Correspondence

Extracranial-intracranial bypass, one; clinical trials, nil

SIR,—Many of us outside the specialty of cerebrovascular surgery have nevertheless followed the correspondence relating to the international extracranial-intracranial bypass trial with interest. 1, 2 The interpretation of the trial made by Professor H A F Dudley, M.D. (J. June 15th, p 1501), raises many questions of concern to all those involved in randomised trials in which one “arm” is a surgical procedure.

Trials of technical innovations in a single centre with interested parties are difficult enough to perform; trials including many centres inevitably encounter problems related to quality control and protocol violations. Once a trial becomes truly multicentre and international, however, gathering accurate data is likely to be fraught with difficulties.

It is intriguing to consider why some eligible patients are selected for randomisation while others who are equally eligible are not. In addition, what reasons are there for a randomised patient not receiving the allocated treatment? Discrepancies of this type obviously throw doubt on the validity of any data obtained. From experience of randomised surgical trials for over 10 years, I would suggest that the two chief reasons for trial idiosyncrasy are, firstly, problems with informed consent and, secondly, a lack of time and commitment on the part of the participating surgeon.

Both these reasons are understandable. It can be extremely difficult (and time consuming) to explain to a patient that he has a potentiallycrippling or fatal disease that is suitable for randomisation but that whereas one treatment arm is active, the other consists of a “wait and see” policy. Equally, once a patient is included in a trial entailing long term careful follow up and investigation the extra time needed and resulting paperwork may be considerable.

There is no doubt that surgeons are often willing, for the very best of motives, to participate in therapeutic trials. Such enthusiasm, however, may backfire if the protocol is not scrupulously adhered to. In my view, when a surgeon agrees to participate in a randomised clinical trial he should be made fully aware of all the possible difficulties, ethical considerations, time, and attention to detail that such a commitment entails. Strict adherence to the protocol is essential, and the surgeon must accept that his clinical freedom will be inhibited. If a patient admitted under his care is eligible for randomisation then that patient must be included in the study. If the patient does not give informed consent to randomisation then, whatever treatment is provided, the patient’s progress should nevertheless be monitored in exactly the same way as it would have been had he been allocated to the randomised treatment.

Accordingly, if a surgeon is invited to participate in a controlled randomised trial he should consider carefully the overall implications before agreeing. Should he decide to participate in this long term and time consuming exercise, with all its ethical dilemmas and pitfalls, then he immediately forfeits a certain degree of clinical independence. Failure to adhere to the protocol, with non-randomisation of eligible patients or randomisation of ineligible patients, can have serious long term consequences, as illustrated so dramatically in the extracranial-intracranial study.

The truth, as Popper pointed out, is never manifest, and therefore we must make do with science. It is most important that the scientific status of any therapeutic procedure is established, and in clinical medicine this demands a careful and disciplined approach to clinical trials.

I TAYLOR
Faculty of Medicine,
Southampton General Hospital,
Southampton SO1 6HU

The search for a hormonal switch for obesity

SIR,—We think that there is a good case for adding two regulatory peptides to the already long list cited by Drs C Dieguez and M F Scanlon in their interesting leading article on possible endocrine causes of obesity (30 May, p 1371). These are neuropeptide Y and galanin, both of which have been convincingly shown to be among the most powerful known central stimulants of appetite in rodents.

Neuropeptide Y (the most abundant neuropeptide in the brain) is found in high concentrations in the hypothalamic nuclei,1 including the para-
ventricular nucleus, which, as pointed out by Drs Ding and Ding, is normally thought to be important in controlling food intake. Injection of neuropeptide Y (and its close analogue, peptide YY) into the paraventricular nucleus stimulates eating, particularly of carbohydrate rich food, and chronic administration may lead to obesity.

Galanin, another hypothalamic regulatory peptide, similarly causes hyperphagia when injected into the paraventricular nucleus.

The increasing length of the list of candidate peptides undermines both the complexity of peptideergic appetite control mechanisms and the difficulty of relating experimental findings to real life. We, however, have recently identified pronounced disturbances in hypothalamic concentrations of both neuropeptide Y and galanin in different rodent models of obesity or diabetes, or both, all of which show hyperphagia. This suggests that these two peptides have a key physiological role in appetite regulation in the intact animal. In the yellow obese KK (KKAy) mouse and the diabetic Chinese hamster hyperphagia (with hyperinsulinaemia and insulin resistance) appears early in the development of the metabolic syndrome, which is completed by the development of obesity and glucose intolerance.

In both of these spontaneous models the hypothalamic neuropeptide Y concentrations are significantly reduced compared with those in matched non-diabetic controls.

We showed that hypothalamic galanin concentrations were increased, both peptides being decreased in both the hyperphagic prediabetic phase and the complete syndrome.

Hypothalamic concentrations of these appetite-stimulating peptides may be reduced in an attempt to counter hypothalamic causes of obesity, such as defective signalling of satiety from the gut.

In contrast, rats rendered diabetic with the β-cell toxin, streptozotocin, show a striking and consistent increase in hypothalamic neuropeptide Y, occurring in both the central hypothalamus (containing virtually all the hypothalamic nuclei, including the paraventricular and ventromedial) and the lateral hypothalamus.

The fact that hyperphagia in streptozotocin diabetic rats is preferentially for carbohydrate, as is seen after intrahypothalamic neuropeptide Y administration, strengthens the argument that increased concentrations of neuropeptide Y may mediate hyperphagia in this model. Though overall galanin concentrations are increased and central hypothalamus were similar to those in controls, immunochemical studies have recently identified major morphological changes in galanin containing neurones throughout the hypothalamus in streptozotocin diabetic rats (unpublished findings).

