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Sparse data bias: a problem hiding in plain sight
Sander Greenland,1 Mohammad Ali Mansournia,2 Douglas G Altman3 

Effects of treatment or other exposure 
on outcome events are commonly 
measured by ratios of risks, rates, or 
odds. Adjusted versions of these 
measures are usually estimated by 
maximum likelihood regression (eg, 
logistic, Poisson, or Cox modelling). But 
resulting estimates of effect measures 
can have serious bias when the data 
lack adequate case numbers for some 
combination of exposure and outcome 
levels. This bias can occur even in quite 
large datasets and is hence often 
termed sparse data bias. The bias can 
arise or be worsened by regression 
adjustment for potentially confounding 
variables; in the extreme, the resulting 
estimates could be impossibly huge or 
even infinite values that are 
meaningless artefacts of data sparsity. 
Such estimate inflation might be 
obvious in light of background 
information, but is rarely noted let alone 
accounted for in research reports. We 
outline simple methods for detecting 
and dealing with the problem focusing 

especially on penalised estimation, 
which can be easily performed with 
common software packages.
Ratio measures such as odds ratios, rate ratios, and risk 
ratios are commonly used to quantify the effect of a 
treatment or other factor on an event outcome. Adjusted 
versions of these measures are usually estimated by 
maximum likelihood regression (eg, logistic regression 
for odds ratios, Poisson regression, or Cox regression 
for rate ratios). These methods assume that the number 
of events observed is sufficient at all treatment levels to 
result in well behaved adjusted estimates. Unfortu-
nately, when the data lack adequate case numbers for 
some combination of risk factor and outcome levels, the 
resulting estimates of the regression coefficients can 
have bias away from the null (downward when the esti-
mate is below 1, upward when it is above 1).

This bias is sometimes called a “small sample bias” 
but in fact can occur in quite large datasets and thus is 
better termed sparse data bias.1 The problem is wors-
ened by the fact that estimated ratios are found by tak-
ing the antilogs (exponentiation) of the coefficients, 
which adds a further upward bias. The consequences 
can be quite serious when one is trying gauge the size 
of the effects under study after regression adjustment 
for potentially confounding variables, and could be 
worse than the bias removed by the adjustment. In the 
extreme, the resulting ratio estimates could be impos-
sibly huge or even take on infinite values that are 
meaningless artefacts of failure of the program to con-
verge. Such estimate inflation may be obvious in light 
of background information, but is rarely noted let alone 
accounted for in research reports. We outline simple 
methods for detecting and dealing with the problem.

Preliminary checks for sparse data bias
Data sparsity is usually unrecognised when the total 
sample size is large, as evidenced by the fact that 
authors and discussants rarely comment on the plausi-
bility of huge estimates. As an extreme example, one 
case-control study reported unadjusted odds ratios 
(95% confidence intervals) for the association of ever 
smoked, cemented arthroplasty, and general anaesthe-
sia with intensive care unit admission after total joint 
arthroplasty of 10.63 (5.58 to 20.26), 1.02 (0.63 to 1.64), 
4.49 (2.44 to 8.26), respectively.2 After logistic regres-
sion involving 12 explanatory variables and 120 out-
come events (cases), these odds ratios (95% confidence 
interval) were 65.13 (6.31 to 672.09), 55.75 (1.64 to 
1893.70), and 45.22 (1.10 to 1851.81), respectively. The 
smoking relation is especially implausible, and 
 provides a warning that the increase in estimates after 
adjustment is likely to reflect sparse data bias rather 
than removal of confounding.

