Escherichia coli O148 and Diarrhoea in Adults

SIR,—Your leading article "Dropouts' Diarrhoea" (10 August, p. 373) referred to the discovery of the O148 serogroup of Escherichia coli during an investigation of travellers' diarrhoea in Aden.1 Subsequent work in the U.S.A. demonstrated its pathogenicity in laboratory systems as well as in human volunteers2 and showed that this enteropathogenicity was due to an enterotoxin.3 Epidemiological observations have been confirmed by further field studies, though the results have not been published. Because of the withdrawal of British troops from Aden these confirmatory studies were carried out during the invasion of Sharjah, an Arab Gulf area. As in the Aden study, the work involved a newly arrived unit of about 620 men, and the bacteriological and epidemiological observations followed the scheme used in Aden.1

The incidence of diarrhoea in the newly arrived troops was almost three times that seen in the seasoned garrison troops. In the newly arrived troops shigella infection was found in 18% of the cases of diarrhoea and E. coli O148 was isolated from 50 (25%) of those cases in which shigellae were not found. The cases with E. coli O148 showed a peak incidence in the first three weeks after arrival, whereas the shigella infections occurred later in weeks. In the seasoned troops shigella infection was found in 29% of cases whereas E. coli O148 occurred in only 4%. Thus the incidence of infection with E. coli O148 was much lower in seasoned troops, but seasoned and newly arrived troops were affected equally by the shigella infections. In both groups the peak incidence of the bacillary diarrhoea occurred in the third week and was mainly caused by two outbreaks due to Shigella dysenteriae 3 and Sh. dysenteriae 6, though there were some cases due to other shigella serotypes.

Samples of all meals served by the camp kitchen were examined bacteriologically and E. coli O148 was found in 12%. It was found in samples of all types of meal over the whole period of the study and therefore no single food could be exclusively incriminated as the source of infection. Faeces from 140 food handlers were examined and three were excreting E. coli O148, one being a local civilian and two British soldiers. Flies occurred in the kitchen area and 8% were infected with E. coli O148.

As in the Aden study, E. coli O148 was clearly related to the diarrhoea and 83% of all the isolates were from specimens taken during the acute phase of the disease. Serial faecal specimens were taken from as many subjects as possible and these showed that E. coli O148 was acquired 3-7 days before the onset of diarrhoea, appeared in pure culture in the acute phase, and remained for a variable period in the convalescent stages. This is a similar pattern to that seen in infantile enteritis due to enteropathogenic E. coli.

E. coli O148 was the commonest single serogroup found in faecal specimens, accounting for 8-5% of all isolates; similarly in the meals it was the commonest serogroup, accounting for 23% of all E. coli isolates. During the 1968 study it was not possible to investigate in detail the origin of E. coli O148 in the meals, but in a later study it was shown that the food supplied to the kitchen was free from E. coli O148 but became infected during preparation and serving, either from infected food handlers or from flies. In Aden the isolates of E. coli O148 were all flagellar type H28, whereas in Sharjah the epidemic strain was flagellar type H15 with a few isolates of flagellar type H30. In the studies of infantile enteropathogenic E. coli it has been observed that within an O group more than one H type may cause disease.7 It appears that E. coli O148 is prevalent in Arabia but uncommon in the British Isles; since 1968 we have identified approximately 20,000 strains of E. coli isolated in the British Isles, and of these strains only 20 were E. coli O148. In the present studies it seemed that persons newly arrived in Arabia became infected with this enteropathogenic serogroup and developed diarrhoea. It must be stressed that E. coli O148 is not the only cause of travellers' diarrhoea but seems responsible for a significant proportion in Arabia.8 I am, etc.,

B. ROWE

Salmonella and Shigella Reference Laboratory, Central Public Health Laboratory, London N.W.9


Tetracycline-resistant Group A Streptococci

SIR,—Dr. Emslie's interesting letter (12 August, p. 467) has stimulated me to see if similar variations in the prevalence of tetracycline-resistant streptococci were recorded from cultures received from north Glasgow.

Overall the figure which I reported in late 19739 remained the same for the whole of the year at 34%. However, though the numbers were small, ranging between 20 and 34 per quarter, there were variations, the first two quarters of the year having about double the proportion of tetracycline-resistant strep- tococci compared with the second two quarters of the year. The first two quarters of 1974 have reverted to the pattern seen in the first two quarters of 1973, between 40 and 50% of cultures being tetracycline-resistant. The overall resistance in the first half-year of 1974 is approximately 47%. However, if the pattern seen in 1973 recurs the overall percentage of tetracycline-resistant strains will probably be less than the figure for the first half-year.

