Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study
Irene M Stratton, Amanda I Adler, H Andrew W Neil, David R Matthews, Susan E Manley, Carole A Cull, David Hadden, Robert C Turner, Rury R Holman on behalf of the UK Prospective Diabetes Study Group

Abstract

Objective To determine the relation between exposure to glycaemia over time and the risk of macrovascular or microvascular complications in patients with type 2 diabetes.

Design Prospective observational study.

Setting 23 hospital based clinics in England, Scotland, and Northern Ireland.

Participants 4585 white, Asian Indian, and Afro-Caribbean UKPDS patients, whether randomised or not to treatment, were included in analyses of incidence; of these, 3642 were included in analyses of relative risk.

Outcome measures Primary predefined aggregate clinical outcomes: any end point or deaths related to diabetes and all cause mortality. Secondary aggregate outcomes: myocardial infarction, stroke, amputation (including death from peripheral vascular disease), and microvascular disease (predominantly retinal photoagulation). Single end points: non-fatal heart failure and cataract extraction. Risk reduction associated with a 1% reduction in updated mean HbA1c adjusted for possible confounders at diagnosis of diabetes.

Results The incidence of clinical complications was significantly associated with glycaemia. Each 1% reduction in updated mean HbA1c was associated with reductions in risk of 21% for any end point related to diabetes (95% confidence interval 17% to 24%, P < 0.0001), 21% for deaths related to diabetes (15% to 27%, P < 0.0001), 14% for myocardial infarction (8% to 21%, P < 0.0001), and 37% for microvascular complications (33% to 41%, P < 0.0001). No threshold of risk was observed for any end point.

Conclusions In patients with type 2 diabetes the risk of diabetic complications was strongly associated with previous hyperglycaemia. Any reduction in HbA1c is likely to reduce the risk of complications, with the lowest risk being in those with HbA1c values in the normal range (< 6.0%).

Introduction

The UK prospective diabetes study (UKPDS), a clinical trial of a policy of intensive control of blood glucose after diagnosis of type 2 diabetes, which achieved a median haemoglobin A1c (HbA1c) of 7.0% compared with 7.9% in those allocated to conventional treatment over a median 10.0 years of follow up, has shown a substantial reduction in the risk of microvascular complications, with a reduction in the risk of myocardial infarction and cataract extraction. Risk reduction associated with a 1% reduction in updated mean HbA1c was associated with the results of the UKPDS trial of a policy of intensive control of blood glucose.

to obtain fasting plasma glucose concentration < 15 mmol/l or >50 mg/l in single morning sample.

†Geometric mean (1 SD range).

‡>50 mg/l in single morning sample.

Figure 1 24–26

Methods
Participants recruited to the UKPDS

Details are presented in the companion paper (UKPDS 36) published in this issue (see page 412).

Participants in observational analysis

Of 5102 patients, 4585 white, Asian Indian, and Afro-Caribbean patients who had haemoglobin A\textsubscript{c} (HbA\textsubscript{c}) measured three months after the diagnosis of diabetes were included in analyses of incidence rates. Of these, 3642 with complete data for potential confounders were included in analyses of relative risk.

Complete data were required for all participants included in the multivariate observational analyses. For this reason there are fewer (3642) participants in these analyses than in the clinical trial, despite the inclusion of patients not randomised in the trial. Their characteristics are presented in table 1.

