Effectiveness of home based support for older people: systematic review and meta-analysis

Ruth Elkan, Denise Kendrick, Michael Dewey, Michael Hewitt, Jane Robinson, Mitch Blair, Deb Williams, Kathy Brummell

Abstract

Objective To evaluate the effectiveness of home visiting programmes that offer health promotion and preventive care to older people.

Design Systematic review and meta-analysis of 15 studies of home visiting.

Participants Older people living at home, including frail older people at risk of adverse outcomes.

Outcome measures Mortality, admission to hospital, admission to institutional care, functional status, health status.

Results Home visiting was associated with a significant reduction in mortality. The pooled odds ratio for eight studies that assessed mortality in members of the general elderly population was 0.76 (95% confidence interval 0.64 to 0.89). Five studies of home visiting to frail older people who were at risk of adverse outcomes also showed a significant reduction in mortality (0.72; 0.54 to 0.97). Home visiting was associated with a significant reduction in admissions to long term institutional care in members of the general elderly population (0.65; 0.46 to 0.91). For three studies of home visiting to frail, “at risk” older people, the pooled odds ratio was 0.55 (0.35 to 0.88). Meta-analysis of six studies of home visiting to members of the general elderly population showed no significant reduction in admissions to hospital (odds ratio 0.95; 0.80 to 1.09). Three studies showed no significant effect on health (standardised effect size 0.06; −0.07 to 0.18). Four studies showed no effect on activities of daily living (0.05; −0.07 to 0.17).

Conclusion Home visits to older people can reduce mortality and admission to long term institutional care.

Introduction

The objective of enabling older people to remain in their own homes has been a cornerstone of government policy for several decades. A recent royal commission on long term care has endorsed this objective, recommending that more emphasis be given to health promotion and other preventive measures as a means of delaying the onset of illness and dependency that eventually lead older people to need long term care.

One way of promoting health and delivering preventive care to older people is through regular home visiting. Several studies of home visits by teams based in general practices have shown promising results, with home visitors identifying a large number of previously unmet medical and social needs. Health visitors are well placed to promote the health of older people and to provide surveillance and support. Although British health visitors have historically provided services to mothers and young children rather than older people, the potential of the health visitor in meeting the needs of older people in the community has been widely recognised. Despite this, today’s generic health visitor devotes little time to older people.

Two previous systematic reviews examined the effectiveness of home visits to older people. In 1993, Stuck et al performed a meta-analysis of 28 controlled trials that evaluated the outcomes of comprehensive geriatric assessment. They found significant positive effects of home visiting on mortality, hospital admission and readmission, and nursing home placements. A second systematic review of 15 trials of preventive home visits to older people by van Haastregt et al (2000) found no consistent evidence that preventive home visits had a significant effect on any outcome.

In view of the shortcomings of previous reviews, and the lack of consistency between their findings, we thought it important to undertake a meta-analysis of all relevant studies available to date to clarify the benefits of preventive home visiting.

Method

As part of a larger systematic review to assess the effects of home visiting to all client groups, including parents and children, we reviewed studies on the effects of home visits to people aged 65 years and above.

Inclusion criteria

Papers were included in the review if they reported an empirical study, with a comparison group, evaluating a home visiting programme. We included randomised and non-randomised controlled trials. The home visitor had to undertake tasks within the scope of British health visitors—namely, surveillance, support, health promotion, and the prevention of ill health. The intervention had to involve the pursuit of a wide range of preventive outcomes rather than a single goal such as the prevention of falls or increased uptake of immunisation. We excluded studies in which the home visitor was a specialist in a branch of nursing other than health visiting (for example, community psychiatric or district nursing) and those in which the intervention was delivered solely by volunteers. We also excluded studies that involved only screening and referral, with no other input from the home visitor.

Results

Fifteen studies that met our inclusion criteria reported outcomes relating to older people; 13 were randomised controlled trials. The two others used a quasi-experimental design. The 15 studies were divided into two groups: one group of nine studies assessed members of the general elderly population, and a second group of six studies assessed vulnerable populations.
older people who were at risk of adverse outcomes. The second group consisted of four studies of older people recently discharged from hospital who were at risk of further admissions and two studies of frail older people who had been referred to home care agencies.

The aims and content of the studies are shown in table 1. Details of the results of the studies are shown in table 2.

