yoga group to the regular practice of yoga. The considerable reduction in their drug treatment score in contrast with a non-
insignificant increase in intake of drugs in the control group
strengthens this view, as do the significant differences between the
groups in the number of attacks per week and peak flow rate.
McFadden clearly showed that the responsiveness of airways is
noticeably increased in patients with asthma, who develop broncho-
constriction in response to smaller quantities of physical, chemical,
and pharmacological stimuli than healthy subjects.29 A complex
interplay of several factors—namely, an inherent responsiveness of
the smooth muscle to stimuli, an abnormality in autonomic nervous
control, and a breakdown in airway defences—may promote bronchial hyper-reactivity. Thus reducing the responsiveness of the
tracheobronchial tree could benefit these patients considerably.

Abundant objective data now exist indicating that psychological
factors can interact with the asthmatic diathesis to worsen or
improve the course of the disease. The mechanisms of these
interactions are complex and not well understood, but psychological
factors may affect half of all patients. Modification of vagal effenter activity seems to affect the calibre of airways. It has been
shown that suggestion can actually decrease or increase the effects of
pharmacological stimuli on the airways. The role of the psychic
factor in inducing or prolonging attacks in acute exacerbations may
vary from patient to patient and in individual patients from episode
to episode. Goyache et al claimed that the psychosomatic imbalance is
present in many, if not all patients with asthma.1 Suppressed
emotion, anxiety, dependence, and extreme self consciousness may
all be accompanied by generalised and localised muscle tension,
including that of the voluntary respiratory musculature. This
increased muscle tension may be a precipitating or concomitant
factor that perpetuates and aggravates the asthmatic syndrome.

Yoga seems to stabilise and reduce the excitability of the nervous
system. Transcendental meditation (a traditional yogic meditation
technique) and Savasana have been clearly shown to be associated
with reduced metabolic rate.11 Crisan showed a significant reduction
in the level of anxiety after the practice of Pranayama, as evidenced
by increased skin resistance and a reduction in pulse rate, urinary
catecholamine concentration, urinary cholinesterase activity, and
anxiety scores.12 Several workers have found an increase in alpha
synchrony in electroencephalograms taken during transcendental
meditation, which points to its stabilising effect on the nervous
system. Yoga clearly relaxes the muscles, and this deep physical and
mental relaxation associated with the physiological changes seen in
our patients after daily yoga seems to have a stabilising effect on
bronchial reactivity, thus making the vagal effenter less excitable.

In conclusion, the reduction in psychological hyper-reactivity and
emotional instability achieved by yoga can reduce effenter vagal
reactivity, which has been recognised as the mediator of the
psychosomatic factor in asthma.

References
1 Goyache JR, Abo Y, Ikemi Y. The yoga perspective. Part II. Yoga therapy in the treatment of
3 Bhoo MV. Rationale of treatment and rehabilitation of asthma by yogic methods. Collected papers on
5 Honsberger R, Wilson AF. Transcendental meditation in treating asthma. Respiratory Therapy
6 Murthy KRJ, Sahai BK, Silaramaneji P, et al. Effect of pranayama (chakras, praksha, and
kumbhaka) on bronchial asthma—an open study. Lung (India) 1983;5:187-91.
7 Nagarachina R, Nagendra HR. Studies on bronchial asthma 1981-84. Bangalore, India: Vivekananda Kendra Yoga Therapy and Research Centre: (Reports 1-4, 8-11.)
1973:429.
9 Shivyuri DN. Studies on methods of clinical research in bronchial asthma and allied conditions.
Aspects of Allergy and Applied Immunology 1974;7:15-35.
11 Patel CH. Twelve month follow up of yoga and biofeedback in the management of hypertension.
12 Crisan HG. Pranayama in asthma sufferers—a pilot study. Heidelberg: University of Heidelberg,
1984. (PhD dissertation.)

