evaluation. The protocol also has potential as a research instrument since use of a common method will make analyses of case series of incidents more powerful. In the meantime, however, it is already proving a powerful means of investigating and analysing clinical incidents and drawing out the lessons for enhancing patient safety.

Copies of the full protocol and details of training programmes are available from Association of Litigation and Risk Management (ALARM), Royal Society of Medicine, 1 Wimpole Street, London W1.

Contributors: CV and ST-A carried out the research on which the original protocol was based. All authors participated equally in the development of the protocol, in which successive versions were tested in clinical practice and refined in the light of experience. The writing of the original protocol and present paper was primarily carried out by CV, SF-A, EJC, and DH, but all authors contributed to the final version. CV and DH are the guarantors.

Competing interests: CV received funding from Healthcare Risk Resources International to support the work of SF-A during the development of the protocol.

(Accepted 18 February 2000)

On error management: lessons from aviation

Robert L Helmreich

Pilots and doctors operate in complex environments where teams interact with technology. In both domains, risk varies from low to high with threats coming from a variety of sources in the environment. Safety is paramount for both professions, but cost issues can influence the commitment of resources for safety efforts. Aircraft accidents are infrequent, highly visible, and often involve massive loss of life, resulting in exhaustive investigation into causal factors, public reports, and remedial action. Research by the National Aeronautics and Space Administration into aviation accidents has found that 70% involve human error.1

In contrast, medical adverse events happen to individual patients and seldom receive national publicity. More importantly, there is no standardised method of investigation, documentation, and dissemination. The US Institute of Medicine estimates that each year 44 000 and 98 000 people die as a result of medical errors. When error is suspected, litigation and new regulations are threats in both medicine and aviation.

Error results from physiological and psychological limitations of humans.2 Causes of error include fatigue, workload, and fear as well as cognitive overload, poor interpersonal communications, imperfect information processing, and flawed decision making.3 In both aviation and medicine, teamwork is required, and team error can be defined as action or inaction leading to deviation from team or organisational intentions. Aviation increasingly uses error management strategies to improve safety. Error management is based on understanding the nature and extent of error, changing the conditions that induce error, determining behaviours that prevent or mitigate error, and training personnel in their use.4 Though recognising that operating theatres are not cockpits, I describe approaches that may help improve patient safety.

Summary points

In aviation, accidents are usually highly visible, and as a result aviation has developed standardised methods of investigating, documenting, and disseminating errors and their lessons

Although operating theatres are not cockpits, medicine could learn from aviation

Observation of flights in operation has identified failures of compliance, communication, procedures, proficiency, and decision making in contributing to errors

Surveys in operating theatres have confirmed that pilots and doctors have common interpersonal problem areas and similarities in professional culture

Accepting the inevitability of error and the importance of reliable data on error and its management will allow systematic efforts to reduce the frequency and severity of adverse events
Data requirements for error management

Multiple sources of data are essential in assessing aviation safety. Confidential surveys of pilots and other crew members provide insights into perceptions of organisational commitment to safety, appropriate teamwork and leadership, and error. Examples of survey results can clarify their importance. Attitudes about the appropriateness of juniors speaking up when problems are observed and leaders soliciting and accepting inputs help define the safety climate. Attitudes about the flying job and personal capabilities define pilots’ professional culture. Overwhelmingly, pilots like their work and are proud of their profession. However, their professional culture shows a negative component in denying personal vulnerability. Most of the 30,000 pilots surveyed report that their decision making is as good in emergencies as under normal conditions, that they can leave behind personal problems, and that they perform effectively when fatigued. Such inaccurate self perceptions can lead to overconfidence in difficult situations.

A second data source consists of non-punitive incident reporting systems. These provide insights about conditions that induce errors and the errors that result. The United States, Britain, and other countries have national aviation incident reporting systems that remove identifying information about organisations and respondents and allow data to be shared. In the United States, aviation safety action programmes permit pilots to report incidents to their own companies without fear of reprisal, allowing immediate corrective action. Because incident reports are voluntary, however, they don’t provide data on base rates of risk and error.

A third data source has been under development over 15 years by our project (www psyutexas edu/psy/helnieirch/nasaut. html). It is an observational methodology, the line operations safety audit (LOSA), which uses expert observers in the cockpit during normal flights to record threats to safety, errors and their management, and behaviours identified as critical in preventing accidents. Confidential data have been collected on more than 3,500 domestic and international airline flights—an approach supported by the Federal Aviation Administration and the International Civil Aviation Organisation.