Participants in UKPDS blood glucose control study

After a three month dietary run-in period patients were stratified on the basis of fasting plasma glucose concentration and body weight. The 3867 patients who had fasting plasma glucose concentrations between 6.1 and 15.0 mmol/l and no symptoms of hyperglycaemia were randomised to a policy of conventional glucose control, primarily with diet, or to an intensive policy with sulphonylurea or insulin.1,19–26 The aim in the group allocated to conventional control (n = 1138) was to obtain fasting plasma glucose concentration <15 mmol/l, but if concentrations rose to ≥15 mmol/l or symptoms of hyperglycaemia developed patients were secondarily randomised to non-intensive use of these pharmacological treatments, with the aim of achieving fasting plasma glucose concentrations <15 mmol/l without symptoms. The aim in the group allocated to intensive control (n = 2729) was to achieve fasting plasma glucose concentration <6 mmol/l primarily with a single pharmacological treatment. Details of treatments and their effect on glucose control have been published elsewhere.1

Biochemical methods

Biochemical methods have been reported previously.27 Haemoglobin A\textsubscript{c} was measured by high performance liquid chromatography (Biorad Diamat automated glycosylated haemoglobin analyser), the range for people without diabetes being 4.5% to 6.2%.27 Baseline variables are quoted for measurements after the initial dietary run-in period.

Glycaemic exposure

Exposure to glycaemia was measured firstly at baseline as haemoglobin A\textsubscript{c} concentration and secondly over time as an updated mean of annual measurements of haemoglobin A\textsubscript{c} concentration, calculated for each individual from baseline to each year of follow up. For example, at one year the updated mean is the average of the baseline and one year values and at three years is the average of baseline, one year, two year, and three year values.

Clinical complications

The clinical end points and their definitions are shown in the box in the companion paper (UKPDS 36) published in this issue (see page 412).

Statistical analysis

Incidence rates by category of glycaemia

The unadjusted incidence rates were calculated by dividing the number of people with a given complication by the person years of follow up for the given complication within each category of updated mean haemoglobin A\textsubscript{c} concentration and reported as events per 1000 years of follow up.29 The categories were defined (median values in parentheses) as: <6% (5.6%), 6–<7% (6.5%), 7–<8% (7.5%), 8–<9% (8.4%), 9–<10% (9.4%), and ≥10% (10.6%) over the range of updated mean haemoglobin A\textsubscript{c} of 4.6–11.2% (1st–99th centile).

Follow up time was calculated from the end of the initial period of dietary treatment to the first occurrence of that complication or loss to follow up, death from another cause, or to the end of the study on 30 September 1997 for those who did not have that complication. Hence, follow up time is equivalent to duration of diabetes. For myocardial infarction and stroke for participants who had a non-fatal followed by a fatal event, the time to the first event was used. The rates were therefore for single and not recurrent events. The median follow up time for all cause mortality was 10.4 years.

We calculated adjusted incidence rates for each category of updated mean haemoglobin A\textsubscript{c} using a Poisson regression model adjusted for male sex, white ethnic group, age at diagnosis 50–54 years, and duration of diabetes 7.5–12.5 years and expressed in events per 1000 person years of follow up. These parameters were chosen to reflect the median age and duration of diabetes and the modal ethnic group and sex.

Hazard ratio and risk reduction

To assess potential associations between updated mean haemoglobin A\textsubscript{c} and complications we used proportional hazards regression (Cox) models. Potential confounding risk factors included in all Cox models were sex, age, ethnic group, smoking (current/ever/never) at time of diagnosis of diabetes, and baseline high and low density lipoprotein cholesterol, triglyceride, presence of albuminuria (> 50 mg/l measured in a single morning urine sample) measured after three months'
dietary treatment, and systolic blood pressure represented by the mean of measures at two and nine months after diagnosis. The hazard ratio was used to estimate the relative risk. At each event time, the updated mean haemoglobin A₁c value for individuals with an event was compared with the updated value of those who had not had an event by that time. The updated mean value was included as a time dependent covariate to evaluate glucose exposure during follow-up.²⁰⁻²² It was included as a categorical variable in the categories of glycaemia listed above, with the lowest category (<6%) as the reference category assigned a hazard ratio of 1.0 and with the highest category ≥9%.