(Accepted 8 August 1985)

---

Treatment of homozygous familial hypercholesterolaemia: an
informative sibship

RICHARD WEST, PENELlope GIBSON, June LLOYD

Abstract
In a family in which both parents had the heterozygous form of
familial hypercholesterolaemia four of the children had the
homozygous form. The three oldest homozygous children, two of
whom did not receive any treatment and in one of whom
treatment did not lower the plasma cholesterol concentration,
developed xanthomas in early childhood and died aged 3, 9, and
10 years. The fourth homozygous child was treated with diet and
drugs from the age of 1 and at the age of 15 had no xanthomas, no
clinical evidence of heart disease, and a virtually normal coronary
angioanogram. His plasma cholesterol concentration was reduced
by about 30% but remained considerably raised.

It is concluded that treatment, if started before atherosclerosis
develops, can delay the onset of atheroma and coronary heart
disease even though normal plasma cholesterol concentrations
are not achieved.

Introduction
Familial hypercholesterolaemia is dominantly inherited, and hetero-
ygotes have an increased risk of coronary heart disease in adult life.
Homozygotes have extremely high plasma cholesterol concentra-
tions and die of coronary heart disease in childhood or early adult
life. Treatment of homozygotes is difficult. Normal cholesterol
concentrations are unlikely to be achieved, and uncertainty exists
over whether coronary atherosclerosis can be prevented.11

We report on a family containing four siblings homozygous for the
disease. The progress of the youngest contrasted with that of the
other affected siblings, suggesting that prevention of atherosclerosis
is possible.

---

Department of Child Health, St George’s Hospital Medical School, London
SW17
RICHARD WEST, MD, FRCP, senior lecturer
PENELope GIBSON, MBChB, lecturer
JUNE LLOYD, MD, FRCP, professor

Correspondence to: Dr West.
Family history

PARENTS

Both parents were Asian and came from east Africa to live in England after the deaths of their first three children. At the age of 38 the father was asymptomatic and his plasma cholesterol concentration was 9.3 mmol/l (359 mg/100 ml). He was given only dietary advice. He had a myocardial infarction at the age of 54 and died two weeks later. The mother had a plasma cholesterol concentration of 8.8 mmol/l (339 mg/100 ml) at the age of 31. At age 48 it was 8.4 mmol/l (324 mg/100 ml) and treatment with cholestyramine was started. She remained asymptomatic.

THREE OLDEST CHILDREN

By the age of 3 the first child, a boy, had developed xanthomas (proved by biopsy) of skin and tendons, which became more extensive. By the age of 9 he had exertional dyspnoea, and at the age of 10 he suffered central chest pain of sudden onset and died one week later.

The second child, a girl, developed xanthomas at the age of 2. Investigation in Kampala when she was 9 showed extensive xanthomas, aortic stenosis, and enlargement of the left ventricle. Plasma cholesterol concentration was above 15 mmol/l (579 mg/100 ml) and she died shortly afterwards of left ventricular failure.

The third child, another girl, was brought to the United Kingdom for investigation at the age of 2. She had pronounced skin xanthomas but no other abnormalities. Plasma cholesterol concentration was over 23 mmol/l (885 mg/100 ml). Treatment with a diet low in fats and with dextrothyroxyene 3 mg daily was started, and subsequently triparanol was added, but there was no effect on plasma cholesterol concentration or the xanthomas. When she was 3 she died suddenly, just after returning to east Africa. Death was presumed to have been due to coronary heart disease, but necropsy was not performed.

FOURTH AFFECTED CHILD

Because of the family history we saw the fourth affected child, a boy, when he was 11 months old. He had no clinical abnormalities, but his plasma cholesterol concentration was 24.4 mmol/l (942 mg/100 ml) (low density lipoprotein cholesterol 21.6 mmol/l (854 mg/100 ml)). Treatment started with a diet low in fats, cholestyramine 32 g daily, clofibrate 25-30 mg/kg/day, and iron and vitamin supplements. Plasma cholesterol concentration after eight weeks was 23.2 mmol/l (895 mg/100 ml) so nicotinic acid was added in increasing dosage up to 100 mg/kg/day. Plasma cholesterol concentration gradually fell and after five months of treatment was 16.6 mmol/l (641 mg/100 ml) (low density lipoprotein cholesterol 14.6 mmol/l (563 mg/100 ml)).

