seven weeks for weight, two weeks for energy intake). As the quality of the included studies was mostly low, the findings should be interpreted with caution.

CONCLUSION
This study suggests that the addition of breakfast might not be a good strategy for weight loss, regardless of established breakfast habit. Caution is needed when recommending breakfast for weight loss in adults, as it could have the opposite effect. Further randomised controlled trials of high quality are needed to examine the role of breakfast eating in the approach to weight management.

STUDY REGISTRATION
PROSPERO registration number CRD42017057687.

Introduction

Obesity is considered to be one of the defining health issues of this time and is recognised as the most prevalent form of malnutrition worldwide, with rapidly increasing rates globally.1 The association of obesity with increased risk of chronic diseases (eg, cardiovascular disease, diabetes, and osteoarthritis) means that it is the major contributor to the global burden of disease.2 4

In high income countries, weight gain is rising in incidence across all population groups, thus efforts to manage the effects of this problem have been undertaken by government and public health organisations.

Although strategies aimed at prevention and management of obesity must be multifactorial, many international dietary recommendations suggest the regular inclusion of breakfast for weight management and as a protective factor against obesity (table 1). These recommendations are often derived from the presumption that skipping breakfast leads to energy overcompensation later in the day.11 Furthermore, it is postulated that the satiating properties of food over the course of the day decline13 and, therefore, eating earlier in the day could promote greater satiety than eating later in the day. However, despite this common recommendation for weight control by both health professionals13 14 and the lay community,15-17 most of these recommendations are based on the findings of observational studies.18-21 These concepts have potential for selection bias and confounding, because those individuals who eat breakfast might differ...
Table 1 | International recommendations for breakfast in 2010-18

<table>
<thead>
<tr>
<th>Country</th>
<th>Source</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia⁷</td>
<td>Dieticians Association of Australia (2013): https://daa.asn.au/resource/breakfast-cereals-and-body-weight-fact-sheet/</td>
<td>“Research shows that consuming breakfast regularly is associated with lower levels of overweight and obesity. Breakfast fills you up, meaning you are less likely to experience hunger pangs throughout the day and resort to snacking on high energy, high fat foods.”</td>
</tr>
<tr>
<td>United States⁸</td>
<td>Academy of Nutrition and Dietetics: adult weight management (2014): https://www.anecd.org/vault/pq132.pdf</td>
<td>“The majority of observational research reported that breakfast consumption is associated with a lower BMI and decreased obesity risk, while omitting breakfast is associated with a higher BMI and increased obesity risk. Several studies suggest that cereal-based breakfasts are associated with lower BMI, while breakfasts that are very high in energy are associated with higher BMI.”</td>
</tr>
<tr>
<td>Ireland⁹</td>
<td>Food Safety Authority of Ireland: scientific recommendations for healthy eating guidelines (2011), p58: https://www.fsai.ie/recommendationsforhealthyeatingguidelinesinireland.html</td>
<td>“[When watching weight] Never skip meals; breakfast is especially important.”</td>
</tr>
</tbody>
</table>

BMI=body mass index.

from those who do not in several ways, including socioeconomic status and the adoption of other health related behaviours such as the consumption of a healthy diet. A recent study has challenged the presumption of breakfast and weight control by examining the findings of two randomised controlled trials that showed no effect on weight. ²² Additionally, recent results from several randomised controlled trials do not generally support a beneficial effect of breakfast eating on weight loss. ²³ ²⁴ Recommending regular breakfast consumption could adversely affect weight control by adding calories to diets, especially in older people with established eating behaviours, because past food habits are important predictors of current food habits. ²⁵

Thus, the aims of this review were to examine the evidence from randomised controlled clinical trials of the effect of regular breakfast consumption on weight change (weight loss/weight gain), and daily energy intake in people living in high income countries.

Methods

Our systematic review was reported in accordance with the 2009 PRISMA statement. ²⁶ Our review protocol was registered with PROSPERO in February 2017 (registration number CRD42017057687).

Search strategy

We searched for articles indexed in PubMed, Ovid Medline, and CINAHL that were published between January 1990 and January 2018 (search strategy available in supplementary table 1). The search was limited to adult human studies published in the English language. The reference lists of recent reviews and included studies were screened for additional references. We also searched ClinicalTrials.gov and the World Health Organization’s International Clinical Trials Registry Platform search portal in October 2018 to identify any registered yet unpublished or ongoing randomised controlled trials. In both trials registers, we used only one search term: “breakfast.”