The results of the line operations safety audit confirm that threat and error are ubiquitous in the aviation environment, with an average of two threats and two errors observed per flight. The box shows the major sources of threat observed and the five categories of error empirically identified; fig 1 shows the relative frequency of each category. This error classification is useful because different interventions are required to mitigate different types of error.

Proficiency errors suggest the need for technical training, whereas communications and decision errors call for team training. Procedural errors may result from human limitations or from inadequate procedures that need to be changed. Violations can stem from a culture of non-compliance, perceptions of invulnerability, or poor procedures. That more than half of observed errors were violations was unexpected. This lack of compliance is a source of concern that has triggered internal reviews of procedures and organisational cultures. Figure 1 also shows the percentage of errors that were classified as consequential—that is, those errors resulting in undesired aircraft states such as near misses, navigational deviation, or other error. Although the percentage of proficiency and decision errors is low, they have a higher probability of being consequential. Even non-consequential errors increase risk: teams that violate procedures are 1.4 times more likely to commit other types of errors.

Managing error in aviation

Given the ubiquity of threat and error, the key to safety is their effective management. One safety effort is training known as crew resource management (CRM). This represents a major change in training, which had previously dealt with only the technical aspects of
flying. It considers human performance limiters (such as fatigue and stress) and the nature of human error, and it defines behaviours that are countermeasures to error, such as leadership, briefings, monitoring and cross checking, decision making, and review and modification of plans. Crew resource management is now required for flight crews worldwide, and data support its effectiveness in changing attitudes and behaviour and in enhancing safety.

Simulation also plays an important role in crew resource management training. Sophisticated simulators allow full crews to practice dealing with error inducing situations without jeopardy and to receive feedback on both their individual and team performance. Two important conclusions emerge from evaluations of crew resource management training: firstly, such training needs to be ongoing, because in the absence of recurrent training and reinforcement, attitudes and practices decay; and secondly, it needs to be tailored to conditions and experience within organisations.

Understanding how threat and error and their management interact to determine outcomes is critical to safety efforts. To this end, a model has been developed that facilitates analyses both of causes of mishaps and of the effectiveness of avoidance and mitigation strategies. A model should capture the treatment context, including the types of errors, and classify the processes of managing threat and error. Application of the model shows that there is seldom a single cause, but instead a concatenation of contributing factors. The greatest value of analyses using the model is in uncovering latent threats that can induce error.

By latent threats we mean existing conditions that may interact with ongoing activities to precipitate error. For example, analysis of a Canadian crash caused by a take-off with wing icing uncovered 10 latent factors, including aircraft design, inadequate oversight by the government, and organisational characteristics including management disregard for de-icing and inadequate maintenance and training. Until this post-accident analysis, these risks and threats were mostly hidden. Since accidents occur so infrequently, an examination of threat and error under routine conditions can yield rich data for improving safety margins.

Applications to medical error

Discussion of applications to medical error will centre on the operating theatre, in which I have some experience as an observer and in which our project has collected observational data. This is a milieu more complex than the cockpit, with differing specialties interacting to treat a patient whose condition and response may have unknown characteristics. Aircraft tend to be more predictable than patients.

Though there are legal and cultural barriers to the disclosure of error, aviation’s methodologies can be used to gain essential data and to develop comparable interventions. The project team has used both survey and observational methods with operating theatre staff. In observing operations, we noted instances of suboptimal teamwork and communications paralleling those found in the cockpit. Behaviours seen in a Euro-

Behaviours that increase risk to patients in operating theatres

Communication:
- Failure to inform team of patient’s problem—for example, surgeon fails to inform anaesthetist of use of drug before blood pressure is seriously affected
- Failure to discuss alternative procedures

Leadership:
- Failure to establish leadership for operating room team

Interpersonal relations, conflict:
- Overt hostility and frustration—for example, patient deteriorates while surgeon and anaesthetist are in conflict over whether to terminate surgery after pneumothorax

Preparation, planning, vigilance:
- Failure to plan for contingencies in treatment plan
- Failure to monitor situation and other team’s activities—for example, distracted anaesthetist fails to note drop in blood pressure after monitor’s power fails

Fig 2 Threat and error model, University of Texas human factors research project

[Diagram of the threat and error model.]

References:

1. By latent threats we mean existing conditions that may interact with ongoing activities to precipitate error. For example, analysis of a Canadian crash caused by a take-off with wing icing uncovered 10 latent factors, including aircraft design, inadequate oversight by the government, and organisational characteristics including management disregard for de-icing and inadequate maintenance and training. Until this post-accident analysis, these risks and threats were mostly hidden. Since accidents occur so infrequently, an examination of threat and error under routine conditions can yield rich data for improving safety margins.