The family returned to Africa for 10 months before settling in the United Kingdom. During this interruption of treatment small xanthomas of the skin developed behind his knees and in the natal cleft and the plasma cholesterol concentration rose to 24.7 mmol/l (954 mg/100 ml). From the age of 2 years 4 months he received treatment with diet, cholestyramine, clofibrate, and nicotinic acid. He was reviewed regularly, and compliance with treatment was good. The xanthomas resolved, and no new lesions or corneal arcus developed. Plasma cholesterol concentrations fluctuated between 12.9 and 20.9 mmol/l (498 and 807 mg/100 ml); mean concentrations over the periods 2.5-6.10, and 11-15 years were 17.0, 16.3, and 17.6 mmol/l (656, 629, and 680 mg/100 ml), representing reductions of 30%, 33%, and 28%, respectively.

This child's growth and pubertal development were normal; he was athletic and played competitive sports. At the age of 15 his heart was clinically, radiographically, and electrocardiographically normal. Coronary angiography showed a normal left ventricle (end diastolic pressure 8 mm Hg) and aortic root. The right coronary artery was normal. The left had a short main stem; there was minor irregularity at the origin of the left anterior descending artery, but the appearances were otherwise normal.

Discussion

The deaths during the first decade of the first three children homozygous for familial hypercholesterolaemia showed the potential lethality of the disorder in this family. In the first two children there was evidence of coronary heart disease, but the cardiac state of the third is speculative. The first two children were untreated, and treatment of the third child did not lower plasma cholesterol concentration.

The progress of the remaining homozygous child contrasted noticeably with that of his similarly afflicted siblings. At 15 he had no symptoms, no clinical coronary heart disease, and a virtually normal coronary angiogram. He was treated with diet and drugs to lower his plasma cholesterol and low density lipoprotein cholesterol concentrations from the age of 1, and although values remained high, they represented a reduction of about 30% from the concentrations before treatment. This reduction, which was maintained from the age of 1, was almost certainly responsible for delaying the development of atheroma in this boy, indicating that starting preventive treatment early is probably very important.

Our experience with this family leads us to conclude that though treatment in familial hypercholesterolaemia may not achieve normal plasma cholesterol concentrations, any reduction may be beneficial, particularly if treatment is started before the development of atherosclerosis. We see no reason why these conclusions should not be equally applicable to the more common heterozygous form of familial hypercholesterolaemia.

References


(Accepted 7 August 1985)

100 YEARS AGO

A lamentable example of this misadventure was once more recorded at an inquest held on December 1st, at Brompton, near Northallerton, before Mr. Walton, touching the death of Mary Ramshaw. The deceased, whilst crossing the street, had been knocked down and injured by a passing conveyance. She was brought home, and medical aid called in, when it was found she had received a fracture of the right thigh. She was ordered a mixture to take, as well as an embrocation. The deceased being in great pain, her daughter gave her a dose of medicine, when she instantly became convulsed, and in the course of about ten minutes died. The daughter, as soon as she had administered the dose, perceived that she had taken it from the wrong bottle, the two standing on the same table. Mr. Lumsley, surgeon, said he attended the deceased, and supplied the bottles referred to, the embrocation containing a very strong preparation of belladonna, and he had no doubt the woman died from the effects of that poison. Although the embrocation was poisonous, he did not think it necessary to place any label on the bottle to that effect to warn the persons of its nature. The bottles were of the same shape, and the one containing the embrocation was graduated in table-spoonful doses, the same as that in which the mixture was. It had on it a label, “The embrocation to be used twice or three times a day.” After a lengthened inquiry, the jury recorded as their verdict that the deceased was poisoned by belladonna, administered to her by mistake, and that the medical attendant was not free of blame in the matter. They considered that great care should be used in sending out such poisonous compounds, and that in this case there ought to have been something about the bottle to indicate the dangerous nature of the contents. The recurrence of these terrible tragedies recalls once and again the vast importance of dispensing poisonous mixtures and all external liniments in roughened or fluted bottles, which give mechanical warning of danger; at the same time that the obvious precaution in labelling is adopted. Such a domestic calamity leaves a wound which can never heal. (British Medical Journal 1885;i:ii:1126.)