Clinical review

Other treatment modalities

Recent studies using maternal intravenous immu-
oglobulin have shown some benefit in severe cases of
RhD incompatibility.28 The mechanism of action is
still not well understood but may entail downstream
regulation of the maternal immune response, placental
antigenic blockade, or antigenic blockade at the level of the fetal
circulo-endothelial system. Whatever the mechanism,
it is not uniformly effective in inhibiting haemolysis, but
when it does, serum bilirubin concentrations fall. This
therapy modality is appropriate only in selected cases—for example, very early disease. It may prolong the
time interval before the first intratertiary treatment is
required. Immunisation to paternal leucocytes in an
animal model has been described and has been shown to
prevent haemolytic disease.29 This technique,
although showing promise, is still not yet in clinical use.

Conclusions

Although the incidence of haemolytic disease of the newborn has decreased and is no longer a major cause
of perinatal mortality, vigilance is still required. Fewer cases mean less available experience to manage such
complicated pregnancies. A strong argument exists for
centralising the management of these cases in a few fetal
medical centres that perform enough invasive proce-
dures to maintain skills. Immunotherapy in established
cases of alloimmunisation show promise but has yet to
be translated into routine clinical management.

References

1 Bowman JM. The prevention of Rh immunisation. Transfus Med Rev 1988;
2 Landsteiner K, Weiner AS. An agglutinable factor in human blood recog-
45:225.
3 Bowman JM, Pollock JM, Peniston LE. Fetalmaternal transplacental hem-
4 Royal College of Obstetricians and Gynaecologists. Green top guidelines.
6 Nicolas KH, Rodick CH. Maternal serum antiD antibody concentra-
Prenatal determination of fetal rhesus D status by DNA
amplification of peripheral blood of rhesus-negative mothers. Am J
Hum Genet 1994;54:229-36.
status from maternal plasma: introduction of a new noninvasive fetal
9 Mari G, Deter RL, Carpenter RL, Rahman F, Zimmerman R, Moise KJ Jr,
et al. Intravenous Rh immune globulin prevents alloimmunization in
D-granulocyte recipients but obscures the detection of an alloantibody-K.
Immunohaematol 2001;17:37-41.
10 Whitescar PW, Fair R, Subramaniam L, Durman K, Babi RB, Moise KJ Jr,
et al. Paternal leukocyte alloimmunisation as a treatment for fetal
hemolytic disease of the newborn in a rabbit model. Am J Obstet Gynecol
2002;187:972-80. (Accepted 13 April 2005)

Corrections and clarifications

Principles for international registration of protocol
information and results from human trials of health
related interventions: Ottawa statement (part 1)

A wrong URL in the penultimate paragraph of this
education and debate article by Karmela
Krleža-Jerić and colleagues persisted to publication
(2005;330:956-8, 2 Apr). Anyone wishing to
contribute to the Ottawa statement on trial
registration can do so via http://ottawagroup.ohri.ca.
However, although this URL is known in the
bmj.com version of this article (as well as in the
printed journal), the hyperlink does not connect to
the correct website.

Two drug firms advertised to patients

We read our British National Formulary too quickly
when checking the generic name for Seretide in
this News article by Zosia Kmietowicz
(2005;330:956-8, 2 Apr). Seretide (GlaxoSmithKline)
contains not only fluticasone propionate (as we
said) but also salmeterol xinafate.

FDA warns about using antipsychotic drugs for dementia

Again we got some drug details wrong. In this News
article by Jeanne Lenzer
(2005;330:922-3, 23 Apr) we said that Symbyax (Lilly) contained only
olanzapine, whereas in fact it also contains fluoxetine
hydrochloride.

National survey of UK emergency endoscopy units

We took group else’s error and made it ours in the
“‘What is already known on this topic’ box in
Andrew Douglass and colleagues’ survey (BMJ
2005;330:903-5, 9 Apr). Seretide (GlaxoSmithKline)
contains not only fluticasone propionate (as we
said) but also salmeterol xinafate.

PAHs and cardiac arrest

The percentage of deaths that were due to a
“cardiac arrest” related to PAHs (in the scoping
study) incorrectly came from the scoping report
(1996;7:59-63). The correct percentage came from the
scoping report of the National Confidential Enquiry into Patient Outcome and Death.

1 Schumacher R, Moise KJ Jr. Fetal transfusion for red blood cell
2 Petersen SM. Management of neonatal Rh disease. Clin Perinatol
3 Millard HD, Gidding SS, Socol ML, MacGregor SN, Dooley SL, Noy JA,
et al. Effects of intravascular, intrathecal transfusion on prenatal and
postnatal hemoglobin and erythropoiesis in severe fetal isoimmunisation.
4 Scaradavou A, Inglis S, Petersen P, Durner J, Chervena F, Bussel J.
Suppression of erythropoiesis by intratertiary transfusions in hemolytic
disease of the newborn: use of erythropoietin to treat the late anemia.
5 Saade GR, Moise KJ Jr, Beltfort MA, Hesseith DE, Carpenter RJ. Fetal
and neonatal hematologic parameters in red cell alloimmunization: predicting
6 Nicolaides KH, Rodeck CH. Maternal serum anti-D antibody concentra-
Prenatal determination of fetal rhesus D status by DNA
amplification of peripheral blood of rhesus-negative mothers. Am J
Hum Genet 1994;54:229-36.
status from maternal plasma: introduction of a new noninvasive fetal
9 Mari G, Deter RL, Carpenter RL, Rahman F, Zimmerman R, Moise KJ Jr,
et al. Intravenous Rh immune globulin prevents alloimmunization in
D-granulocyte recipients but obscures the detection of an alloantibody-K.
Immunohaematol 2001;17:37-41.
10 Whitescar PW, Fair R, Subramaniam L, Durman K, Babi RB, Moise KJ Jr,
et al. Paternal leukocyte alloimmunisation as a treatment for fetal
hemolytic disease of the newborn in a rabbit model. Am J Obstet Gynecol
2002;187:972-80. (Accepted 13 April 2005)