Findings

Of eight trials that measured mortality in elderly people in general, three reported significant reductions. Meta-analysis of these eight trials gave a pooled odds ratio of 0.76 (95% confidence interval 0.64 to 0.89), indicating that home visiting was associated with reduced mortality. Five studies assessed mortality among frail older people who were at risk of adverse outcomes. The pooled odds ratio of four randomised trials was 0.72 (0.54 to 0.97), again indicating that home visiting had a significant effect (fig 1).

Of six studies that measured admissions to hospital in the general elderly population, only one reported a significant reduction. The pooled odds ratio for all six studies was 0.95 (0.80 to 1.09), suggesting that home visiting did not have a significant effect (fig 2). Three studies examined admission to hospital of frail elderly people who were considered “at risk”. Meta-analysis was not possible because insufficient information was provided. None found any significant effect. Five studies measured health status among the general elderly population, of which two reported improvements. Meta-analysis of the results of three studies showed no significant effects (standardised effect size 0.06, –0.07 to 0.18). Among the studies that assessed the at risk population, only the study that measured health status reported no significant effect (fig 3).

Seven studies measured functional ability in the general elderly population. None reported a significant improvement in activities of daily living or other similar measures of functional ability.
Table 2 Outcomes of home visits to elderly people: mortality, admission to hospital, health, functional ability, and long term institutional care

<table>
<thead>
<tr>
<th>Study</th>
<th>Mortality</th>
<th>Hospital admission and hospital stay</th>
<th>Health status</th>
<th>Functional status</th>
<th>Admission to long term institutional care</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hendriksen 1984 (Denmark)</td>
<td>Intervention: 56/285; control: 75/287; P=0.05</td>
<td>No of admissions: intervention 219;</td>
<td>Health status: NS (no data given) self rated health (mean score): intervention 6.9, control 6.4, P<0.05</td>
<td>Functional ability: NS (no data given)</td>
<td>Intervention 29/295, control 29/297; NS</td>
</tr>
<tr>
<td>Pathy 1992 (England)</td>
<td>Intervention: 67/396; control: 86/396; P=0.05</td>
<td>No of admissions: intervention 262;</td>
<td>Mean No days in hospital: intervention 12.5, control 14.6, NS</td>
<td></td>
<td>Intervention 29/396, control 28/396; NS</td>
</tr>
<tr>
<td>Vetter 1984 (Wales)</td>
<td>Intervention A: 45/281; control A: 45/273; NS</td>
<td>NR</td>
<td></td>
<td>Disability (test for trend): intervention and control A, NS, intervention and control B, NS</td>
<td>NR</td>
</tr>
<tr>
<td>Hansen 1992 (Denmark)</td>
<td>Intervention: 32/163; control: 43/151; NS</td>
<td>No with one or more re-admissions:</td>
<td></td>
<td></td>
<td>Intervention 18/163, control 29/181; P<0.05</td>
</tr>
<tr>
<td>Fabacher 1994 (USA)</td>
<td>Intervention: 4/118; control: 4/123; NS</td>
<td>No admitted: intervention 22/100,</td>
<td>Mean score ADL: intervention 5.8, control 5.8, NS</td>
<td></td>
<td>Intervention 0/100, control 0/195</td>
</tr>
<tr>
<td>Hall 1992 (Canada)</td>
<td>Intervention: 14/81; control: 18/86; NS No of “survivors” (neither died</td>
<td>intervention 6/163, control 56/161;</td>
<td></td>
<td></td>
<td>Intervention 8/81, control 17/86; P<0.05</td>
</tr>
<tr>
<td>Laker 1982 (UK)</td>
<td>NR</td>
<td>Improvement in problems: 42% intervention 1, 48% intervention 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McEwan 1990 (Britain)</td>
<td>Intervention: 16/151; control: 23/145; NS</td>
<td>NR</td>
<td>ADL, % with problems NS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>van Rossum 1993 (Netherlands)</td>
<td>Intervention: 42/292; control: 50/298; NS</td>
<td>Mean change in self rated health</td>
<td>ADL, mean change in score: intervention 0.4, control 0.3, NS</td>
<td></td>
<td>Intervention 7/292, control 5/298</td>
</tr>
<tr>
<td>Shuck 1995 (USA)</td>
<td>Intervention: 24/215; control: 26/199; P=0.80</td>
<td>No admitted to hospital: intervention 99/215, control 99/199, NS</td>
<td>Mean score ADL: intervention 96.8, control 95.4, P<0.10 Mean score ADL: intervention 72.3, control 69.3, P<0.02</td>
<td></td>
<td>Intervention 9/215, control 20/198; P<0.02</td>
</tr>
<tr>
<td>Balaban 1988 (USA)</td>
<td>Intervention: 31/103; control: 20/95; P=0.20</td>
<td>Mean (SD) No of admissions: intervention 1.2 (1.2), control 0.6 (0.8), P=0.003</td>
<td>Mean score ADL: intervention 67, control 60, P<0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Williams 1992 (England)</td>
<td>Intervention: 30/231; control: 40/239; P=0.30</td>
<td>Mean physical status score at baseline (change over 12 months): intervention 5.7 (0.99), control 6.1 (0.99), NS</td>
<td>Mean score ADL: intervention 87, control 90, P=0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dunn 1994 (England)</td>
<td>Intervention: 15/102; control: 25/102; P=0.10</td>
<td>Mean length unplanned readmissions (days): intervention 12.1, control 14.0, NS</td>
<td>ADL: intervention 6.7, control 6.0, P=0.58</td>
<td></td>
<td>Intervention 8/102, control 7/102, NS</td>
</tr>
<tr>
<td>Skiwy 1990 (USA)</td>
<td>Intervention: 27/98; control: 30/93; NS</td>
<td>Mean No of admissions: intervention 0.78, control 0.66, NS</td>
<td>ADL: intervention 0.20, control 0.10, P<0.05</td>
<td></td>
<td>Intervention 19/98, control 11/93, NS</td>
</tr>
<tr>
<td>Archbold 1995 (USA)</td>
<td>NR</td>
<td>No admitted: intervention 6/11, control 5/11</td>
<td>Mean no days’ stay: intervention 4.8, control 3.3 (no test results reported)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NR—not reported.

