Low serum selenium concentration and glutathione peroxidase activity in intrahepatic cholestasis of pregnancy

ANTTI KAUPPILA, HEIKKI KORPELA, ULLA-MAIJA MÄKILÄ, ERKKI YRJÄNHEIKKI

Abstract

Serum selenium concentrations were found to be significantly lower in women with intrahepatic cholestasis of pregnancy than in women with normal pregnancies during the last trimester of pregnancy and post partum. The activity of the selenium-containing glutathione peroxidase had a significant positive correlation with selenium concentration and it was also significantly lower in women with the disease.

These findings suggest that selenium deficiency and reduced glutathione peroxidase activity are associated with the aetiology of intrahepatic cholestasis of pregnancy.

Introduction

The aetiology of intrahepatic cholestasis of pregnancy is unknown. Patients with this condition are abnormally sensitive to oestrogens. Intrahepatic cholestasis of pregnancy is most common in Scandinavia and Chile, regions whose inhabitants have a low dietary intake of selenium. Because deficiency of selenium may lead to liver disturbances in animals and in man we investigated the importance of selenium in intrahepatic cholestasis of pregnancy by measuring the serum concentration of selenium and the serum activity of the selenoenzyme glutathione peroxidase in pregnant women with and without this disease.

Subjects and methods

Twelve consecutive patients with intrahepatic cholestasis of pregnancy from the antenatal ward and 12 healthy pregnant women from the outpatient maternity centre were studied (table 1). Those with the condition suffered from itching and had increased serum bile acid concentrations and serum aspartate aminotransferase and alanine aminotransferase activities. The patients and controls were matched for age (within three years) and parity. Because the serum concentration of selenium correlates strongly with nutritional selenium availability, which varies in Finland according to the time of year, the patients and controls were studied at the same time and from the same region. Four of the patients but none of the controls had a twin pregnancy. Venous blood samples were taken weekly from the patients with intrahepatic cholestasis of pregnancy from the 31st to the 37th weeks of gestation from the controls from the 30th to the 35th weeks of gestation until the third to fifth days postpartum.

Serum selenium concentrations were determined by hydride generation atomic absorption spectrophotometry and the activity of glutathione peroxidase by a spectrometric method using 1-butyl-hydroperoxide as the substrate.

In the statistical analyses of the results the changes within the groups were

<table>
<thead>
<tr>
<th>Mean (SD)</th>
<th>Range/No of primiparous</th>
<th>Mean (SD)</th>
<th>Gestational age at delivery (weeks)</th>
<th>No of pairs of twins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with intrahepatic cholestasis of pregnancy (n=12)</td>
<td>28.7 (5-4)</td>
<td>0-3/7</td>
<td>37.9 (2-1)</td>
<td>4</td>
</tr>
<tr>
<td>Controls (n=12)</td>
<td>26.3 (2-6)</td>
<td>0-3/7</td>
<td>40.3 (1-1)</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE 1—Clinical characteristics of patients with intrahepatic cholestasis of pregnancy and controls studied
assessed by Friedman's two way analysis of variance and a sign test. A matched pair test was used in cross sectional comparison of the groups during the 30th-34th, the 35th-37th, and the 38th-41st weeks of pregnancy. and post partum and linear regression analysis for correlation studies of serum selenium concentrations and glutathione peroxidase activities at these different times. The mean of the results within each period (indicated in fig 1) was used in the statistical analyses of the results.

![Graph of selenium concentration and glutathione peroxidase activity](image)

FIG 1—Mean (SEM) serum selenium concentration and glutathione peroxidase activity during different periods in the last trimester of pregnancy and 3-5 days after delivery in patients with intrahepatic cholestasis of pregnancy (△) and healthy controls (○). Significance of differences: *p<0.05, **p<0.01, ***p<0.001.

Results

The serum selenium concentrations and the serum glutathione peroxidase activities were significantly lower in the patients with intrahepatic cholestasis of pregnancy than in the controls during the 30th-34th and 35th-37th weeks of pregnancy and after delivery but not during the 38th-41st weeks of pregnancy (fig 1). The confidence intervals at the 99-9% confidence level for the difference in serum selenium concentration between the groups with the matched pairs t test were 0.08 to 0.33 μmol/l at 35-37 weeks of pregnancy and 0.10 to 0.36 μmol/l post partum. Serum selenium concentrations and glutathione peroxidase activities did not differ significantly between women with the condition who had singleton pregnancies and those who had twin pregnancies.

In the control group (evaluated with Friedman’s two way analysis of variance test) the concentrations of selenium (p=0.004) and the activities of glutathione peroxidase (p=0.002) differed significantly with time. The posterior sign test showed that serum selenium concentration during weeks 30-34 of pregnancy was significantly higher than during weeks 35-37 and during weeks 38-41 of pregnancy (table II). With the sign test the activities of glutathione peroxidase during weeks 30-34 were also significantly higher than during weeks 35-37 and weeks 38-41 of pregnancy and lower during weeks 38-41 of pregnancy than post partum. In the group with intrahepatic cholestasis of pregnancy there were no significant differences in serum selenium concentrations and glutathione peroxidase activities with time. (In this group only results from weeks 35-37 and post partum were analysed because some patients delivered before week 38 and some contracted intrahepatic cholestasis after week 34.)