Summary PointS
Maximum likelihood estimates (MLEs) of odds ratios, rate ratios, and risk ratios 
can have considerable upward bias when there are few or no study participants 
at key combinations of the outcome, exposure, and covariates, often known as 
sparse data bias
The hallmark sign of sparse data bias in multivariable analysis is that the model 
coefficients estimates get further and further from the null as more variables are 
used for stratification or added to the regression model
Factors contributing to sparse data bias include low event per variable (EPV), 
categorical covariates with very low or high prevalence, and narrowly distributed 
continuous predictors
Several rules based on EPV have been proposed to detect or avoid sparse data bias. 
The most direct approach however is to apply a method that removes or limits sparse 
data bias. We illustrate the use of bias adjustments and penalised estimation for that 
purpose. Penalisation can be easily performed with common software packages
Penalisation is a form of shrinkage estimation, in which external (or prior) 
information is used to improve accuracy over repeated studies. In this goal it differs 
from Bayesian analyses
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Such examples illustrate how extreme instances of 
sparse data bias might be spotted in published reports: 
the results are far out of line with sensible expectations. 
More effort is required to spot less dramatic bias. For 
example, one well known case-control study reported an 
odds ratio of 15.92 (95% confidence interval 1.38 to 184.13) 
for the association between phenylpropanolamine use 
and stroke, calculated from a conditional logistic regres-
sion with four covariates but only one exposed non-
case.3 The unadjusted odds ratio was 11.85 (the odds ratio 
adjusted for the matching factors only was not given, but 
it can be derived as 12 based on the reported numbers). 
Given the indications for phenylpropanolamine use, 
however, we should expect higher background risk for 
those who use suppressants, in which case the estimates 
should have become lower on further risk adjustment. 
Instead an increase was seen, suggesting worsened bias 
due to the regression adjustment.

To detect problems before embarking on our own 
analyses, it is useful to examine basic data for features 
leading to the bias. The following features (which are 
themselves intertwined) contribute to sparse data bias 
in maximum likelihood regression analyses of disease 
outcomes:

•	 Few outcome events per variable (EPV), as measured 
by the number of failures per variable for Cox propor-
tional hazards and Poisson regression, and the mini-
mum of the numbers of cases and non-cases per 
variable for logistic regression (for conditional logis-
tic regression, only the numbers within discordant 
matched sets should be counted)

•	 Variables with narrow distributions or with catego-
ries that are very uncommon

•	 Variables that together almost perfectly predict the 
outcome (eg, if a combination of discrete covariate 
levels is found only among the study participants 
with outcome)

•	 Variables that together almost perfectly predict the 
exposure (eg, if a combination of discrete covariate 
levels is found only among the study participants 
who are exposed).

Most modelling guidelines are based on EPV; for 
example, some authors recommend an EPV of at least 
10 for developing prediction models,4 5  while others rec-
ommend at least five EPV if the model is only being 
used for confounding adjustment.6 Although such 
guidelines are useful, they are not infallible and thus 
we recommend more direct checking as well.

The simplest supplementary diagnostic method for 
sparse data problems is detailed tabular examination of 
the basic data, including unadjusted and simple strati-
fied estimates. This basic format also allows one to 
quickly see the effect of small data changes and of simple 
bias reduction methods. Consider a case-control study of 
childhood leukaemia in the vicinity of nuclear reprocess-
ing.7 Table 1 shows the cross tabulation of the data based 
on the outcome (1: leukaemia, 0: local controls) and 
paternal exposure (1: ≥100 mSv, 0: <100 mSv). There was 
only one unexposed case and one exposed non-case. The 
unadjusted rate ratio estimate from these data is the 

 sample odds ratio (3×19)÷(1×1)=57, which appears 
severely inflated based on what is reasonable to expect 
given what is known about leukaemia risk factors.

Suspicions that the odds ratio of 57 is an artefact of the 
small numbers are reinforced by noting that by reclassi-
fying one of the three exposed cases as unexposed, the 
estimate drops by two thirds to (2×19)÷(2×1)=19. One 
method for bias reduction adds 1 to each denominator 
count cell;8 in doing so, the estimate drops by three quar-
ters to (3×19)÷(2×2)=14.25. These checks corroborate 
background information indicating that the original esti-
mate of 57 must be a gross exaggeration relative to any 
real effect.

Beyond these basic numerical checks, we recom-
mend direct comparison of the ordinary estimates 
against estimates more robust to the bias, which we 
describe below.

traditional solutions
The analysis plan should set forth a priori the variables 
that are to be considered potential confounders and 
thus subject to adjustment (for example, using causal 
diagrams9), and try to adjust for these variables if they 
meet prespecified importance criteria. Nonetheless, on 
stratification to adjust for confounders, sparse data 
artefacts become even more severe, with an increased 
risk of zero cells leading to infinite or undefined esti-
mates. As a consequence, most analyses turn to model 
based adjustment, in which problems of sparse data are 
often hidden.