(IADL—instrumental) activities of daily living.

NS—no significant difference between groups; actual P value not reported in original paper.

However, the only two studies that measured instrumental activities of daily living25 26 both reported significant improvements. Meta-analysis of four studies that measured activities of daily living23–25 showed no significant effect (standardised effect size 0.05, −0.07 to 0.17). Of two studies that assessed functional ability among older people considered to be “at risk,”23 26 neither reported significant improvements (fig 4).

Only five of studies that reported admission to residential nursing homes of members of the general elderly population15 16 19 23 24 found a significant reduction.15 However, meta-analysis of the results of four of these studies15 16 23 24 gave a pooled odds ratio of 0.65 (0.46 to 0.91), indicating that home visiting did have a significant effect in reducing admissions to institutional care.

Of four studies reporting admission to institutional care of older people considered to be “at risk,”18 20 27 28 two reported significant reductions.18 20 The pooled odds ratio for the three randomised trials entered into a meta-analysis16 20 27 was 0.55 (0.35 to 0.88), suggesting
that home visiting was successful in reducing admissions for at risk older people (fig 5).

Meta-regressions

Our meta-regressions showed that none of our three predictors (population type, duration of intervention, and age group) had any effect on mortality or admissions to institutional care. The analysis of hospital admissions was complicated by the small number of studies, the lack of any studies on elderly people who were considered to be at risk, and the fact that one study was of poor methodological quality.

Discussion

Our review of the results of home visiting programmes shows that home visiting is effective in reducing mortality and admission to long term institutional care among members of the general elderly population and frail older people who are at risk of adverse outcomes. We did not find any significant reduction in admissions to hospital. The observed heterogeneity in relation to this outcome (see fig 2) seems to be accounted for largely by the study of Balaban et al, which was of poor methodological quality. Balaban and colleagues conceded themselves that they had failed to control successfully for differences in health status between intervention and control participants at entry into the trial, resulting in a control group with better health than the intervention group. The lack of any significant effect in reducing admission to hospital may also have been the result of two opposing effects: on the one hand, home visiting may have resulted in increased admissions of older people whose need for hospital care might otherwise have been neglected; on the other hand, some admissions might have been averted through home visits.