Study selection, inclusion and exclusion criteria

We included randomised controlled trials in adults that compared breakfast consumption with no breakfast consumption or skipping breakfast and included a measure of either self reported or measured body weight gain. ²⁷ ²⁸ There were no limits on the number of times breakfast was skipped. ²⁹ Studies where individuals were instructed to eat a meal that mimicked a breakfast, but without food, were included if they measured weight change and energy intake. ³⁰ ³¹ Studies where healthy lifestyle interventions were compared with control groups in which there was no instruction to eat breakfast were also included if they measured weight change, energy intake, and adherence to the intervention. ³² ³³ ³⁴ ³⁵ Studies were also included if they compared different types of breakfasts, such as cereal, bread, or milk, with either no breakfast or skipping breakfast, and measured weight change and energy intake. ³⁶ ³⁷ ³⁸

Overall

The inclusion criteria were as follows: the study must be a randomised controlled clinical trial; the results must be available in full text; data must be available for at least two study arms, one of which being a breakfast arm and the other being a control arm that does not include breakfast; and the study must have measured weight change and energy intake over at least a 12-week period. Studies that did not meet these criteria were excluded. ³⁹ ⁴⁰ ⁴¹ ⁴² ⁴³
weight or energy intake. Studies had to have reported at least one of these primary outcomes. Owing to the varying nature of breakfast definitions, only studies that defined breakfast according to content or timing were included. We excluded studies if they compared breakfast content without assessing the role of breakfast on weight management, change in weight, or energy intake. Moreover, studies conducted in children or adolescents, or in populations with comorbidities other than overweight or obesity such as diabetes or binge eating disorder, were also excluded. We set a 28 year search limit because eating patterns more than 30 years ago are likely to have changed considerably from patterns in the past few decades, in accordance with natural changes in population dietary patterns. We chose to include studies conducted in high income country settings as defined by the World Bank definition of high income, because dietary habits vary immensely across resource limited settings.

KS did the search while SMH adjudicated. Two authors (KS and YW or HJH) independently screened all titles and abstracts and retrieved the full text of any article considered definitely or possibly eligible. Both authors then reviewed the full text articles against the eligibility criteria. Any disagreement between the two authors was resolved by discussion.

Data extraction
Data on the characteristics of the included studies were extracted independently by pairs of reviewers (KS and YW or HJH), including (1) study design, study population, number of participants, mean age and percentage of female participants; (2) intervention details; (3) energy consumption; (4) outcome measures and weight measurement; and (5) study results for weight loss and energy intake. A third reviewer (SMH or Cate Lombard) including (1) study design, study population, number of participants, mean age and percentage of female participants; (2) intervention details; (3) energy consumption; (4) outcome measures and weight measurement; and (5) study results for weight loss and energy intake. A third reviewer (SMH or Cate Lombard) gave a final judgment if no consensus could be reached. Trials were assessed using Cochrane’s tool for assessing risk of bias in randomised trials.30 The tool includes the following factors.34 All analyses were conducted using the metan methodological or clinical heterogeneity, or other factors, or public involvement, the research question was informed by work with a consumer organisation identifying patient needs in musculoskeletal disease and an audit of consumer with knee and hip pain to identify health beliefs in weight management.37

Risk of bias assessment
Pairs of authors (KS and MJP or MM) independently assessed the risk of bias of each included trial. Any disagreements were discussed between the two authors, and another author (FMC) gave a final judgment if no consensus could be reached. Trials were assessed using Cochrane’s tool for assessing risk of bias in randomised trials.30 The tool includes the following domains: random sequence generation, allocation concealment, binding of participants and personnel, binding of outcome assessment, incomplete outcome data, selective reporting, and other sources of bias. We rated each domain as low risk, unclear risk, or high risk of bias. We classified the overall risk of bias as low if all domains were at low risk of bias, as high if at least one domain was at high risk of bias, or as unclear if at least one domain was at unclear risk of bias and no domain was at high risk. This rule is specified by the Cochrane tool for assessing risk of bias in randomised controlled trials, because any source of bias in a trial is problematic and there is a paucity of empirical research to prioritise one domain over the other.39

Data analysis
Results for all outcomes were expressed as mean differences with 95% confidence intervals, calculated from either end of treatment values or change from baseline values. Across the trials, results for weight were always presented in kilograms, whereas results for total daily energy intake were presented as kilocalories per day, kilojoules per day, or megajoules per day. Where required, we converted means and standard deviations for total daily energy intake into kilocalories per day (kcal/day; 1 kcal=4.18 kJ=0.00418 MJ).