(This is reflected in the point estimates as shown in figures 3 and 4.) Separate models, with updated mean haemoglobin A₁c as a continuous variable, were used to determine reduction in risk associated with a 1% reduction in haemoglobin A₁c (see regression lines in figures 3 and 4). We evaluated the presence of thresholds by visual inspection. The 95% confidence intervals were calculated on the basis of the floating absolute risk.²² Log linear relations are reported by convention.²² The risk reduction associated with a reduction of 1% updated mean haemoglobin A₁c was calculated as 100% minus the reciprocal of the hazard ratio expressed as a percentage. The risk reduction from the continuous variable model associated with a 1% reduction in observed haemoglobin A₁c was compared with the risk reduction seen in the UKPDS intervention trial of an intensive versus a conventional policy of blood glucose control, for which no adjustment for potential confounders was required as they were balanced by randomisation.¹

To assess whether the association between mean updated haemoglobin A₁c and complications was independent of randomisation, separate models included mean updated haemoglobin A₁c and randomisation to either intensive or conventional policy, as well as all potential confounders listed above. The model for all end points related to diabetes included 3005 individuals.

Statistical analyses were performed with SAS version 6.12.³³

Results

The risk of each of the microvascular and macrovascular complications of type 2 diabetes and cataract extraction was strongly associated with hyperglycaemia as measured by updated mean haemoglobin A₁c. The incidence rates for any end point related to diabetes, adjusted for age, sex, ethnic group, and duration of diabetes, increased with each higher category of updated mean haemoglobin A₁c, with no evidence of a threshold and with a threefold increase over the range of updated mean haemoglobin A₁c of <6% (median 5.6%) to ≥10% (median 10.6%) (figs 1 and 2). The unadjusted and adjusted incidence rates are shown in table 2. Figure 2 shows the adjusted incidence rates for myocardial infarction and microvascular complications by category of updated mean haemoglobin A₁c concentration, adjusted for age, sex, and ethnic group, expressed for white men aged 50-54 years at diagnosis and with mean duration of diabetes of 10 years.
Table 2: Incidence of complications in patients with type 2 diabetes by category of updated mean haemoglobin A1c concentration (%). Rates per 1000 person years’ follow up adjusted in Poisson regression model to white men aged 50 to 54 years at diagnosis of diabetes and followed up for 7.5 to <12.5 years, termed “10 years” (n=4585)