2. Understanding how threat and error and their management interact to determine outcomes is critical to safety efforts. To this end, a model has been developed that facilitates analyses both of causes of mishaps and of the effectiveness of avoidance and mitigation strategies. A model should capture the treatment context, including the types of errors, and classify the processes of managing threat and error. Application of the model shows that there is seldom a single cause, but instead a concatenation of contributing factors. The greatest value of analyses using the model is in uncovering latent threats that can induce error.

3. By latent threats we mean existing conditions that may interact with ongoing activities to precipitate error. For example, analysis of a Canadian crash caused by a take-off with wing icing uncovered 10 latent factors, including aircraft design, inadequate oversight by the government, and organisational characteristics including management disregard for de-icing and inadequate maintenance and training. Until this post-accident analysis, these risks and threats were mostly hidden. Since accidents occur so infrequently, an examination of threat and error under routine conditions can yield rich data for improving safety margins.

4. Understanding how threat and error and their management interact to determine outcomes is critical to safety efforts. To this end, a model has been developed that facilitates analyses both of causes of mishaps and of the effectiveness of avoidance and mitigation strategies. A model should capture the treatment context, including the types of errors, and classify the processes of managing threat and error. Application of the model shows that there is seldom a single cause, but instead a concatenation of contributing factors. The greatest value of analyses using the model is in uncovering latent threats that can induce error.

5. By latent threats we mean existing conditions that may interact with ongoing activities to precipitate error. For example, analysis of a Canadian crash caused by a take-off with wing icing uncovered 10 latent factors, including aircraft design, inadequate oversight by the government, and organisational characteristics including management disregard for de-icing and inadequate maintenance and training. Until this post-accident analysis, these risks and threats were mostly hidden. Since accidents occur so infrequently, an examination of threat and error under routine conditions can yield rich data for improving safety margins.

6. Understanding how threat and error and their management interact to determine outcomes is critical to safety efforts. To this end, a model has been developed that facilitates analyses both of causes of mishaps and of the effectiveness of avoidance and mitigation strategies. A model should capture the treatment context, including the types of errors, and classify the processes of managing threat and error. Application of the model shows that there is seldom a single cause, but instead a concatenation of contributing factors. The greatest value of analyses using the model is in uncovering latent threats that can induce error.

7. By latent threats we mean existing conditions that may interact with ongoing activities to precipitate error. For example, analysis of a Canadian crash caused by a take-off with wing icing uncovered 10 latent factors, including aircraft design, inadequate oversight by the government, and organisational characteristics including management disregard for de-icing and inadequate maintenance and training. Until this post-accident analysis, these risks and threats were mostly hidden. Since accidents occur so infrequently, an examination of threat and error under routine conditions can yield rich data for improving safety margins.
Case study: synopsis

An 8 year old boy was admitted for elective surgery on the eardrum. He was anaesthetised and an endotracheal tube inserted, along with internal stethoscope and temperature probe. The anaesthetist did not listen to the chest after inserting the tube. The temperature probe connector was not compatible with the monitor (the hospital had changed brands the previous day). The anaesthetist asked for another but did not connect it; he also did not connect the stethoscope.

Surgery began at 08 20 and carbon dioxide concentrations began to rise after about 30 minutes. The anaesthetist stopped entering CO2 and pulse on the patient's chart. Nurses observed the anaesthetist nodding in his chair, head bobbing; they did not speak to him because they "were afraid of a confrontation."

At 10 15 the surgeon heard a gurgling sound and realised that the airway tube was disconnected. The problem was called out to the anaesthetist, who reconnected the tube. The anaesthetist did not check breathing sounds with the stethoscope.

At 10 30 the patient was breathing so rapidly the surgeon could not operate; he notified the anaesthetist that the rate was 60/min. The anaesthetist did nothing after being alerted.

At 10 45 the monitor showed irregular heartbeats. Just before 11 00 the anaesthetist noted extreme heartbeat irregularity and asked the surgeon to stop operating. The patient was given a dose of lignocaine, but his condition worsened.

At 11 02 the patient's heart stopped beating. The anaesthetist called for code, summoning the emergency team. The endotracheal tube was removed and found to be 50% obstructed by a mucous plug. A new tube was inserted and the patient was ventilated. The emergency team anaesthetist noticed that the airway heater had caused the breathing circuit's plastic tubing to melt and turned the heater off. The patient's temperature was 108°F. The patient died despite the efforts of the code team.