We included several crossover trials that did not present results of a paired analysis, and that did not report correlations between baseline and end of study data, thereby ignoring within-person variation. We reanalysed the data from these studies assuming different correlation coefficients when estimating the standard error of the mean difference, using formulas provided in the Cochrane Handbook for Systematic Reviews of Interventions.31 We included in meta-analyses the results based on the most conservative approach, assuming a correlation coefficient of 0.3, and conducted sensitivity analyses assuming the following correlation coefficients: 0.5, 0.7, and 0.9. For any multiarm trials identified (eg, comparing breakfast A versus breakfast B versus no breakfast), we included each pairwise comparison in the meta-analysis (that is, breakfast A versus no breakfast, and breakfast B versus no breakfast) by dividing the control group sample size in half.

We synthesised estimates of mean difference using a random effects meta-analysis model, based on the assumption that clinical and methodological heterogeneity was likely to exist and to have an effect on the results. We used the DerSimonian and Laird method of moments estimator to estimate the between-study variance, and calculated 95% confidence intervals using the Wald type method.32 Statistical inconsistency was quantified by use of the I² statistic.33 We generated contour enhanced funnel plots to investigate small study effects (the tendency for intervention effects estimated in smaller studies to differ from those estimated in larger studies, which can result from reporting biases, methodological or clinical heterogeneity, or other factors).36 All analyses were conducted using the metan and confunnel packages in Stata version 14.35

Patient and public involvement
Although this research contained no direct patient or public involvement, the research question was informed by work with a consumer organisation identifying patient needs in musculoskeletal disease and an audit of consumer with knee and hip pain to identify health beliefs in weight management.37

Results
Search results
The search of the three electronic databases identified 1868 records with 604 articles remaining after the
removal of duplicates. Of these, 552 articles were excluded after screening titles and then abstracts, because these studies did not meet selection criteria (eg, did not include breakfast intake as an intervention, did not focus on adult participants, or were reviews or conference papers). Of the 52 retrieved articles, 39 studies were excluded after full text review because they were not a randomised controlled trial, weight or energy intake was not measured as an outcome, and the intervention was not breakfast consumption. Thus 13 trials were identified as eligible for inclusion in the review (fig 1).23 24 38-48 From our searches of trials registers, we identified five ongoing trials that are potentially eligible for inclusion in a future update of our review (register numbers NCT03134014, NCT02093572, NCT03257059, NCT03146442, and NCT03031132). Seven trials examined the relation between breakfast consumption or omission and changes in body weight (n=486), and 10 trials examined the effect of breakfast consumption on 24 hour energy intake (n=930).

Characteristics of included trials
The characteristics of the included trials are presented in table 2. Most trials were carried out in the United States24 41 43 44 46 47 and the United Kingdom.23 38-40 42 45 One trial was from Japan.48 Five trials included participants specifically with overweight or obesity23 41 43 46 47; the remaining trials included people with any weight range, including normal body weight, overweight, and obesity.24 38 39 40 42 44 45 46 47 Most of the included participants were community based,23 24 38 40 41 43 45-48 with the exception of two trials that included hospital workers38 42 and one trial that included university students.44

Assessment of intervention: breakfast eating
We saw methodological variations across the trials with regards to the breakfast consumption intervention. Six trials collected data on breakfast consumption by direct monitoring of breakfast intake at laboratory visits,38 40 42-44 47 with the remaining seven studies using self administered intake in the form of seven day food diaries or other recall methods.23 24 38 41 45 46 48 Weight and energy intake were measured objectively at study visits in 11 studies,23 24 38-44 46 47; the remaining two studies measured outcomes through participant self report.45 48 Duration of intervention ranged from two42 to 16 weeks41 when examining the effect on weight.
Table 2 | General characteristics of included studies