Impact on health and functional status

The absence of evidence of improved health and functional status requires explanation. Undoubtedly one reason for the failure to find any significant differences between intervention and control groups was that those in poorest health had died, so that this outcome could be measured only on a subset of the original sample—namely, those who had survived. Another possible explanation is that where self rated measures have been used, the presence of the home visitor may have encouraged older people to express their problems more easily, thereby obscuring differences between intervention and control group. The tools used may not have been sensitive enough to detect modest improvements in health or functional ability.

Also chronic and relatively intractable health and functional problems may require a greater, or different type of, input than that provided by the home visitors in the studies we reviewed.

Characteristics of home visiting programmes

Why some of the programmes were more successful than others in reducing mortality is puzzling, given that this was not the primary goal of any study. The three studies of members of the general elderly population that reported significant reductions in mortality did not share any characteristics that differentiated them from the other studies in this group. One feature is the breadth of response of the health visitor. In the inner city group in the study by Vetter et al and in the study by Hendriksen et al the
health visitor referred to a wide range of outside agencies, whereas in the rural group in the study by Vetter et al and in other studies that showed no reduction in mortality there was a narrower focus on referral to a general practitioner.

It is difficult to know which components of the home visitors’ interventions made a difference to any of the outcomes assessed. As all the programmes were multifaceted, the independent effect of a particular component of care was difficult to assess. Moreover, in the papers we reviewed, descriptions of what the home visitor did were brief, giving little feel for the processes involved. Future studies would benefit from a greater focus on the process of delivering care and on attempting to identify which components of the intervention worked.

Our finding from the meta-regression that the effect of home visiting did not depend on whether the intervention was targeted at elderly people who are at risk or whether it was delivered more widely is interesting. It suggests that the exclusion of people who are not at increased risk from such interventions may not, on the present evidence, be justified. Similarly, the finding that the effect of home visiting did not depend on the age of participants suggests that the exclusion of “younger” elderly people from such interventions may also be unjustified. However, more work is required to test our findings here, as the evidence from individual studies we reviewed suggests that those in poorer health may benefit more from the intervention and that interventions targeted more intensively on those identified as having problems are more effective. A recent study by Stuck et al, published after the end of our literature search, found that disability was reduced in older people at low risk at baseline but not in those at high risk. More work is clearly required to assess which populations benefit most from home visiting. Further work could also assess the optimal intensity of home visiting. As several studies did not report the intensity of visits, the importance of this factor was difficult to gauge.

Comparisons with other studies
Our findings are in marked contrast to those of van Haastregt et al, who, in the absence of a meta-analysis of the results of the trials they reviewed, failed to find evidence that home visiting resulted in any consistent positive outcomes. Though only four out of the 15 studies we reviewed found a significant effect on mortality, we have shown significant positive effects by combining data. Similarly, only three of the 15 studies showed a significant reduction in admissions to institutional care. Yet by pooling data from all the studies that assessed this outcome, we have shown significant positive effects. It seems that the decision of van Haastregt et al not to perform a meta-analysis might have led them to underestimate the effectiveness of preventive home visits to older people.

Clearly, all meta-analyses contain heterogeneity. However, unlike van Haastregt and colleagues, we did not consider that differences between the interventions meant their results could not be combined. By grouping our trials into two more homogeneous types of intervention (those aimed at the general elderly population and those aimed at frail older people who were at risk of adverse outcomes), we considered that meta-analysis was justified. While the number of trials in each meta-analysis was small, the results are encouraging, confirming the earlier promising findings of Stuck et al. On the basis of our own results, we cannot endorse the conclusion of van Haastregt et al that the evidence of effectiveness is so modest and inconsistent that home visits to older people should be discontinued. On the contrary, we believe that further trials to assess the effectiveness of home based support to older people may confirm our positive findings, and we look forward to the results of ongoing trials.

The views expressed in this paper do not necessarily reflect those of the NHS Executive.

Funding: NHS research and development health technology assessment programme.

Competing interests: JR has been reimbursed by the Community Practitioners and Health Visitors Association, the Royal College of Nursing, and the Royal College of Practitioners for attending conferences.