Suppose, however, that an analyst has checked and 
determined that ordinary regression analysis cannot 
support inclusion of all the available variables—for 
example, because the data appear too sparse using the 
aforementioned checks. The usual response would be 
to remove some variables from the model based on sig-
nificance testing. Unfortunately, such test based selec-
tion of variables can easily worsen bias in effect 
estimates because it may drop important confound-
ers.10 11  Also, if (as usual) no accounting is made for the 
variable selection, the final P values will be too small 
and confidence intervals will be too narrow for the coef-
ficients of the remaining variables (table 2 ).12 13  These 
problems worsen as the P value cutoff point for selec-
tion (the selection α level) becomes smaller, leading 
some authors to advise using high P value cutoff points, 
as high as 0.20.14 15

Other authors have advised using exact logistic 
regression to avoid sparse data bias and related 
 problems.16  Although such analyses can provide a use-
ful perspective on other results, for the situations of 
 concern here (regression with discrete outcomes and 
multiple confounders), exact P values tend to be too 

Table 1 | Paternal radiation exposure (≥100 mSvv<100 
mSv) and childhood leukaemia

Exposure 
≥100 mSv

Childhood leukaemia
TotalYes No

Yes 3 1 4
No 1 19 20
Total 4 20 24
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large and exact confidence intervals tend to be unneces-
sarily wide (conservative),17 thus understating the infor-
mation provided by the data and potentially misleading 
the analyst and reader. Additionally, they are computa-
tionally intensive to the point that they cannot handle 
very large datasets or very large numbers of covariates, 
which are precisely the situations under which sparse 
data bias is most likely to go unnoticed.

As illustrated earlier, conventional bias reduction 
methods for tabular data add small numbers to cell 
counts, which can be thought of as pseudodata convey-
ing information that the true association is probably 
smaller than what was observed. A common traditional 
choice (which reduces bias on the log-ratio scale) adds 
½ to each cell, which in the leukaemia example yields 
an odds ratio estimate of (3.5×19.5)÷(1.5×1.5)=30.3. For 
regression analysis, one generalisation of adding ½ to 
each cell is the Firth bias adjustment,18  which is a form 
of penalised estimation available as the option FIRTH 
in SAS and the command firthlogit in Stata.19 20  
Although less biased than the usual (maximum likeli-
hood) estimate, these methods impose certain implau-
sible background assumptions on the model coefficients 
and could leave unacceptably large bias in ratio esti-
mates.21-23 These problems can be avoided by other 
types of penalisation, as discussed next.

Penalisation: diagnostic tool for and solution to sparse 
data bias
Ordinary estimation methods can be modified to make 
them more resistant to sparse data bias even if all vari-
ables are left in the model. This can be done with  common 
statistical software by adding artificial data records that 
penalise (shrink) coefficient estimates in proportion to 
their size, thus incorporating background information 
that the true effects are not extreme.19 20 This penalisation 
arguably produces the best estimates available given that 
background information. A basic diagnostic method for 
regression results is to repeat the analysis using mild 
penalisation; important changes warn of serious bias in 
the original (unpenalised) estimates.

Penalisation is mathematically identical to what is 
known as Bayesian analysis. Although its goal differs 
insofar as it is oriented toward improving the calibration 
(frequency) properties of the resulting statistics, its Bayes-
ian interpretation guides the degree of penalisation based 

on background information. Considering the leukaemia 
example, the conventional odds ratio of 57 can be viewed 
as a result of the following assumption: before seeing the 
data, we had no idea what to expect and would not have 
been surprised if paternal exposure was a sufficient pro-
tectant (exposed children never get leukaemia, corre-
sponding to causal rate ratios below 10−6), or a sufficient 
cause (exposed children always get leukaemia, corre-
sponding to causal rate ratios over 106). This assumption 
is absurd, and thus huge effect estimates should be taken 
as signalling huge error rather than huge effects.

To reduce (shrink) huge estimates, one may begin by 
specifying an interval which encodes the idea that the 
true effect is not huge. For example, presumably every-
one would be almost sure that the causal rate ratio falls 
between 1/40 and 40. If it was below 1/40, paternal 
exposure would be a near-perfect protectant; but if it 
was over 40, there probably would have been a massive 
leukaemia outbreak among the exposed people. Thus it 
would be uncontroversial to say we are at least 95% cer-
tain the true value is between 1/40 and 40. The interval 
of 1/40 to 40 would then become a conservative 95% 
prior interval for the effect, where “conservative” means 
that the 95% is a minimum certainty and “prior” means 
the limits were derived from background information 
rather than the study data.