| Author (country, year) | Intervention group | Control group | No of participants | No of patients | Age (years; mean (SD)*1) | Baseline participant characteristics | Participants Population (BMI; mean (SD)) | Weight loss in kg, energy intake | Duration of study | Assessment of exposure | Energy intake | Outcome measures |
|------------------------|-------------------|---------------|-------------------|----------------|--------------------------|--------------------------------------|--|-------------------------------------|----------------|-------------------|---------------|----------------|----------------|
| Betts (UK, 2019) | Breakfast arm | rice flakes and semi-skimmed milk | No breakfast arm | 23 (65% female) | 23.4 (7.3) | Healthy, hospital workers (students and staff) | 23.2 (1.6) | 24 | 7 days | Direct visual monitoring | Energy intake | Weight loss in kg, energy intake |
| Chowdhury (UK, 2011) | Breakfast arm | Rice Krispies (Kelloggs) and semi-skimmed milk | No breakfast arm | 23 (65% female) | 22 (3) | Healthy, hospital workers | 23.5 (1.7) | 24 | 7 days | Direct visual monitoring | Energy intake | Weight loss in kg, energy intake |
| Dhurandhar (US, 2014) | Breakfast arm | Oat porridge made with whole milk served with 200 mL of decaffeinated coffee | No breakfast arm | 23 (65% female) | 22 (3) | Healthy obese community dwellers | 23.2 (1.6) | 24 | 7 days | Direct visual monitoring | Energy intake | Weight loss in kg, energy intake |
| Geliebter (US, 2014) | Breakfast arm | bran cereal between 7 and 8 am, and a chocolate covered cookie between 10 30 and 11 am. | No breakfast arm | 23 (65% female) | 22 (3) | Healthy, hospital workers | 23.5 (1.7) | 24 | 7 days | Direct visual monitoring | Energy intake | Weight loss in kg, energy intake |
| Farshchi (UK, 2005) | Breakfast arm | bran cereal between 7 and 8 am, and a chocolate covered cookie between 10 30 and 11 am. | No breakfast arm | 23 (65% female) | 22 (3) | Healthy, hospital workers | 23.5 (1.7) | 24 | 7 days | Direct visual monitoring | Energy intake | Weight loss in kg, energy intake |
| LeCheminant (US, 2017) | Breakfast arm | bran cereal between 7 and 8 am, and a chocolate covered cookie between 10 30 and 11 am. | No breakfast arm | 23 (65% female) | 22 (3) | Healthy, hospital workers | 23.5 (1.7) | 24 | 7 days | Direct visual monitoring | Energy intake | Weight loss in kg, energy intake |
| Thomas (US, 2015) | Breakfast arm | bran cereal between 7 and 8 am, and a chocolate covered cookie between 10 30 and 11 am. | No breakfast arm | 23 (65% female) | 22 (3) | Healthy, hospital workers | 23.5 (1.7) | 24 | 7 days | Direct visual monitoring | Energy intake | Weight loss in kg, energy intake |

*Unless stated otherwise.
Table 3 | Risk of bias assessment in randomised controlled trials

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Sequence generation</th>
<th>Allocation concealment</th>
<th>Blinding of participants and personnel</th>
<th>Blinding of outcome assessors</th>
<th>Incomplete outcome data</th>
<th>Selective reporting</th>
<th>Other bias</th>
<th>Overall risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astbury 2011</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>High risk</td>
<td>High risk</td>
<td>Not applicable</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Betts 2014</td>
<td>Low risk</td>
<td>Low risk</td>
<td>high risk</td>
<td>High risk</td>
<td>Not applicable</td>
<td>Low risk</td>
<td>Low risk</td>
<td>High risk</td>
</tr>
<tr>
<td>Chowdhury 2016</td>
<td>Low risk</td>
<td>Low risk</td>
<td>High risk</td>
<td>High risk</td>
<td>Not applicable</td>
<td>Low risk</td>
<td>Low risk</td>
<td>High risk</td>
</tr>
<tr>
<td>Clayton 2013</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>High risk</td>
<td>High risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Dhurandhar 2014</td>
<td>Low risk</td>
<td>Low risk</td>
<td>High risk</td>
<td>High risk</td>
<td>Not applicable</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Farshchi 2005</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>High risk</td>
<td>High risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Geliebter 2014</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>High risk</td>
<td>High risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>LeChevremont 2017</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>High risk</td>
<td>High risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Leisman 2013 (study 2)</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>High risk</td>
<td>High risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Reeves 2014</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>High risk</td>
<td>High risk</td>
<td>Not applicable</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Schlundt 1992</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>High risk</td>
<td>High risk</td>
<td>Not applicable</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Thomas 2015</td>
<td>Low risk</td>
<td>Low risk</td>
<td>High risk</td>
<td>High risk</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Yoshimura 2017</td>
<td>Unclear risk</td>
<td>Unclear risk</td>
<td>High risk</td>
<td>High risk</td>
<td>Low risk</td>
<td>Unclear risk</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
</tbody>
</table>
day, 95% confidence interval 66.69 to 445.08). To explore whether cultural differences explained our result, we excluded the study conducted in Japan and examined studies conducted in the UK and US with regard to the effect of breakfast on calorie intake. We found a minor change in the mean difference (244.61 kcal/day, 49.67 to 439.54). One trial could not be included in the meta-analysis of total energy intake because only medians and interquartile ranges were reported; the authors found a higher total energy intake in the breakfast group (median 2516 kcal/day, interquartile range 2363-3324) than in the no breakfast group (2344 kcal/day, 1913-2777) at eight hours’ follow-up. The meta-analysis results for both outcomes were robust in sensitivity analyses assuming different correlation coefficients when estimating the standard error of the mean difference in crossover trials (supplementary table 2).