Disturbances in hypothalamic neuropeptide Y and galanin in these quite different models of hyperphagia (both spontaneous and artificially induced) suggest that they are implicated in physiological appetite control in rodents. The relevance of this plethora of peptides to man is, of course, entirely speculative at present. Nevertheless, continuing progress in developing "tautomised" peptide analogues with specific agonist or antagonist properties may ultimately produce a rational treatment for human obesity.

GARETH WILLIAMS
STEPHEN R BLOOM

Royal Postgraduate Medical School,
Hammersmith Hospital,
London W12 OHS

neuropeptide Y preferentially enhance carbohydrate ingestion.

Stanley S, Kwok KL, Lampert S, Leiboizw SF. Neuropeptide Y chronically injected into the hypothalamus: a powerful neurochemical inducer of hyperphagia and obesity.

Cervical smears: new terminology and new demands

Sir,—Professor H Fox (23 May, p 1307) states that all women with mild dyskaryosis or even persistent inflammatory changes should be referred for colposcopy and treatment. Dr M J Campion and colleagues (p 1337) speak of a dramatic increase in deaths from cervical cancer in young women and suggest that the current practice of relying on cytological surveillance is inadequate. These follow other recent reports and statements of increasing strides with the neoplasms of young women, and women's rights campaigners on society's failure, incompetence, and indeed criminal negligence.

These allegations are being made in spite of evidence that current measures have already made a significant impact. There can be no question that screening by cervical cytology is both reliable and effective. The latest Scandinavian study relates mortality quite clearly to the level of cytological cover.

This resulted in an 80% fall in mortality between 1963 and 1982 in Iceland, which had the widest population coverage, and in decreases of 50%, 34%, and 25%, respectively, in Finland, Sweden, and Denmark, where cover was less extensive. It is interesting to note, however, that in Norway, where cover was comprehensive and the population was screened, mortality still declined by 10%. The extent of cover in the United Kingdom is a matter for argument, but the overall mortality between 1968 and 1984 fell from 12-5/100000 to 9-10/100000 and mortality in those under 30 rose from 0-22 to 0-91.

The increase is fourfold in the young but still represents only 10% of total mortality. It should also be noted that carcinoma of the cervix is the tenth most common malignancy in women. All this is unnecessary.

Our laboratory provides a five year screening service for two districts (Exeter and North Devon) with a combined population of 118000 women aged 20 to 69 years. The results from computerised records are available from 1979 to 1985, mainly for Exeter. Detailed analysis awaits completion of a 10 year period. The yearly number of smears rose from 21545 to 26800, the number showing any grade of cervical abnormality remaining static between 1563 and 1638, but the number with grade 3 rose from 52 to 233. Cytology detected 518 potentially lethal lesions (cervical intraepithelial neoplasia grade 3, 499; microinvasive carcinoma, 19). Those below and above the age of 35 were equally affected. Assuming a 40% risk of progression to invasive cancer, 207 cases would have occurred, 145 in Exeter alone, at all ages.

During the same period 152 cases of carcinoma of the cervix were diagnosed by the histopathological service in the Exeter district. Of these, 10% occurred in women under 35 and 25% in women over 65. Overall, 44% had either never had a smear or had not had one in the preceding five years. Underreporting and negative smear results characteristic of cervical intraepithelial neoplasia grade 1-2 had been reported in 14%, and in most repeat smears were recommended but the patients underwent biopsy instead of because of clinical symptoms. Clearly, at least as many cases were prevented by cytology as occurred, halving the actual rate, which is a notable achievement with an estimated screening cover of just over half of the population. At most only three cases a year were "missed" because a smear was not fully diagnostic in the first instance. We are yet to see a significant increase of invasive carcinoma in younger women, and the main problem lies in the older women who have not been screened.

Resources remain finite, and carcinoma of the cervix is one of many competing demands, none of which will ever be met fully. We deplore selective reporting and overstatement and we do not see valid reasons for panic. The first priority must be a well implemented five year recall system in which the country can afford now, coupled with careful long term surveillance to ensure that a gradual reduction of the disease is achieved. The alternative is chaos. The national press refers to the problem of cervical screening in some centres; this is not only unnecessary but irresponsible and unforgivable.

P PANTHONY
R M KELLY

Department of Pathology,
Royal Devon and Exeter Hospitals and
Postgraduate Medical School,
University of Exeter

Sub,—We welcome Professor H Fox's leading article (23 May, p 1307) and its clear recommendations. It is now clear that the amount of abnormality found in their cervical smears and those whose smears show persistent inflammatory changes should be referred for colposcopy. Professor Fox did not, however, mention the possibility of concomitant genitral tract infection in women with abnormal cervical cytology and its impact on management.

In a recent study in this clinic 93 women whose smears were reported to show a variety of minor changes not sufficiently pronounced to be termed dyskaryosis underwent colposcopy and biopsy, when indicated. In each case a firm clinical diagnosis had not been apparent, and a repeat smear at varying intervals was recommended by the cytologist. Excluded from the study were any women whose smears had been reported as unsatisfactory for technical reasons or where a specific micro-organism—for example, Trichomonas vaginalis—was identified in the smear.

Fifty two of the women had histologically verified abnormal cervical epithelium. Of these, 32 had cervical intraepithelial neoplasia. Twenty three of the smears that were repeated at colposcopy were found to be normal. Of these women, 32 had cervical intraepithelial neoplasia, giving a false negative cytology rate of 35%.

Cervical intraepithelial neoplasia behaves as a