<table>
<thead>
<tr>
<th>Aggregate end points</th>
<th><6%</th>
<th>6% to <7%</th>
<th>7% to <8%</th>
<th>8% to <9%</th>
<th>9% to <10%</th>
<th>>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events/person years</td>
<td>229/9195</td>
<td>391/11432</td>
<td>369/8484</td>
<td>268/5605</td>
<td>159/2542</td>
<td>88/1324</td>
</tr>
<tr>
<td>Adjusted rate (95% CI)</td>
<td>24.5</td>
<td>34.2</td>
<td>43.6</td>
<td>47.8</td>
<td>87.5</td>
<td>85.9</td>
</tr>
<tr>
<td>Deaths related to diabetes</td>
<td>56/10113</td>
<td>101/1343</td>
<td>116/1054</td>
<td>84/595</td>
<td>47/3137</td>
<td>19/1537</td>
</tr>
<tr>
<td>Adjusted rate (95% CI)</td>
<td>5.5</td>
<td>7.7</td>
<td>11.5</td>
<td>12.7</td>
<td>15.0</td>
<td>12.4</td>
</tr>
<tr>
<td>All cause mortality</td>
<td>112/10113</td>
<td>20/1343</td>
<td>168/1054</td>
<td>123/595</td>
<td>64/3137</td>
<td>26/1537</td>
</tr>
<tr>
<td>Adjusted rate (95% CI)</td>
<td>11.1</td>
<td>15.8</td>
<td>16.7</td>
<td>18.7</td>
<td>20.4</td>
<td>16.9</td>
</tr>
<tr>
<td>Fatal or non-fatal myocardial infarction</td>
<td>100/9870</td>
<td>163/12590</td>
<td>159/9579</td>
<td>101/6321</td>
<td>80/3016</td>
<td>77/5021</td>
</tr>
<tr>
<td>Adjusted rate (95% CI)</td>
<td>10.1</td>
<td>13.0</td>
<td>16.6</td>
<td>16.0</td>
<td>19.9</td>
<td>15.4</td>
</tr>
<tr>
<td>Amputation or death from peripheral vascular disease</td>
<td>3/1018</td>
<td>7/12903</td>
<td>7/9897</td>
<td>9/6490</td>
<td>19/3061</td>
<td>7/1502</td>
</tr>
<tr>
<td>Adjusted rate (95% CI)</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
<td>1.4</td>
<td>4.9</td>
<td>4.7</td>
</tr>
<tr>
<td>Fatal or non-fatal microvascular disease</td>
<td>38/9814</td>
<td>77/12707</td>
<td>86/9438</td>
<td>91/6185</td>
<td>73/2855</td>
<td>47/1432</td>
</tr>
<tr>
<td>Adjusted rate (95% CI)</td>
<td>3.9</td>
<td>6.1</td>
<td>9.1</td>
<td>14.7</td>
<td>25.6</td>
<td>32.8</td>
</tr>
<tr>
<td>Heart failure</td>
<td>17/9807</td>
<td>34/12938</td>
<td>36/9782</td>
<td>20/432</td>
<td>10/3062</td>
<td>7/1514</td>
</tr>
<tr>
<td>Adjusted rate (95% CI)</td>
<td>1.7</td>
<td>2.6</td>
<td>3.7</td>
<td>12.6</td>
<td>3.3</td>
<td>6.6</td>
</tr>
<tr>
<td>Cataract extraction</td>
<td>35/9841</td>
<td>58/12765</td>
<td>49/9692</td>
<td>45/6355</td>
<td>19/3009</td>
<td>19/1495</td>
</tr>
<tr>
<td>Adjusted rate (95% CI)</td>
<td>3.6</td>
<td>4.6</td>
<td>5.1</td>
<td>7.1</td>
<td>6.3</td>
<td>12.7</td>
</tr>
</tbody>
</table>

Person years, events, and unadjusted rates are for all patients.

The estimated hazard ratios associated with different categories of updated mean haemoglobin A1c concentration, relative to the lowest category, are shown as log linear plots in figures 3 and 4. Mortality related to diabetes and all cause mortality were both strongly associated with glycaemia (P < 0.0001). The risk of each of the complications evaluated rose with increasing updated mean haemoglobin A1c concentration both before and after adjustment for baseline variables including age, sex, ethnic group, lipid concentrations, blood pressure, smoking, and albuminuria. The decrease in risk for each 1% reduction in updated mean haemoglobin A1c concentration is shown in table 3 and figures 3 and 4. The glycaemia associated reduction in risk for microvascular end points and for amputation or death from peripheral vascular disease was greater (by 37% and 43% per 1% reduction in haemoglobin A1c concentration, respectively) than it was for myocardial infarction, stroke, and heart failure (by 14% (P < 0.0001), 12% (P = 0.035), and 16% (P = 0.021) per 1% haemoglobin A1c, respectively) (fig 4). In models that included a variable for conventional control of blood glucose or intensive control with either sulphonylurea or insulin, updated mean haemoglobin A1c remained associated with all complications, although for stroke and heart failure, where the numbers of events were lower than in the previous analyses, these were no longer significant. In these models, treatment of blood glucose per se had no association with any complication beyond that of mean haemoglobin A1c.

There was no indication of a threshold for any complication below which risk no longer decreased nor a level above which risk no longer increased. The updated mean haemoglobin A1c showed steeper associations than did baseline haemoglobin A1c (table 3), and when both glycaemic variables were included in a model for all complications of diabetes only updated mean haemoglobin A1c reached significance (P < 0.0001).