Discussion

This systematic review of randomised controlled trials examining weight change in adults consuming or skipping breakfast found no evidence to support the notion that breakfast consumption promotes weight loss or that skipping breakfast leads to weight gain. Furthermore, there was evidence to show that breakfast consumption increased total daily energy intake compared with skipping breakfast, with no evidence that skipping breakfast was associated with increased total daily caloric intake. The results were similar when we performed subgroup analyses based on country of origin and baseline body mass index. This review questions the recommendation for breakfast consumption in guidelines aimed at weight loss in adults and has identified a potential concern that the additional calorie intake might actually result in weight gain.

Principal findings

Meta-analysis of the randomised controlled trials did not demonstrate weight loss in participants who consumed breakfast compared with those who did not. Much of the previous support for a positive association between breakfast eating and healthy weight has come from observational studies. However, there are data to suggest that these findings on regular breakfast consumption in observation al studies are reflective of a wider healthy lifestyle, in that individuals who are...
more health conscious and of higher socioeconomic status are more likely to eat breakfast as part of making healthy food choices. This notion is supported in a 2007 cohort study, which noted that participants who consumed breakfast were also more likely to have lower alcohol intake and higher fibre intake. Thus, the discordance between findings from the randomised controlled trials and observational studies are likely to reflect residual confounding by socioeconomic factors and healthy lifestyles and highlight the importance of controlled trials to reduce such confounding.

We also found that total daily energy intake was higher in groups consuming breakfast than in those skipping breakfast, regardless of whether the participants were habitual breakfast consumers or habitual breakfast skippers. Of the nine studies examining calorie intake, four included only habitual breakfast eaters; one included only non-habitual breakfast eaters, three included both, and one included both but examined each separately. The trials in habitual breakfast eaters showed that total daily energy intake was lower in the skipping breakfast phase than in the eating breakfast phase. The three trials of both habitual and non-habitual breakfast eaters found that daily calorie intake was higher in the breakfast eating arm than in the breakfast skipping arm, while the two trials conducted in only non-habitual breakfast eaters found that the breakfast eating group consumed more daily calories than the breakfast skipping group.

It has been hypothesised that the consumption of calories at breakfast could assist in weight loss due to the efficient metabolising of calories early in the day, leading to prevention of overconsumption later in the day. Four of the included studies examined the metabolic rates among the breakfast consumer group and breakfast skipper group and found no significant difference in metabolic rates between the two groups. Two of the studies included in this systematic review examined diet induced thermogenesis. One of the studies, conducted in lean women, found only a small increase in diet induced thermogenesis in the breakfast consumer group (breakfast v non-breakfast, mean 221 (standard deviation 49) kcal/day v 180 (39) kcal/day; P=0.01). However, in the other study conducted in women with obesity, researchers found no difference in diet induced thermogenesis (breakfast v non-breakfast, mean 1221 (standard deviation 261) kcal/day v 949 (709) kcal/day; P=0.3).