There are many ways this prior interval can be incor-
porated into the analysis, some of which are quite com-
plex, but all tend to produce qualitatively similar 
estimates. We thus focus on the data augmentation 
method, which translates prior intervals into simple 
prior data (pseudodata) that are added to the actual 
data; details and SAS and Stata code can be found else-
where.19 20 Briefly, instead of adding pseudorecords 
directly to cell counts, data augmentation treats them 
as distinct data records which, if analysed by proper 
methods, would reproduce the prior interval for each 
variable as a confidence interval. Appending this prior 
data set to the actual data thus incorporates the infor-
mation contained in the prior intervals, pulling extreme 
estimates into a more reasonable range.

Figure 1  illustrates penalisation using data augmen-
tation in the leukaemia example. To allow easy exten-
sion to regression analysis, instead of adding 1 to each 
count in the odds ratio denominator, augmentation can 
be done by adding a pair of artificial patient records 

Table 2 | Advantages and disadvantages of approaches to sparse data bias
Approach Advantages Disadvantages
Stepwise variable selection procedures Simple and available in almost all statistical software Inflated estimates, confidence intervals too narrow, and P 

values too small for the selected variables; can severely bias 
effect estimates because it may drop important confounders

Exact statistical methods (eg, exact logistic 
regression)

No sample size requirement Computationally intensive, especially with large sample sizes 
or many covariates; not available or feasible for all models or 
measures (eg, risk differences, risk ratios); P values too large 
and confidence intervals too wide

Exposure or treatment modelling (eg, 
propensity scoring, inverse-probability-of-
treatment weighting)

Can be more accurate than outcome modelling in cohort 
studies if the exposure or treatment is common but the 
outcome is rare

Can be less accurate than outcome modelling, especially if 
the outcome is more common than the exposure or the 
exposure is well predicted by variables in the score; prone to 
statistical artefacts in case-control studies

Penalisation Produces the most accurate estimates given the 
information in the penalty; data augmentation version is 
simple and feasible in all statistical software; can be used 
as a diagnostic tool for sparse data bias

The penalty factor must be determined by the research team 
based on background information (Firth adjustment does not 
require this but is not the most accurate form of penalisation)
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representing one exposed case and one exposed 
 non-case, which have all other variables set to zero 
 (including the regression “constant” variable).19 20 This 
pair of records encodes a 95% prior odds ratio interval 
of exactly 1/39 to 39 (derivable from an F(2,2) prior dis-
tribution for the odds ratio). The overwhelming major-
ity of effects subject to epidemiological study fall well 
within this range, and in the present example this inter-
val extends far beyond what background information 
suggests as reasonable for the true ratio effect. When 
the records are appended to the leukaemia data and the 
new augmented dataset is analysed with logistic 

 regression, the resulting penalised estimate is 11.57—far 
more consistent with background information than the 
original estimate of 57 or the Firth estimate of 30.33.

For variables whose effects can be very large (ratios 
below 1/40 or above 40) a weaker penalisation may be 
used. For example, if the program allows weighting of 
data records (as do SAS and Stata), then setting all the 
actual data records to weight 1 while down weighting 
the augmenting records to ½ encodes the 95% prior 
interval of 1/648 to 648. In the leukaemia example, this 
penalty produces an estimate of 22.22. Table 3 provides 
correspondences between simple weighting factors 
w and prior 95% intervals for the odds ratio (based on 
an F(2w,2w) prior distribution).24 25

However, we caution that including variables with 
actual effects far beyond the ratio range of 1/40 to 40 can 
disrupt typical fitting methods by creating very sparse 
data in certain categories; thus such effects are better con-
trolled using restriction or matching rather than model-
ling.26  On the other hand, for variables whose effects are 
known to be weak, a stronger penalisation can be used by 
increasing the weight of the augmenting records. For 
example, using a weight of 4.5 for both records corre-
sponds to a 95% prior interval of ¼ to 4 for the ratio,19 20 
and in the example produces an estimate of 2.40.

