Escherichia coli O148 and Diarrhoea in Adults

Sir,—Your leading article "Dropouts' Diarrhoea" (10 August, p. 373) referred to the discovery of the O148 serogroup of Escherichia coli during an investigation of travel incidents in Aden.1 Subsequently work in the U.S.A. demonstrated its pathogenicity in laboratory systems as well as in human volunteers2 and showed that this enteropathogenicity was due to an enterotoxin that elicits a diarrhoeal response. The significance of this has been confirmed by further field studies, though the results have not been published. Because of the withdrawal of British troops from Aden these confirmatory studies were carried out in Sharjah, the northernmost Arab city in the Arabian Gulf area. As in the Aden study, the work involved a newly arrived unit of about 620 men, and the bacteriological and epidemiological observations followed the scheme used in Aden.1

The incidence of diarrhoea in the newly arrived troops was almost three times that seen in the seasoned garrison troops. In the newly arrived troops shigella infection was found in 18% of the cases of diarrhoea and E. coli O148 was isolated from 50% (25%) of those cases in which shigella were not found. The cases with E. coli O148 showed a peak incidence in the first three weeks after arrival, whereas the shigella infection occurred later in the season. In the seasoned troops shigella infection was found in 29% of cases whereas E. coli O148 occurred in only 4%. Thus the incidence of infection with E. coli O148 was much lower in seasoned troops, but seasoned and newly arrived troops were affected equally by the shigella infections. In both groups the peak incidence of the diarrhoeal illness occurred in the second quarter and was mainly caused by two outbreaks due to Shigella dysenteriae 3 and Sh. dysenteriae 6, though there were some cases due to other shigella serotypes. Samples of all meals served by the camp kitchen were examined bacteriologically and E. coli O148 was found in 12%. It was found in samples of all types of meal over the whole period of the study and therefore no single food could be exclusively implicated as the source of infection. Faeces from 140 food handlers were examined and three were excreting E. coli O148, one being a local civilian and two British soldiers. Flies occurred in the kitchen area and 8% were infected with E. coli O148.

As in the Aden study, E. coli O148 was closely related to the diarrhoea and 83% of all the isolates were from specimens taken during the acute phase of the disease. Serial faecal specimens were taken from as many subjects as possible and these showed that E. coli O148 was acquired 3-7 days before the onset of diarrhoea, appeared in pure culture in the acute phase, and remained for a variable period in the convalescent stages. This is a similar pattern to that seen in infantile enteritis due to enteropathogenic E. coli.

E. coli O148 was the commonest single serogroup found in faecal specimens, accounting for 8-5% of all isolates; similarly in the meals it was the commonest serogroup, accounting for 23% of all E. coli isolates. During the 1968 study it was possible to investigate in detail the origin of E. coli O148 in the meals, but in a later study it was shown that the food supplied to the kitchen was free from E. coli O148 but became infected during preparation and serving, either from infected food handlers or from flies.

In Aden the isolates of E. coli O148 were all flagellar type H28, whereas in Sharjah the epidemic strain was flagellar type H53 and with a few isolates of flagellar type H30. In the studies of infantile enteropathogenic E. coli it has been observed that within an O group more than one H type may cause disease.3

It appears that E. coli O148 is prevalent in Arabia but uncommon in the British Isles; since 1968 we have identified approximately 20,000 strains of E. coli isolated in the British Isles, and of these strains only 20 were E. coli O148. In the present study it seemed that persons newly arrived in Arabia became infected with this enteropathogenic serogroup and developed diarrhoea. It must be stressed that E. coli O148 is not the only cause of travellers' diarrhoea but seems responsible for a significant proportion in Arabia.—I am, etc.,

B. ROWE
Salmonella and Shigella Reference Laboratory, Central Public Health Laboratory, London NW9


Tetracycline-resistant Group A Streptococci

Sir,—Dr. Emslie's interesting letter (12 August, p. 467) has stimulated me to see if similar variations in the prevalence of tetracycline-resistant streptococci were recorded from cultures received from north Glasgow. Overall the figure which I reported in late 1973 remained the same for the whole of the year at 34%. However, though the numbers were small, ranging between 20 and 34 per quarter, there were variations, the first two quarters of the year having about double the proportion of tetracycline-resistant strepto-
cocci compared with the second two quarters of the year. The first two quarters of 1974 have reverted to the pattern seen in the first two quarters of 1973, between 40 and 50% of cultures being tetracycline-resistant. The overall resistance in the first half-year of 1974 is approximately 47%. However, if the pattern seen in 1973 recurs the overall percentage of tetracycline-resistant strains will probably be less than the figure for the first half-year.

A comparison was made between the tetracycline-resistance of streptococci isolated from the respiratory tract and that of those from the gastrointestinal tract. Over all, in 1973 29% of strains from the respiratory tract were tetracycline-resistant compared with 41% of strains from non-respiratory sources. The same pattern has been seen in the first two quarters of 1974, 38% of respiratory strains being tetracycline-resistant compared with 56% of strains from non-respiratory sources.

I am at present not certain whether there is any significant difference between the prevalence of resistance in the two groups. On the other hand, it is possible that the tetracycline resistance in streptococci remains a problem in the West of Scotland, whether the organisms are isolated from patients in the country or in the town.—I am, etc.,

R. J. FALLON
Department of Laboratory Medicine, Rochdale Hospital, Rochdale.1


Traslol for Pancreatitis

Sir,—I would not dispute the generally optimistic conclusions of your leading article on Traslol (aprotinin) treatment for acute pancreatitis (20 July, p. 133), but the treatment after all is a "bridge" treatment, rather than a "cure" treatment, and with an "absence of side effects" cause me some concern and prompt me to report two cases seen in this hospital.

Case 1, a 38-year-old woman, was admitted with a diagnosis of acute pancreatitis. Her serum amylase was 1,960 Somogyi units/100 ml (normal range > 200/100 ml) and her serum calcium 7-1 mg/100 ml (normal range 9-10-12 mg/100 ml). Treatment with aprotinin was started with a dose of 250,000 units followed by 100,000 units hourly together with gastric suction and intravenous fluids. Within 48 hours she had markedly deteriorated and required intubation and shock. There was no overt bleeding but coagulation screening tests were abnormal (see table). Intravenous tempol (Trasylol) was infused but there was little improvement. She was diagnosed with a respiratory arrest and required intermittent positive pressure ventilation. Microscopic examination of the tracheal aspirate showed deposits of lung tissue and indicated the development of a "shock lung syndrome." The aprotinin infusion was stopped but that patient's condition steadily improved. She was discharged fully recovered 27 days after admission.

Case 2, a 44-year-old man, was admitted with an acute onset of rigor and respiratory difficulty. His serum calcium confirmed negative sepsis (Klebsiella spp.) and the serum amylase was only 240 Somogyi units/100 ml. He was treated with intravenous gentamicin, ampicillin, and hydrocortisone but rapidly developed evidence of a bleeding diathesis (see table). He became respiratory and died in a short while after admission. A postmortem examination showed extensive tissue and indicated the development of an unusual "shock lung syndrome." The aprotinin treatment was stopped and the patient died in a short while after admission. He became respiratory and died in a short while after admission.