Furthermore, a number of the included randomised controlled trials examined a range of hormones involved with appetite regulation and energy balance, including fasting concentrations of leptin, ghrelin, glucagon, adiponectin, glucose, insulin, and HOMA-IR (homeostatic model assessment of insulin resistance). In most trials, the levels of leptin, ghrelin, glucagon, adiponectin, glucose, insulin, and HOMA-IR did not differ significantly between the intervention and control groups. Taken together, the data do not support the assumption that omitting breakfast might lead to overconsumption of calories later in the day. Instead, they suggest that skipping breakfast might be an effective means to reduce total daily energy intake, and that skipping breakfast does not cause greater appetite in the afternoon.

It has been suggested that those who eat breakfast are subsequently more active and therefore have more energy expenditure than those who do not consume breakfast. Five of the included studies reported on whether level of physical activity changed after consuming or not consuming breakfast. Three studies reported no significant difference in physical activity between breakfast consumers and non-breakfast, mean 221 (standard deviation 49) kcal/day; P=0.01). However, in the other study conducted in women with obesity, researchers found no difference in diet induced thermogenesis (breakfast v non-breakfast, mean 1221 (standard deviation 261) kcal/day v 949 (709) kcal/day; P=0.3).

Furthermore, a number of the included randomised controlled trials examined a range of hormones involved with appetite regulation and energy balance, including fasting concentrations of leptin, ghrelin, glucagon, adiponectin, glucose, insulin, and HOMA-IR (homeostatic model assessment of insulin resistance). In most trials, the levels of leptin, ghrelin, glucagon, adiponectin, glucose, insulin, and HOMA-IR did not differ significantly between the intervention and control groups. Taken together, the data do not support the assumption that omitting breakfast might lead to overconsumption of calories later in the day. Instead, they suggest that skipping breakfast might be an effective means to reduce total daily energy intake, and that skipping breakfast does not cause greater appetite in the afternoon.

It has been suggested that those who eat breakfast are subsequently more active and therefore have more energy expenditure than those who do not consume breakfast. Five of the included studies reported on whether level of physical activity changed after consuming or not consuming breakfast. Three studies reported no significant difference in physical activity between breakfast consumers and non-breakfast, mean 221 (standard deviation 49) kcal/day; P=0.01). However, in the other study conducted in women with obesity, researchers found no difference in diet induced thermogenesis (breakfast v non-breakfast, mean 1221 (standard deviation 261) kcal/day v 949 (709) kcal/day; P=0.3).

Furthermore, a number of the included randomised controlled trials examined a range of hormones involved with appetite regulation and energy balance, including fasting concentrations of leptin, ghrelin, glucagon, adiponectin, glucose, insulin, and HOMA-IR (homeostatic model assessment of insulin resistance). In most trials, the levels of leptin, ghrelin, glucagon, adiponectin, glucose, insulin, and HOMA-IR did not differ significantly between the intervention and control groups. Taken together, the data do not support the assumption that omitting breakfast might lead to overconsumption of calories later in the day. Instead, they suggest that skipping breakfast might be an effective means to reduce total daily energy intake, and that skipping breakfast does not cause greater appetite in the afternoon.

It has been suggested that those who eat breakfast are subsequently more active and therefore have more energy expenditure than those who do not consume breakfast. Five of the included studies reported on whether level of physical activity changed after consuming or not consuming breakfast. Three studies reported no significant difference in physical activity between breakfast consumers and non-breakfast, mean 221 (standard deviation 49) kcal/day; P=0.01). However, in the other study conducted in women with obesity, researchers found no difference in diet induced thermogenesis (breakfast v non-breakfast, mean 1221 (standard deviation 261) kcal/day v 949 (709) kcal/day; P=0.3).
breakfast non-consumers. Two studies found that breakfast consumption was associated with increased physical activity, particularly during the morning. However, total thermogenesis from daily physical activity was not significantly higher in breakfast consumers than in breakfast non-consumers.

Quality of evidence
We consider the quality of the body of evidence to be low for several reasons. All of the included trials were at high or unclear risk of bias in at least one risk of bias domain and had only short term follow-up; more conclusive results could be drawn from more rigorously conducted trials. We also saw substantial heterogeneity among the trial results for energy intake. This heterogeneity could in part reflect the different populations being examined. For example, the patient populations examined varied from community based populations to hospital workers and students. We focused on high income countries, because dietary habits vary immensely among resource limited settings. However, as obesity is increasingly identified as a public health issue in low and middle income countries, it will be important to examine the effect of breakfast consumption in these populations to determine whether it differs in settings where malnutrition might coexist with overnutrition.