Penalisation by data augmentation is also easily per-
formed for multiple regression analyses. Each variable 
in the regression can be given its own data with its own 
weight determined by background (contextual) 
 information. If desired, some variables may be left unpe-
nalised by adding no record for those variables; this 
treatment may be the simplest course for variables 
whose effects are incontrovertibly large (typically age, 
sex, and (for oral and respiratory disease studies) smok-
ing). Detailed descriptions of penalised regression are 
available along with SAS and Stata software,19 20 and an 
R procedure is provided in the web appendix.

interval estimates and P values
In addition to inflating estimates, data sparsity also 
invalidates the usual method for computing confidence 

Penalty functions and prior distributions for regression coe�cients can be incorporated into the 
analysis using data augmentation. Data equivalent to the penalty function or prior distribution 
(prior data) are constructed and appended to the actual study data, a�er which conventional 
maximum likelihood regression is performed on the augmented (actual+prior) data. We illustrate 
this method using the data in table 1.

The lead variable, G, is an indicator that is 1 for data records representing genuine (actual) 
observations. Consider the logistic model in which probability of disease (Y=1) depends on 
exposure via the equation:
 
     logit(π) = β0 + β1X 

where logit(π) is the natural logarithm of the odds π÷(1−π) and the odds ratio relating exposure to 
disease is exp(β1). Fitting the model to these data  yields the estimated odds ratio of 57 (95% Wald 
con�dence interval: 2.76 to 1177; 95% pro�le-likelihood interval: 3.90 to 2392). We can, however, 
get identical results by �tting the model:
 
     logit(π) = β0G + β1X
 
using the option to prevent the program from automatically adding the intercept β0 (eg, via the 
NOINT option in SAS, the noconstant option in Stata, or adding “-1” in the model formula in R).

A penalised analysis using a F(2,2) prior distribution for the odds ratio (which implies a prior odds 
ratio interval of 1/39 to 39) can be done by adding a pair of pseudo-records representing one 
exposed case (X=1, Y=1) and one exposed non-case (X=1, Y=0), with G=0 in both records to 
indicate they are not genuine observations:

Fitting the model logit(π) = β0G + β1X to the augmented data (making sure the program does not 
add an intercept) produces an estimated odds ratio of 11.57 (95% Wald interval 1.24 to 108; 95% 
pro�le likelihood interval 1.46 to 146).

For regressions involving multiple variables, any variable can be given its own pair of penalising 
pseudo-records (although it is not necessary to do so; eg, one might not penalise estimates for age 
and sex e¥ects). In this pair, the entries for the variable represented by the pair should be set to 1, 
with Y=1 in one record and Y=0 in the other. All other variables in the pseudo records should be set 
to zero—even variables that cannot be zero in actual data, such as blood pressure. The total of the 
frequency weight for the pair is the degrees of freedom M for the F(M,M) prior distribution for the 
odds ratio that the pair represents, with larger M corresponding to narrower distributions.
 
The above method assumes that a 1 unit change in the variable X is a sensible degree of change for 
the variable. For an indicator (0,1) variable this requirement is automatically satis�ed, but for 
quantities one may need to change units. For example, blood pressure is ordinarily measured in 
mm, but 1 mm is too small a unit to be meaningful, so we would advise switching to cm by dividing 
the original variable by 10. Such rescaling will also help with coe�cient interpretation.
 
The prior data method can be extended to impose normal, skewed or non-null centred priors,24,25 
and can be applied to other regression models including conditional logistic, Poisson, and Cox 
proportional hazards regression.19

1
1
1
1

Exposure (X)

1
1
0
0

Disease (Y)

1
0
1
0

Frequency weight

3
1
1

19

Genuine (G)

1
1
1
1
0
0

Exposure (X)

1
1
0
0
1
1

Disease (Y)

1
0
1
0
1
0

Frequency weight

3
1
1

19
1
1

Genuine (G)

