with cholesterol, factors are present within the common bile duct that
contribute to further stone growth. Patients at risk of stone
migration and thereby pancreatitis and jaundice have large cystic
and common bile ducts that can be detected by ultrasound
assessment. Those with dilated ducts should undergo early surgical
treatment to prevent these complications. In the short term
migration is likely to occur in only 3% of patients with normal sized
ducts.

References

SHORT REPORTS

Probable amniotic fluid embolism precipitated by amniocentesis and treated by exchange transfusion

Anamnestic fluid embolism is a serious complication of pregnancy with a high mortality. We report a case which occurred after amniocentesis for relief of polyhydramnios and which was successfully treated by exchange transfusion. ABO incompatibility appeared to play a part in the pathogenesis of the condition.

Case report

A 17 year old pregnant girl presented at 28 weeks' gestation with a volume of liquor that appeared excessive on clinical examination; this was confirmed by ultrasound examination. No fetal abnormalities were noted. At 32 weeks' gestation an ultrasound scan showed a double bubble affecting the fetal stomach, which suggested duodenal atresia. The uterus at this stage was tense. Amniocentesis was performed to relieve the abdominal tension and to obtain fluid for chromosome analysis. A total of 200 ml of clear liquor was drained into a closed draining system before the catheter fell out. She then vomited and complained of pain in the shoulder tip; 10 mg of a combination of morphine tartrate and cyclizine tetractrate (Cyclimorph) was given intramuscularly. Ninety minutes later she developed dyspnoea, central cyanosis, and a pulse rate of 140 beats/min. Blood samples were taken for blood gas analysis and coagulation studies (table). Bleeding was persistent from the venepuncture sites, and results of the coagulation studies confirmed a diagnosis of disseminated intravascular coagulation. She was treated with three units of fresh frozen plasma, heparin (500 units every hour), methylprednisolone 1 g eight hourly, cefuroxime 750 mg eight hourly, 10 mg vitamin K, frusenam 20 mg, and an infusion of dopamine (2 μg/kg/min). A central venous pressure line was inserted via an antecubital fossa vein. A sample of peripheral blood taken before delivery failed to show fetal squames or mucus.

Fifteen hours after the acute episode no fetal heart beat could be heard. Four units of blood were exchanged during the next 90 minutes using packed red cells and fresh frozen plasma; clotting indices improved slightly. A second exchange transfusion with a similar volume of blood was followed by a more dramatic improvement in clotting function. Forty hours after the acute episode the platelet count was 48×10^10/l; four units of platelets were given. At 41 hours she was delived of a stillborn infant weighing 2140 g. Blood loss was 100 ml. The amniotic fluid had shown chromosomes from an apparently normal female karyotype. The baby's blood group was B rhcus positive. Necropsy showed that the baby died of asphyxia, and duodenal atresia was not confirmed. A crossmatch sample of blood taken before amniocentesis appeared normal. Cells grouped as A rhc positive and the serum contained anti-B agglutinin to a titre of 1/512. The samples taken after the patient collapsed were grossly haemolysed, failed to clot, and lacked anti-B agglutinins. A sample of amniotic fluid collected at amniocentesis contained group B substance in high concentration.

Comment

Amniotic fluid embolism occurs in between one in 8000 and one in 80000 deliveries.1 In the confidential inquiries 1975-8 it was responsible for

Results of investigations

<table>
<thead>
<tr>
<th></th>
<th>Before amniocentesis</th>
<th>90 Minutes after amniotic fluid embolism</th>
<th>Before first exchange transfusion (20 h after embolism)</th>
<th>Before second exchange transfusion (30 h after embolism)</th>
<th>Before delivery (41 h after embolism)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse rate (beats/minute)</td>
<td>40</td>
<td>140</td>
<td>100</td>
<td>120</td>
<td>80</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>37</td>
<td>37-0</td>
<td>38-0</td>
<td>38-0</td>
<td>36-7</td>
</tr>
<tr>
<td>Respiration rate (breaths/minute)</td>
<td>40</td>
<td>40</td>
<td>45</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>Urine output (ml/h)</td>
<td>40</td>
<td>40</td>
<td>45</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Blood gas analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial pressure of carbon dioxide (kPa)</td>
<td>3-1</td>
<td>3-1</td>
<td>9-2</td>
<td>5-3</td>
<td>5-3</td>
</tr>
<tr>
<td>Partial pressure of oxygen (kPa)</td>
<td>3-6</td>
<td>3-6</td>
<td>20-0</td>
<td>16-3</td>
<td>16-3</td>
</tr>
<tr>
<td>Bicarbonate concentration (mml/l)</td>
<td>15-4</td>
<td>15-4</td>
<td>20-0</td>
<td>16-3</td>
<td>16-3</td>
</tr>
<tr>
<td>Base excess (mml/l)</td>
<td>-6-1</td>
<td>-3-3 (with oxygen)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haematology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clotting time (minutes)</td>
<td>>15</td>
<td>>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platelet count (×10^5)</td>
<td>130</td>
<td>130</td>
<td>Adequate</td>
<td>Adequate</td>
<td></td>
</tr>
<tr>
<td>Haemoglobin concentration (g/dl)</td>
<td>80</td>
<td>80</td>
<td>Adequate</td>
<td>Adequate</td>
<td></td>
</tr>
<tr>
<td>White cell count (×10^9)</td>
<td>16-7</td>
<td>16-7</td>
<td>23-5</td>
<td>14-0</td>
<td>14-0</td>
</tr>
<tr>
<td>Fibrin degradation products (mg/ml)</td>
<td>>1200</td>
<td>>1200</td>
<td>600</td>
<td>600</td>
<td>160</td>
</tr>
<tr>
<td>Prothrombin time/controlled (seconds)</td>
<td>25/12</td>
<td>25/12</td>
<td>40/10</td>
<td>14/13</td>
<td>12-5/13</td>
</tr>
<tr>
<td>Kaolin cephalin time/control (seconds)</td>
<td>120/43</td>
<td>120/43</td>
<td>56/42</td>
<td>56/44</td>
<td>35/42</td>
</tr>
<tr>
<td>Fibreinogen titre</td>
<td><1/2</td>
<td><1/2</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
</tr>
<tr>
<td>Platelet urca concentration (mml/l)</td>
<td>7-4</td>
<td>7-4</td>
<td>12-8</td>
<td>16-2</td>
<td>28-6</td>
</tr>
</tbody>
</table>
10% of maternal deaths, and the reported mortality is as high as 80% in some series. 1 Amniotic fluid embolism may occur after diagnostic amniocentesis, but this is uncommon. It is more likely to occur after hypertonic saline or dextrone is injected into the amniotic fluid. 2 In our patient exchange transfusion allowed rapid removal of red cell debris and haemoglobin from the circulation and provided red cells and clotting factors in fresh plasma. Amniotic fluid embolism may be diagnosed and treated.