Most of the trials included in this systematic review were conducted in the UK or in the US. These populations might differ from those in other high income countries such as Argentina, South Korea, or Saudi Arabia, which do not necessarily follow the same western dietary patterns. However, in this meta-analysis, the types of breakfasts varied across the included studies and tended to focus on healthy options. Thus, although no studies have been performed in other populations, it is likely that if breakfast were to be added to the routine of those individuals who are not habitual breakfast consumers, the results would be similar.

Limitations
This review had several limitations. Firstly, our search strategy could have omitted abstracts that did not state weight or energy intake as an included outcome. This omission could have affected the number of studies included in the analysis, because researchers might have chosen not to report these results owing to the findings being non-significant. Furthermore, the trials included in this review lasted from 24 hours to 16 weeks. Although the difference in calorie intake between breakfast consumers and breakfast skippers was about 260 kcal/day, which could lead to increases in body weight over time, these timeframes make it difficult to draw conclusions about energy intake and change in weight. Longer duration studies are needed to investigate the long term effect of adding or omitting breakfast. In addition, we had to impute missing standard errors of the mean difference for all crossover trials, because paired analyses were not available in any of the included papers. However, results were robust in sensitivity analyses imputing different standard errors.

Conclusions and future implications
As the quality of the included studies was mostly low, the findings should be interpreted with caution. Currently, the available evidence does not support modification of diets in adults to include the consumption of breakfast as a good strategy to lose weight. We also found that overall, modifying diets to include breakfast consumption was associated with an increase in total daily calories. While breakfast has been advocated as the most important meal of the day in the media since 1917, there is a paucity of evidence to support breakfast consumption as a strategy to achieve weight loss, including in adults with overweight or obesity. Although eating breakfast regularly could have other important effects, such as improved concentration and attentiveness levels in childhood, caution is needed when recommending breakfast for weight loss in adults, as it could have the opposite effect. Further high quality randomised controlled trials are needed to substantiate whether those individuals seeking to lose weight should skip or consume breakfast and the role of breakfast eating in an overall weight management approach.

We thank our colleague, the late Cate Lombard (Monash Centre for Health Research and Implementation, Monash University Department of Nutrition and Dietetics), who provided her insights and expertise to this manuscript, which greatly assisted the research. Personal disclosures: KS and FMC do not consume breakfast; HJH eats breakfast occasionally; and SMH, MJP, YW, and MM eat breakfast daily. Contributors: KS and SMH share joint first authorship. FMC and CL were involved in designing the study. KS and SMH were involved in searching the database. KS and CL screened citations for inclusion. KS, MJP, and MM were involved in risk of bias analysis. KS, YW, and HJH were involved in extracting data and interpretation. MJP analysed the data. KS, FC, MJP and SMH drafted the manuscript. FMC is study lead.
guarantor. All authors reviewed the final manuscript and agreed to be accountable for all aspects of the work and approved the final manuscript for submission. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Funding: This study did not receive any specific funding. SMH is supported by an early career fellowship from the National Health and Medical Research Council (NHMRC; No 1142198); YW is the recipient of NHMRC career development fellowships (clinical level 1, No 1065464); MPJ is a recipient of an NHMRC early career fellowship (No 1088535).

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Ethical approval: Not required.

Data sharing: The data and statistical analysis code for this paper are available on the Open Science Framework: https://osf.io/sqgr9/.

FMC affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

12 de Castro JM. When, how much and what foods are eaten are related to total daily food intake. Br J Nutr 2009;102:1228-37. doi:10.1017/S0007114509931640

43 Geliebter A, Astbury NM, Aviram-Friedman R, Yahav E, Hashim S. Skipping breakfast leads to weight loss but also elevated cholesterol compared with consuming daily breakfasts of oat porridge or frosted cornflakes in overweight individuals: a randomised controlled trial. *J Nutr Sci* 2014;3:e56. doi:10.1017/jns.2014.51

45 Reeves S, Huber JW, Halsey LG, Horabady-Farahani Y, Ijadi M, Smith T. Experimental manipulation of breakfast in normal and overweight/obese participants is associated with changes to nutrient and energy intake consumption patterns. *Physiol Behav* 2014;133:130-5. doi:10.1016/j.physbeh.2014.05.015

Web appendix: Supplementary material

Infographic: Visual summary of trial and participant characteristics