Fig 1 | Penalisation using data augmentation

Table 3 | Weight w for prior record to impose indicated 
95% prior limits to 3 digit accuracy*
Prior 95% limits for odds ratio Weight w
1⁄50 to 50 0.918
1⁄40 to 40 0.991
1⁄32 to 32 1.08
1⁄25 to 25 1.19
1⁄20 to 20 1.32
1⁄16 to 16 1.47
1⁄10 to 10 1.95
⅛ to 8 2.28
1⁄5 to 5 3.50
¼ to 4 4.54
⅓ to 3 6.92
½ to 2 16.6
⅔ to 3⁄2 47.3
3⁄4 to 4⁄3 93.4
4⁄5 to 5⁄4 155
5⁄6 to 6⁄5 232
*Based on F(2w,2w) prior distribution for odds ratio.
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intervals (called the Wald method) in which the 95% 
confidence interval for the ratio is found from the esti-
mated log rate ratio or regression coefficient b and its 
standard error s as eb±1.96s, which assumes the estimate 
b comes from a normal (Gaussian) distribution. In the 
leukaemia example, b is ln(57)=4.043 with s=1.545, so 
the 95% Wald interval is e4.043±1.96(1.545)=2.76 to 1177. When 
instead we compute the interval using the much more 
accurate profile likelihood method (available in R using 
the confint(fit) option), we obtain an interval of 3.90 to 
2392; the pllf command in Stata gives 3.90 to 2391 and 
the <clodds=pl> option in the model statement in SAS 
gives 3.90 to “>999.999.” Similarly, penalised likelihood 
gives b as ln(11.57)=2.448 with s=1.140 so the 95% Wald 
interval is e2.448±1.96(1.140)=1.24 to 108, whereas the profile 
likelihood interval is 1.46 to 146. Wald P values 
( computed from the Z score b/s) will also be distorted by 
data sparsity. We thus strongly advise using profile like-
lihood intervals and P values if there is any concern 
about sample size or sparsity, as in the above examples.

Degree of penalisation: relation of penalisation to 
Bayesian methods
We recommend setting the prior 95% interval to encom-
pass every remotely reasonable possibility for the 
actual size of the ratio being estimated in light of previ-
ous studies. An acceptable prior interval would thus 
have the property that readers from the research com-
munity would assign at least 95% probability to the true 
ratio being in the interval—even though they might 

 differ considerably about which values within the inter-
val are probable or improbable, and would not be in 
conflict with any available estimate. The goals of this 
requirement are to avoid controversy about the penalty 
and to allay concerns that its use will meaningfully bias 
the final results.

The second goal can be recast as stating that the pri-
mary purpose of penalisation is to improve the calibra-
tion of statistical results, in the conventional frequentist 
sense of providing more accuracy on average across 
studies. We thus depart from some Bayesian teaching 
and practice in which the goal is to form inferences (pos-
terior distributions) that represent a combination of data 
evidence with the opinions of available experts as sum-
marised in a prior distribution. We particularly disfavour 
exclusive reliance on opinion based prior intervals for 
effects, since expert opinion often appears biased, over-
confident (overly precise), or otherwise misinformed 
when critically evaluated against actual studies.

The prior interval we recommend represents instead 
the broadest possible consensus, taking into account 
possibly conflicting and biased literature as well as 
expert opinions about that literature. This means, for 
example, that justification for a narrow interval will 
require critical examination of meta-analyses, since 
those studies incorporate many biases of their own 
(including the biases in their constituent studies). 
Thus, although penalisation does make use of back-
ground information (as all good modelling should), one 
should not regard penalisation as a solely Bayesian 
method. The sparse data problem it addresses arises in 
conventional frequentist analyses, and frequentists 
may use their background knowledge and common 
sense to spot and address the problem.

More generally, penalisation is a type of shrinkage 
estimation, in which the goal is to use external informa-
tion to produce estimators that have better calibration 
(better accuracy on average over repeated studies) than 
do traditional estimators (box 1). Other shrinkage meth-
ods similar or mathematically identical to penalisation 
include Stein, empirical Bayes, and partial Bayes (semi-
Bayes) estimation, as well as random coefficient regres-
sion and ridge regression. These are all legitimate 
frequentist methods, and none requires the elaborate 
computing machinery (such as Markov chain Monte 
Carlo) demanded by many strict Bayesians.

Discussion and recommendations
Although we have focused on effect estimation, penali-
sation can also be used to improve the accuracy of risk 
prediction, and is thus worthwhile even when model 
coefficients are not of direct interest.27-29 Penalised pre-
diction is however often conducted using what are 
known as lasso penalties, which we do not advise when 
causal effects are the target because they may delete 
important confounders from the regression, thus add-
ing another source of bias.