Establishing error management programmes

Available data, including analyses of adverse events, suggest that aviation's strategies for enhancing teamwork and safety can be applied to medicine. I am not suggesting the mindless import of existing programmes; rather, aviation experience should be used as a template for developing data driven actions reflecting the unique situation of each organisation.

This can be summarised in a six step approach. As in the treatment of disease, action should begin with:

- History and examination;
- Diagnosis.

The history must include detailed knowledge of the organisation, its norms, and its staff. Diagnosis should include data from confidential incident reporting systems and surveys, systematic observations of team performance, and details of adverse events and near misses.

Further steps are:

- Dealing with latent factors that have been detected, changing the organisational and professional cultures, providing clear performance standards, and adopting a non-punitive approach to error (but not to violations of safety procedures);
- Providing formal training in teamwork, the nature of error, and in limitations of human performance;
- Providing feedback and reinforcement on both interpersonal and technical performance; and
- Making error management an ongoing organisational commitment through recurrent training and data collection.

Some might conclude that such programmes may add bureaucratic layers and burden to an already overtaxed system. But in aviation, one of the strongest proponents and practitioners of these measures is an airline that eschews anything bureaucratic, learns from everyday mistakes, and enjoys an enviable safety record.

Funding for research into medical error, latent factors in the system, incident reporting systems, and development of training is essential for implementation of such programmes. Research in medicine is historically specific to diseases, but error cuts across all illnesses and medical specialties.

I believe that if organisational and professional cultures accept the inevitability of error and the importance of reliable data on error and its management, systematic efforts to improve safety will reduce the frequency and severity of adverse events.

Thanks to David Musson, Bryan Sexton, William Taggart, and John Wilhelm for their counsel.

Funding: Partial support was provided by the Gottlieb Daimler und Carl Benz Stiftung.

Competing interests: RH has received grants for research in aviation from the federal government, has been a consultant for airlines, and has received honorariums for speaking to medical groups.

Anaesthesiology as a model for patient safety in health care

David M Gaba

Although anaesthesiologists make up only about 5% of physicians in the United States, anaesthesiology is acknowledged as the leading medical specialty in addressing issues of patient safety. Why is this so?

Firstly, as anaesthesia care became more complex and technological and expanded to include intensive care it attracted a higher calibre of staff. Clinicians working in anaesthesiology tend to be risk averse and interested in patient safety because anaesthesia can be dangerous but has no therapeutic benefit of its own. Anaesthesiology also attracted individuals with backgrounds in engineering to work either as clinicians or as biomedical engineers involved in operating room activities. They and others found models for safety in anaesthesia in other hazardous technological pursuits, including aviation.

Secondly, in the 1970s and ‘80s the cost of malpractice insurance for anaesthesiologists in the United States soared and was at risk of becoming unavailable. The malpractice crisis galvanised the profession at all levels, including grass roots clinicians, to address seriously issues of patient safety. Thirdly, and perhaps most crucially, strong leaders emerged who were willing to admit that patient safety was imperfect and that, like any other medical problem, patient safety could be studied and interventions planned to achieve better outcomes.

Accomplishments in patient safety in anaesthesiology

Anaesthesia: safer than ever

It is widely believed that anaesthesia is much safer today (at least for healthy patients) than it was 25 or 50 years ago, although the extent of and reasons for the improvement are still open to debate. Traditional epidemiological studies of the incidence of adverse events related to anaesthesia have been conducted periodically from the 1950s onwards. Many of these studies were limited in scope, had methodological constraints, and cannot be compared with each other because of differing techniques. An important outcome has been the emergence of non-traditional investigative techniques that aim not to find the true incidence of adverse events but to highlight underlying characteristics of mishaps and to suggest improvements in patient care.

Summary points

Anaesthesiology is acknowledged as the leading medical specialty in addressing patient safety.

Anaesthesia is safer than ever owing to many different types of solutions to safety problems.

Solution strategies have included incorporating new technologies, standards, and guidelines, and addressing problems relating to human factors and systems issues.

The multidisciplinary Anesthesia Safety Foundation was a key vehicle for promoting patient safety.

A crucial step was institutionalising patient safety as a topic of professional concern.

Although anaesthesiology has made important strides in improving patient safety, there is still a long way to go.

Such techniques have included the “critical incident” technique adapted by Cooper from aviation; the analysis of closed malpractice claims; and the Australian incident monitoring study (AIMS). These approaches analyse only a small proportion of the events that occur but attempt to glean the maximum amount of useful information from the data.