Discussion

This observational analysis shows highly significant associations between the development of each of the complications of diabetes, including mortality, across the wide range of exposure to glycaemia that occurs in patients with type 2 diabetes. This association...
remained after adjustment for other known risk factors, including age at diagnosis, sex, ethnic group, systolic blood pressure, lipid concentrations, smoking, and albuminuria. Each 1% reduction in haemoglobin A₁c was associated with a 37% decrease in risk for microvascular complications and a 21% decrease in the risk of any end point or death related to diabetes. The association with glycaemia was less steep for stroke and heart failure, for which blood pressure is a major contributing factor.²⁻⁴,¹⁴ In patients within the lowest category of updated mean haemoglobin A₁c, the incidence of myocardial infarction was higher than that of microvascular disease. These results suggest that, in these people, the effect of hyperglycaemia itself may account for at least part of the excess cardiovascular risk observed in diabetic compared with non-diabetic people beyond that explained by the conventional risk factors of dyslipidaemia, hypertension, and smoking.²⁶ The rate of increase of relative risk for microvascular disease with hyperglycaemia was greater than that for myocardial infarction, which emphasises the crucial role of hyperglycaemia in the aetiology of small vessel disease and may explain the greater rate of microvascular complications seen in populations with less satisfactory control of glycaemia.

Relation to trial data
This observational analysis provides an estimate of the reduction in risk that might be achieved by the therapeutic lowering of haemoglobin A₁c by 1.0%, but it is important to realise that epidemiological associations cannot necessarily be transferred to clinical practice. Tissue damage from previous hyperglycaemia may not promptly be overcome, but the results are not inconsistent with those achieved by the policy of intensive glucose control in the clinical trial.¹ This suggests that the reduction in glycaemia obtained over a median 10 years of follow up of the trial, comparing median haemoglobin A₁c 7.0% with 7.9%, provided much of the benefit that could be expected from that degree of improved glycaemic control. Our results suggest that intensive treatment with sulphonylurea or insulin does not have an effect beyond that of lowering blood glucose concentration with respect to altering risk. The 16% risk reduction (P = 0.052) in myocardial infarction in the clinical trial in the group allocated to a policy of intensive blood glucose control (associated

![Fig 3](http://www.bmj.com/) Hazard ratios, with 95% confidence intervals as floating absolute risks, as estimate of association between category of updated mean haemoglobin A₁c concentration and any end point or death related to diabetes and all cause mortality. Reference category (hazard ratio 1.0) is haemoglobin A₁c <6% with log linear scales. P value reflects contribution of glycaemia to multivariate model. Data adjusted for age at diagnosis of diabetes, sex, ethnic group, smoking, presence of albuminuria, systolic blood pressure, high and low density lipoprotein cholesterol, and triglycerides

![Fig 4](http://www.bmj.com/) Hazard ratios, with 95% confidence intervals as floating absolute risks, as estimate of association between category of updated mean haemoglobin A₁c concentration and myocardial infarction, stroke, microvascular end points, cataract extraction, lower extremity amputation or death from peripheral vascular disease, and heart failure. Reference category (hazard ratio 1.0) is haemoglobin A₁c <6% with log linear scales. P value reflects contribution of glycaemia to multivariate model. Data adjusted for age at diagnosis of diabetes, sex, ethnic group, smoking, presence of albuminuria, systolic blood pressure, high and low density lipoprotein cholesterol, and triglycerides
with a 0.9% difference in haemoglobin A₁c was similar to the 14% risk reduction seen in the epidemiological analysis, which was associated with a 1% reduction in concentration of updated mean haemoglobin A₁c. The UKPDS clinical trial evaluated a policy of intensive glucose control based primarily on single pharmacological treatments to enable evaluation of the individual treatments. Now that the UKPDS has shown that improved glucose control reduces the risk of complications and that the treatments used are safe in clinical practice, a larger reduction in haemoglobin A₁c might be achieved by the earlier use of combination treatments or by the use of newer treatments, which could further reduce the risk of myocardial infarction.