There are several strategies to avoid or minimise sparse 
data bias. For example, propensity scoring or other expo-
sure or treatment modelling methods are sometimes 
advised, along with (or instead of) outcome modelling to 

Box 1: Glossary
•	Maximum likelihood regression: a regression model (such as logistic regression, 

Poisson regression, and Cox regression) whose coefficients are estimated by 
maximising the likelihood function (the probability of observed data, expressed as 
the function of the unknown model coefficients).

•	Sparse data bias: the bias in estimates when the data lack adequate numbers of 
observations for some combination of risk factor and outcome levels, which may 
arise even if the total sample size appears large.

•	Events per variable (EPV): a rough measure of the effective sample size for 
estimating coefficients in the regression model. The number of failures per variable 
for Cox proportional hazards and Poisson regression, and the minimum of the 
numbers of cases and non-cases per variable for logistic regression.

•	Exact logistic regression: logistic regression in which the coefficients are estimated by 
exact sampling distributions rather than approximations as in maximum 
likelihood. The exact 95% confidence intervals resulting from this method are only 
exact in that they are derived from exact P values; they may be excessively wide 
and as a result cover the true coefficient much more than 95% of the time.

•	Stepwise selection procedures: a variable selection algorithm that adds or deletes 
explanatory variables from the regression model based on statistical significance. 
Produces highly distorted estimates and tests.

•	Penalisation: the methods which add a penalty (adjustment) factor to the original 
likelihood of the actual data and shrink the final estimates away from the original 
estimates towards the values specified in the penalty factor. They reduce the mean 
squared error (= bias2 + variance) of the estimates whenever they reduce variance 
more than they increase bias or whenever they reduce bias. A type of shrinkage 
estimation method.

•	Firth bias adjustment: a type of penalisation based on the data which reduces the bias 
of maximum likelihood coefficient estimates but does not use background information.

•	Penalisation via data augmentation: a method for computing penalised estimates in 
which the data equivalent to the penalty is constructed and added to the actual 
study data, and then conventional analysis is done on the augmented data.
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control confounding.26  Unfortunately, serious complica-
tions can arise from propensity scoring in case-control 
studies,30  and even cohort studies can have severe prob-
lems with propensity score matching.31 We thus recom-
mend matching directly on strong risk factors to reduce 
reliance on modelling to remove confounding by such 
factors. Nonetheless, after matching there might still be 
small numbers of cases or non-cases at different exposure 
or treatment levels, leading to sparse data bias. Fortu-
nately, penalised regression can be applied to matched 
samples both to reduce sparse data bias while achieving 
finer confounding adjustments, and to study variation in 
effect measures (interactions) across subgroups.

It is easy to spot extreme real examples of sparse data 
bias, but the literature suggests that less dramatic 
examples are common and unnoticed. For example, 
some studies report subgroup effect estimates that, 
although not implausible, nonetheless increase in size 
for smaller subgroups which are then singled out as 
being of possible special risk, even though the increase 
is as easily explained by increased bias or random error 
due to the reduced numbers in those groups.

We thus strongly recommend that basic data num-
bers within treatment or exposure and outcome catego-
ries be examined and presented, and that adjustment 
methods such as penalisation be applied whenever the 
numbers of events per covariate fall below four or five.

The weighting (degree of penalisation) for each vari-
able is best determined so that the implied prior inter-
val encompasses the full range of reasonable 
possibilities for the effect of the variable. Table 3 facili-
tates conversion of this range to a weight, but determin-
ing the range will require contextual (subject matter) 
input about what is reasonable. We believe this input is 
a strength of the approach. If there is any ambiguity or 
doubt about the range to choose, we advise one to err 
on the side of wider prior intervals and thus weaker 
penalties, because such errors of caution will not 
reduce the coverage rates of the interval estimates.

As a final, technical point, we note that what we have 
termed “sparse data bias” in logistic regression is closely 
related to a problem sometimes called non-collapsibility 
of odds ratios. For reviews of this problem and its rela-
tion to confounding (with which it is often confused) 
and confounder adjustments, see references 32  and 33.
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