1 Sutherland, Sir S. With respect to old age: long term care—rights and responsibilities. A report by the Royal Commission on long term care. London: Stationery Office, 1999. (Cm 4192-L.)
7 Sorensen KH, Svendsen J. Follow-up three years after intervention to relieve unmet medical and social needs of old people. Compt Gerontol (B) 1988;2:85-91.
This is the second of two reviews of trials of preventive home visits to elderly people published in the BMJ in the past 18 months. Elkan et al concluded that home visits reduce mortality and admissions to nursing homes, whereas last year's review found no evidence supporting their effectiveness and argued that existing programmes should be reconsidered.1 Why did the two reviews reach such contrasting conclusions?

The main reason is the different methodological approaches adopted by the two groups. Van Haastregt et al reported the results from individual trials as "no significant effects" or "significant favourable effects." For example, they found a "significant" reduction (P < 0.05) in admissions to institutions in only two out of seven trials and that overall effects were "modest and inconsistent." This "vote counting" approach is clearly unsound as it ignores the direction and size of effects from individual studies and their confidence intervals.2 If the BMJ and other journals adopt the recent recommendation that "the description of differences as statistically significant is not acceptable," then the confusion created by such analyses could be avoided.

In contrast to the paper by van Haastregt et al, the present review used meta-analysis to summarise results. The potential of this approach is illustrated in the figure, which shows the effects on admission to long term care: six out of eight trials show a beneficial effect of preventive home visits. The evidence against the null hypothesis was fairly strong in two trials (Stuck P = 0.021 and Hall P = 0.025), but weak in the others (P > 0.10). The pooled analysis, however, indicates that there is convincing evidence for a clinically important reduction in the risk of admission to long term institutional care (P = 0.001). The reduction in the odds of admission is likely to be at least 17% and could be as large as 51%.

Van Haastregt et al argued that the data should not be combined statistically, given the heterogeneous nature of the interventions and the populations enrolled in the different trials.1 Interestingly, there was little evidence of heterogeneity between trials in the analysis shown in the figure (P = 0.46) and those performed by Elkan et al. The power of tests of heterogeneity is notoriously low, and combining studies is always questionable if there is important clinical heterogeneity. However, only by graphically and statistically analysing effect estimates from individual trials can we identify factors introducing heterogeneity. Elkan et al attempted this but their analysis was limited to a few crude factors. For example, they explored the importance of the underlying risk by stratifying trials according to whether older people from the general population or frail elderly people had been enrolled. They found no difference between these groups, which may be owing to misclassification of the Hall study. This trial was supposedly performed in frail elderly people, but mortality in the control group was low (see figure). When the effects are ordered according to mortality, as shown, they get smaller with increasing mortality in the control group (figure). This important finding was recently confirmed by Stuck et al in a trial.
Attitudes and training of research fellows in surgery: national questionnaire survey

Choon S Seow, Nee B Teo, Christopher R Wilson, Karin A Oien

Traditionally, clinical research fellowships are occupied by junior trainees and are used as a stepping stone not only to an academic career but more commonly to the higher specialist training scheme. In the United Kingdom, clinical academic medicine is having difficulties in recruitment, especially to senior posts, and in academic surgery several professorial chairs remain vacant because of a shortage of suitable candidates.1

Analysis of research papers presented at surgical meetings over the past 20 years has shown a considerable reduction in the number of randomised clinical trials and a corresponding increase in the number of basic scientific projects.2 Surgical research has recently been criticised for its poor quality and lack of evidence based “patient oriented research that matters.”3 Training in research methods is important for surgeons conducting research, and a previous survey showed that this view is shared by consultant surgeons.4 However, little is known about the surgical trainees in research fellowships or about their career aspirations.

The Calman report, Hospital Doctors: Training for the Future, recommended in 1995 that postgraduate training should be shorter and more structured, with research—and presumably research fellowships—being undertaken during the period of higher specialist training.5

We examined the views of research fellows towards research and investigated whether the recommendations of the Calman report on research and surgical training had been adhered to.

Methods and results

In 1999, we asked all 53 professors of general surgery in the 24 academic departments of surgery in the United Kingdom for the names of their research fellows; 48 responded. An anonymous postal questionnaire survey was then sent to the 123 fellows identified; non-responders received a second distribution. The response rate was 74% (91/123). The table shows the training undertaken by surgical research fellows and their attitudes towards research.

In total, 64% (58/91; 95% confidence interval 53% to 74%) of the research fellows were experienced senior house officers before carrying out their research;