The observational analysis extends the range of hyperglycaemia studied in the UKPDS by including participants who, throughout the study, had near normal glucose concentrations on dietary treatment alone and participants who could never be treated by dietary treatment alone. The UKPDS population was likely to be at lower risk of complications than other diabetic populations. Hence, the incidence rates we report are perhaps lower than might be observed in other diabetic populations as the cohort was newly diagnosed with diabetes, excluded old or ill patients, and contained a small proportion (6%) of participants with impaired fasting glycaemia. None the less, the decrease in relative risk is unlikely to be different from other diabetic populations.

Lack of thresholds

We observed no thresholds of glycaemia for any type of complication of diabetes. This suggests that there is no specific target value of haemoglobin A₁c for which one should aim but that the nearer to normal the haemoglobin A₁c concentration the better. In reality, it is difficult to obtain and maintain near normal concentrations of haemoglobin A₁c in patients with type 2 diabetes, particularly in those with a high concentration of haemoglobin A₁c at diagnosis of diabetes. Intensiﬁcation of treatment by adding insulin to improve the relatively modest reduction in glycaemia achieved with oral hypoglycaemic treatments can be constrained by reluctance from patients and providers because, in part, of side effects such as hypoglycaemia or weight gain. These observational analyses, together with the results of the clinical trial, however, indicate that any improvement in a raised haemoglobin A₁c concentration is likely to reduce the risk of diabetic complications.

The magnitude of the risk reduction associated with a 1% reduction in haemoglobin A₁c concentration for myocardial infarction and microvascular disease (mostly retinopathy) was consistent with that observed in a cohort of patients from Wisconsin. As in this analysis, a stronger association with haemoglobin A₁c concentration was observed for amputation than for ischaemic heart disease, possibly because glycaemia increases the risk of microvascular disease, neuropathy,
and peripheral arterial disease, each of which increases the risk of amputation.\(^4,18,39-41\) The estimated 14% decrease in all cause mortality per 1% reduction in haemoglobin A\(_1c\) concentration was similar to that seen in other studies that have assessed glycaemia as haemoglobin A\(_1c\) as a continuous variable (per 1% change) in multivariate proportional hazards models.\(^5\)

Summary

Both the observational and clinical trial analyses of an intensive glucose control policy suggest that even a modest reduction in glycaemia has the potential to prevent deaths from complications related to diabetes as cardiovascular and cerebrovascular disease account for 50-60% of all mortality in this and other diabetic populations.\(^6,42-47\) Individuals with very high concentrations of glycaemia would be most likely to benefit from reduction of glycaemia as they are particularly at risk from the complications of type 2 diabetes, but the data suggest that any improvement in glycaemic control across the diabetic range is likely to reduce the risk of diabetic complications.

The cooperation of the patients and many NHS and non-NHS staff at the centres is much appreciated. We thank Mr Dick Jelfs for the measurement of haemoglobin A\(_1c\). Details of participating centres can be found on the BMJ’s website.

Contributors: IMS selected the methodology, carried out the statistical analyses, coordinated the writing of the paper, and participated in the interpretation of results. AIA assisted with the writing of the paper and interpretation of results. HAWN, DRM, and DHM participated in interpretation and revision of the paper. SEM managed the biochemical aspects and participated in interpretation and revision of the paper. CAC participated in preparation of the database and interpretation and revision of the paper. RCT and RRH were the principal investigators, planned and designed the study, and participated in interpretation and revision of the paper. RCT was also responsible for the initial draft of the paper. RRH is guarantor.

Funding: The major grants for this study were from the UK Medical Research Council, the British Diabetic Association, the UK Department of Health, The National Eye Institute and the National Institute of Digestive, Diabetes and Kidney Disease in the National Institutes of Health, United States, The British Heart Foundation, Novo Nordisk, Bayer, Bristol-Myers Squibb, Hoechst, Lilly, Lipta, and Farmitalia Carlo Erba. Details of other funding companies and agencies, the supervising committees, and all participating staff can be found on the BMJ’s website.