We believe that exchange transfusion helped to change the course of events and contributed to a successful outcome in this patient.

We are grateful to Dr A Todd and Messrs A D D Forgan, R Henderson, J M Kay, K Kennedy, and W Simpson for their help in the investigation of this patient and to Miss Rosemary Cooper for typing the manuscript.

(accepted 13 February 1987)

Ninehowsell and Medical School, Dundee DD1 9SY
JULIE DODGSON, MRCP, registrar in obstetrics and gynaecology
J MARTIN, PFARS, senior registrar in anaesthetics
J BOSWELL, MB, CHB, associate specialist in blood transfusion
H B GOODALL, FRCPath, reader in haematology
ROBERT SMITH, MRCP, consultant in obstetrics and gynaecology

Correspondence and requests for reprints to: Dr Julie Dodgson.

Danazol and benign intracranial hypertension

Danazol is used in the treatment of endometriosis, menorrhagia, benign breast disease, and hereditary angio-oedema. 1 We report three cases of benign intracranial hypertension in patients treated with danazol.

Case reports

Case 1—A 23 year old woman was prescribed danazol 600 mg daily for endometriosis. Twelve weeks later she presented with a month's history of severe frontal headache and diplopia on lateral gaze. She had taken no other medication. She weighed 67 kg, and her blood pressure was 132/72 mm Hg. She had bilateral haemorrhagic papilloedema with constricted visual fields. The results of examination were otherwise normal, as were those of routine investigations including electroencephalography and computed brain tomography. The cerebrospinal fluid was not examined. Benign intracranial hypertension was diagnosed and treatment started with chlorothalidone. Her papilloedema resolved within six weeks. Inadvertent treatment with danazol two years later was associated with headache and diplopia, which cleared when she stopped taking the drug. She remained well eight years later.

Comment

Benign intracranial hypertension is a diagnosis of exclusion, typically occurring in obese young women, often with recent considerable weight gain. Although it is not life threatening, it may result in visual failure. In our patients treatment with danazol was temporally related to the onset and resolution of this syndrome. The patients in cases 1 and 3 were atypical for idiopathic benign intracranial hypertension, being non-obese. In case 3 inadvertent rechallenge resulted in recurrence of symptoms. Danazol suppresses the pituitary-ovarian axis by inhibiting gonadotrophin secretion. It has weak androgenic activity and may cause fluid retention and weight gain. 2 The pathophysiological mechanisms proposed in benign intracranial hypertension include cerebrospinal fluid hydropscretion, 2 impaired absorption, 3 and abnormalities of microvasculature. 4 Danazol induced fluid retention may aggravate these abnormalities. Raised intracranial pressure may also result from cerebral venous sinus thrombosis. Other associations include pregnancy, menarche, hypervitaminosis A, steroid withdrawal, and tetracycline treatment. 5

There are no published reports of benign intracranial hypertension associated with danazol. The Committee on Safety of Medicines has no other reports of this condition with danazol, although headaches and visual disturbances are frequently reported (personal communication). The manufacturers are aware of two other cases of raised intracranial pressure in patients treated with danazol (Winthrop, personal communication). Intracranial hypertension should be considered in any woman with headache or visual symptoms during treatment with danazol.

(accepted 13 February 1987)

Department of Neurology, University Hospital of Wales, Cardiff CF4 4XN
AJAY SHAH, MRCP, registrar
TIM ROBERTS, MRCP, registrar
I N F McQUEEN, FRCPath, consultant
J G GRAHAM, FRCPath, consultant

Welsh Drug Information Centre, University Hospital of Wales, Cardiff CF4 4XN
KATE WALKER, MPh, staff pharmacist

Correspondence to: Dr Roberts.

Clinical evaluation of lysuride in the management of hyperprolactinaemia

Bromocriptine is a semisynthetic ergot alkaloid that acts as a dopamine agonist and is highly effective in achieving normoprolactinaemia in most patients with raised serum prolactin concentrations. Some patients, however, may have unacceptable side effects. Lysuride hydrogen maleate (Lisuride; Revanil, Schering UK) is an 8-ethergone which has potent dopamine agonist activity both in vitro and in vivo; currently there are few data available about the incidence of side effects with lysuride in relation to its clinical efficacy. We have therefore assessed the efficacy of lysuride in 24 consecutive women presenting with hyperprolactinaemia.

Patients, methods, and results

All 24 patients (age range 19-42) presented with a serum prolactin concentration (mean of three estimations) above 360 mU/l, which is the upper limit of normal in...