There were significant positive correlations between serum selenium concentrations and glutathione peroxidase activities (fig 2) during weeks 35-37 (r=0.69, p<0.001) and weeks 38-41 of pregnancy (r=0.66, p<0.01), and post partum (r=0.65, p<0.001).

![Graph of serum concentration and glutathione peroxidase activity](image)

FIG 2—Correlation of serum selenium concentration with serum glutathione peroxidase activity during weeks 35-37 and 38-41 of pregnancy and post partum in patients with intrahepatic cholestasis of pregnancy who had singleton (△) and twin (○) births and women who had normal pregnancies (●).

Discussion

Oestrogens may disturb intracellular biliary metabolism, but the mechanism is not clear.1,2 Pathological changes in the cellular membranes may primarily be responsible for the injury,3,4 which resembles that induced by free radicals.3,5 In normal pregnancy antioxidants prevent the oxidative damage of oestrogens, but in patients with intrahepatic cholestasis of pregnancy in our study the concentration of selenium and the activity of glutathione peroxidase, an essential factor in antioxidation, were low. The antioxidative defence may have been defective, as glutathione peroxidase reduces concentrations of steroid hydroperoxides6 and other peroxides.9,10 In patients with intrahepatic cholestasis of pregnancy the reduced activity of glutathione peroxidase and possibly disturbed function of the microsomal cytochrome P-450 system, also controlled by selenium,11 may lead to the formation of free radicals,12,13 which could damage the hepatocytes and reduce excretion of bile.14,15

As pregnancy advances selenium concentrations usually decrease, but this causes no harm if the body’s storage and nutritional intake of selenium are normal.16 Twin pregnancy is a risk factor for intrahepatic cholestasis of pregnancy,17 as the excessive oestrogen load increases the requirement for hepatic antioxidative capacity.

| TABLE II—Mean (SD) serum concentrations of selenium and activities of glutathione peroxidase in controls and patients with intrahepatic cholestasis of pregnancy during different periods in last trimester of pregnancy and post partum. |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Serum selenium concentration (μmol/l) | Weeks of pregnancy | Serum glutathione peroxidase activity (U/l) | Weeks of pregnancy |
| | 30-34 | 35-37 | 38-41 | Post partum | 30-34 | 35-37 | 38-41 | Post partum |
| Controls (n=10) | | | | | | | | |
| 0.74 (0.07) | | | | | 267 (47) | 245 (46) | 230 (52) | 264 (63) |
| 0.65 (0.08) | | | | | 0.70 (0.17) | 1.82 (33) | 2.30 (35) | 2.64 (36) |
| 0.65 (0.09) | | | | | 0.49 (0.07) | | | |
| Patients with intrahepatic cholestasis of pregnancy (n=11) | | | | | | | | |
| 0.46 (0.11) | | | | | 0.49 (0.07) | | | |

*p<0.05, **p<0.01.
†Two controls were excluded because they did not have recordings for each period.
which, with the marginal selenium availability in Finland, often fails in twin pregnancy. The possibility that increased metabolism of selenium, similar to that seen in the liver disease caused by valproic acid, 2 or malabsorption due to cholestasis, 3 might be responsible for the low serum concentrations of selenium in patients with this disease seems unlikely as the selenium concentrations were already low when the disease first manifested. This study provides indirect evidence that the capacity of the liver to metabolize the products of hepatic oxidation—that is, the hepatic antioxidant defence mechanism—of oestrogens in patients with intrahepatic cholestasis of pregnancy may be impaired. This may lead to structural and functional damage to the hepatocytes, resulting in cholestasis.

We thank Miss Kaija Aura for her skilful technical help.

References

Relation between phenotype and banal melanocytic naevi
J S C ENGLISH, A J SWERDLOW, R M MACKIE, C J O’DOHERTY, J A A HUNTER, J CLARK, D J HOLE

Abstract
In a study of risk factors for the development of melanocytic naevi in relation to the pathogenesis of malignant melanoma 197 white adults were examined by four dermatologists and naevus counts correlated with several other features. Highly significant associations were found between large numbers of banal acquired melanocytic naevi and the ability to tan easily without burning (skin types 3 and 4), relative risk 4-6), brown or hazel eyes (relative risk 3-5), green or grey eyes (relative risk 3-5), and brown or black hair (relative risk 3-7). No significant associations with numbers of naevi were shown for parity or use of oral contraceptives or other steroid hormones.

This is the first study to find any relation between melanocytic naevi and phenotypic factors in a white population.

Introduction
Interest in the possible relation between melanocytic naevi and malignant melanoma was stimulated by the description by Elder and colleagues of the so-called "dysplastic naevus syndrome." Recent studies have shown that large numbers of "banal" acquired melanocytic naevi are a strong risk factor for melanoma. 4 The magnitude of this risk is much greater than for any other risk factor so far established and thus the aetiology and epidemiology of naevi are currently important topics of investigation. There is at present very little published information on factors leading to the development of naevi.

Several studies have been reported of numbers of naevi in the newborn 5 and in children and adults. 6 These show that naevi are rarely present at birth, increase in number at puberty, and are much less numerous in subjects over 40. The increase in the number of naevi at around puberty suggests that hormonal factors may be important. The existence of clouisma, increase in pigmentation, and darkening of naevi during pregnancy 7 and the detection of oestrogen and progesterone receptors on naevi 8 also suggest a possible relation between naevi and hormonal stimulation. One study reported that systemic administration of corticosteroid and corticotrophin.