A comparison was made between the tetracycline-resistance of streptococci isolated from the respiratory tract and that of those from the alimentary canal. Overall, in 1973 29% of strains from the respiratory tract were tetracycline-resistant compared with 41% of strains from non-respiratory sources. The same pattern has been seen in the first two quarters of 1974, 38% of respi- ratory strains being tetracycline-resistant compared with 56% of strains from non- respiratory sources.

I find it difficult to know whether there is any significance in the findings of both Dr. Ems- lie and myself that rather more non-respira- tory strains are tetracycline-resistant than respiratory strains. It would be interesting to have more information from other laboratories. However, the resistance to streptomycin is certainly being reduced, and there is an "absence of side effects" cause me some concern and prompt me to report two cases seen in this hospital.

Case 1, a 38-year-old woman, was admitted with a diagnosis of acute pancreatitis. Her serum amylase was 1,960 Somogyi units/100 ml (normal range 200-100/100 ml) and her serum calcium 7.1 mg/100 ml (normal range 9.0-10.2/100 ml). Treatment with aprotinin was started with a dose of 1 million units followed by 100,000 units hourly together with gastric suction and intra- venous fluids. Within 48 hours she had markedly deteriorated and died of shock and shock. There was no overt bleeding but coagulation screening tests were abnormal (see table). Intra-venous streptomycin type 7,7,7 for 24 hours was given to the treatment together with lincomycin, ampicillin, and nalidixic acid. Two days later she suffered a respiratory arrest and required intermittent positive pressure ventilation. Microscopic examination of the tracheal aspirate showed frag- ments of lung tissue and indicated the develop- ment of a "shock lung syndrome." The aproti- nin infusion was stopped and the patient's con- dition steadily improved. She was discharged fully recovered 27 days after admission.

Case 2, a 44-year-old man, was admitted with an acute onset of rigor and respiratory difficulty. His temperature fluctuated confirming a negative septicaemia (Klebsiella spp.) and the serum amylase was only 240 Somogyi units/100 ml. He was treated with intravenous gentamicin, ampicillin, and hydrocortisone but rapidly developed evidence of a bleeding diathesis (see table). He became confused and developed a diaphragmatic and corneal reflex. Due to the treatment together with lincomycin, ampicillin, and nalidixic acid. Two days later she suffered a respiratory arrest and required intermittent positive pressure ventilation. Microscopic examination of the tracheal aspirate showed fragments of lung tissue and indicated the develop- ment of a shock lung syndrome. The aproti- nin infusion was stopped and the patient's condition steadily improved. She was discharged fully recovered 27 days after admission.

Traslasyol for Pancreatitis

SIR,—I would not dispute the generally optimistic conclusions of your leading article on Traslasyol (aprotinin) treatment for acute pancreatitis (20 July, p. 133), but the state- ments made is that it is harmless. It is, however, with an "absence of side effects" cause me some concern and prompt me to report two cases seen in this hospital.

Case 1, a 38-year-old woman, was admitted with a diagnosis of acute pancreatitis. Her serum amylase was 1,960 Somogyi units/100 ml (normal range 200-100/100 ml) and her serum calcium 7.1 mg/100 ml (normal range 9.0-10.2/100 ml). Treatment with aprotinin was started with a dose of 1 million units followed by 100,000 units hourly together with gastric suction and intra- venous fluids. Within 48 hours she had markedly deteriorated and died of shock and shock. There was no overt bleeding but coagulation screening tests were abnormal (see table). Intra-venous streptomycin type 7,7,7 for 24 hours was given to the treatment together with lincomycin, ampicillin, and nalidixic acid. Two days later she suffered a respiratory arrest and required intermittent positive pressure ventilation. Microscopic examination of the tracheal aspirate showed frag- ments of lung tissue and indicated the develop- ment of a "shock lung syndrome." The aproti- nin infusion was stopped and the patient's con- dition steadily improved. She was discharged fully recovered 27 days after admission.

Case 2, a 44-year-old man, was admitted with an acute onset of rigor and respiratory difficulty. His temperature fluctuated confirming a negative septicaemia (Klebsiella spp.) and the serum amylase was only 240 Somogyi units/100 ml. He was treated with intravenous gentamicin, ampicillin, and hydrocortisone but rapidly developed evidence of a bleeding diathesis (see table). He became confused and developed a diaphragmatic and corneal reflex. Due to the treatment together with lincomycin, ampicillin, and nalidixic acid. Two days later she suffered a respiratory arrest and required intermittent positive pressure ventilation. Microscopic examination of the tracheal aspirate showed fragments of lung tissue and indicated the develop- ment of a shock lung syndrome. The aproti- nin infusion was stopped and the patient's condition steadily improved. She was discharged fully recovered 27 days after admission.