Competing interests: AIA has received fees for speaking from Bristol-Myers Squibb, SmithKline Beecham, and Pfizer. IMS has received support for attending conferences from Zeneca and Hoechst and fees for speaking from Hoechst. CAC has received support for attending conferences from Bristol-Myers Squibb, Novo Nordisk, and Pfizer. AIA has received fees for speaking from Bristol-Myers Squibb, SmithKline Beecham, and Lilly and research funding from Lilly; SEM has received support for attending conferences from Bayer and Novo Nordisk. RRH has received support for attending conferences from Bayer, Bristol-Myers Squibb, Hoechst, Lilly, Lipta, Novo Nordisk, and SmithKline Beecham; and research funding from Bayer, Bristol-Myers Squibb, Lilly, and Novo Nordisk.

Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study

Amanda I Adler, Irene M Stratton, H Andrew W Neil, John S Yudkin, David R Matthews, Carole A Cull, Alex D Wright, Robert C Turner, Rury R Holman on behalf of the UK Prospective Diabetes Study Group

Abstract

Objective To determine the relation between systolic blood pressure over time and the risk of macrovascular or microvascular complications in patients with type 2 diabetes.

Design Prospective observational study.

Setting 23 hospital based clinics in England, Scotland, and Northern Ireland.

Participants 4801 white, Asian Indian, and Afro-Caribbean UKPDS patients, whether randomised or not to treatment, were included in analyses of incidence; of these, 3642 were included in analyses of relative risk.

Outcome measures Primary predefined aggregate clinical outcomes: any complications or deaths related to diabetes and all cause mortality. Secondary aggregate outcomes: myocardial infarction, stroke, lower extremity amputation (including death from peripheral vascular disease), and microvascular disease (predominantly retinal photocoagulation). Single end points: non-fatal heart failure and cataract extraction. Risk reduction associated with a 10 mm Hg decrease in systolic blood pressure adjusted for specific confounders.

Results The incidence of clinical complications was significantly associated with systolic blood pressure, except for cataract extraction. Each 10 mm Hg decrease in systolic blood pressure were associated with reductions in risk of 12% for any complication related to diabetes (95% confidence interval 10% to 14%, P < 0.0001), 15% for deaths related to diabetes (12% to 18%, P < 0.0001), 11% for myocardial infarction (7% to 14%, P < 0.0001), and 13% for microvascular complications (10% to 16%, P < 0.0001). No threshold of risk was observed for any end point.

Conclusions In patients with type 2 diabetes the risk of diabetic complications was strongly associated with raised blood pressure. Any reduction in blood pressure is likely to reduce the risk of complications, with the lowest risk being in those with systolic blood pressure less than 120 mm Hg.

Introduction

The UK prospective diabetes study (UKPDS) has shown that a policy of tight control of blood pressure, which achieved a median blood pressure of 144/82 mm Hg compared with 154/87 mm Hg over median 8.4 years of follow up, substantially reduced the risk of microvascular disease, stroke, and deaths related to diabetes,1 but not myocardial infarction. Complementary information for estimates of the risk of complications including myocardial infarction at different levels of blood pressure can be obtained from observational analysis of the UKPDS data. This information can help to estimate the expected reduction in the risk of diabetic complications from a given change in blood pressure. It can also help to assess whether or not thresholds in blood pressure exist below which the risk of complications is substantially reduced. Such thresholds would have substantial influence on the establishment of guidelines on clinical care.

People with type 2 diabetes have a greater incidence of cardiovascular disease, cerebrovascular disease, and renal disease than the general population. Epidemiological studies suggest that relative hyperglycaemia accounts for part but not all of the increased risk.2-7 Raised blood pressure is more common in people with type 2 diabetes than in the general population,8 9 12 and in people without diabetes it is a major risk factor for myocardial infarction and stroke.13 11 Epidemiological studies of the role of blood