Intravenous glucose tolerance and maintenance haemodialysis

Carbohydrate intolerance is common in uraemia and is generally believed to improve with regular haemodialysis. This opinion, however, is based on studies in which the glucose concentration was measured by non-specific reducing methods, which yield falsely raised values for uraemic sera. Thus dialysis may seem to improve glucose tolerance by removing reducing substances other than glucose, such as creatinine, uric acid, etc. In one recent study, in which plasma glucose was measured by a glucose-specific enzymatic method, the response of patients with end-stage renal failure, either undialysed or on regular haemodialysis, to an oral glucose load was not improved after dialysis. We used a glucose-specific assay method to study the acute effect of dialysis on the response to intravenous glucose in 10 uraemic patients on maintenance haemodialysis.

Patients and methods

We studied eight male and two female uraemic patients, aged 42 ± 4 (mean ± standard error of mean) years and within 94 ± 5 % of their desirable weight. They had no family histories of diabetes mellitus and no known glucose intolerance before the onset of renal failure. They also showed no evidence of gastrointestinal or endocrine disorders, had no recent intercurrent illness or weight change, and hyperparathyroidism was not detected clinically or by x-ray examination. All patients were on a free diet, with at least 200-g carbohydrate intake daily; salt was unrestricted. They were on a thrice-weekly, five-hour haemodialysis schedule for 27 ± 9 months. The dialysis bath contained no glucose.

Each patient was studied the first time shortly (range 0-2-17 hours) after dialysis ("post-dialysis") and the second time 65-109 hours after deliberate withdrawal of dialysis ("predialysis"), the order of the two studies being randomised. On both occasions fasting blood was drawn for creatinine, methylguanidine, nitrogen, potassium, and glucose measurements; 0.33 g/kg glucose as a 40 % solution, was then injected intravenously over a two-minute period; and plasma samples for glucose measurement were taken 2.5, 5, 7.5, 10, 15, 20, 25, 30, 35, 40, 50, and 60 minutes afterwards. All patients agreed to having their dialysis postponed and to participating in the investigation.

Creatinine, nitrogen, and potassium were measured by standard techniques, and methylguanidine by chromatography; glucose was assayed by the glucose oxidase method (Glucose Analyzer, Beckman Instrument). Glucose k value (fractional removal rate) was computed by monoexponential interpolation of the absolute glucose readings from 10 to 60 minutes after injection, with the use of least squares analysis. We used the paired t test to compare the means of the post- and predialysis values.

Results and comment

Post-dialysis serum creatinine concentrations fell from 1379 ± 97 to 628 ± 44 µmol/l (15.6 ± 1.1 to 7 ± 0.5 mg/100ml) (P < 0.001); plasma methylguanidine from 11.2 ± 2.0 to 7.9 ± 1.0 µmol/l (98 ± 11 to 69 ± 9 g/100ml) (P < 0.05); nitrogen from 136.4 ± 6.0 to 60.7 ± 5.0 mmol/l (191 ± 8 to 85 ± 7 mg/l00ml) (P < 0.001); and serum potassium from 6.4 ± 0.4 to 4.4 ± 0.2 mmol(Eq)l (P < 0.001). Average plasma glucose concentrations, however, were higher at all the sampling points in the post-dialysis period (figure). One patient was intolerant to intravenous glucose (k value < 1) before dialysis, and three were so after dialysis. Glucose k value increased in one patient, remained about the same in five, and decreased in four. The difference between the means (1.69 ± 0.1 mmol/l before and 1.35 ± 0.1 mmol/l after dialysis) was not statistically significant.

On average our patients’ ability to dispose of an acute glucose load was no better in the shorter period after dialysis—despite the effective
removal of reducing substances and uraemic toxins. It would therefore seem justified to conclude that haemodialysis does not improve the glucose tolerance of patients on maintenance haemodialysis, as measured by the intravenous test. Nevertheless, k values are rather uncertain criteria, since plasma glucose disappearance curves are not usually monoexponential. Furthermore, the dynamics of insulin-glucose interactions are imperfectly described by a single parameter. On the other hand, the metabolic performance of patients on chronic haemodialysis is basally depressed, and is intermittently challenged by such stresses as dehydration, blood-pressure and flow changes, and electrolyte depletion. This might explain why we obtained the lowest k values from the tests performed at the shortest time (about 15 minutes) after the dialytic stress. Different test conditions or treatment of data may well give different results. Hence the acute effects of haemodialysis on glucose tolerance are probably weak, transitory, and altogether unpredictable.

This study was partly supported by a grant (NO1-AM-8-0707) from the US Public Health Service.

2 Powell, J B, and Duh, Y, American Journal of Clinical Pathology, 1971, 56, 8.

(Accepted 8 May 1977)

CNR Clinical Physiology Laboratory, Second Medical Clinic and Institute of Medical Pathology, University of Pisa, Italy

E FERRANNINI, MD, investigator
A PILO, MSC, investigator
G BUZZIGOLL, chief technician
C BONI, technician
M TUONI, MD, clinical assistant

Raised plasma arginine vasopressin concentration in carbamazepine-induced water intoxication

Water intoxication has been reported in patients taking carbamazepine, though in one case there may have been an interaction with other drugs, particularly a thiazide diuretic. Symptomless hyponatraemia has also occurred in patients taking carbamazepine, but the mechanism by which carbamazepine acts is uncertain. We describe a patient who developed water intoxication while taking carbamazepine in whom, using a sensitive and specific radioimmunoassay, we detected an inappropriately high concentration of plasma arginine vasopressin (AVP).

Case report

A 65-year-old woman presented with a two-year history of intermittent pain in the distribution of the right ilioinguinal nerve for which no cause could be found. She also had mild hypertension, which was controlled with methyldopa, propranolol, and cyclophosphamide (Navidrex K). Carbamazepine 600 mg daily was given for the pain but with no relief, and tiredness and dizziness developed.

After taking carbamazepine for three weeks she was investigated in hospital with the following results: plasma sodium 128 mmol/l (mEq/l), plasma urea 3.6 mmol/l (21.7 mg/100 ml), plasma osmolality 251 mmol (mOsm/kg), urine osmolality 449 mmol/kg, and serum carbamazepine 24.0 pmol/l (6 μg/ml) (optimum range 16-40 pmol/l (4-10 μg/ml)). Carbamazepine was stopped, whereupon the tiredness and dizziness cleared and the plasma sodium and osmolality rose to normal. On two subsequent occasions, before and after stopping Navidrex K, carbamazepine was reintroduced and caused the same symptoms, with a fall in plasma sodium and osmolality (figure). During the last period on carbamazepine, immunoassay plasma AVP was 3.7 pmol/l (40 pg/ml), which was inappropriately high for the plasma osmolality of 257 mmol/kg. Two months after stopping carbamazepine she was no longer hyponatraemic and the plasma AVP concentration (2.5 pmol/l; 27 pg/ml) was appropriate for the plasma osmolality (284 mmol/kg). Plasma cortisol at 2.15 pm was 338 nmol/l (12.2 μg/100 ml).

Discussion

Carbamazepine is one of many drugs that have been associated with inappropriate antidiuresis. Its mode of action is not clearly understood, though it may stimulate vasopressin secretion, impair vasopressin degradation, potentiate vasopressin's renal action, or have an independent, direct effect on the renal tubule. Although there is much indirect evidence that the antidiuretic action of carbamazepine is mediated through an increased plasma vasopressin concentration, some workers have reported low concentrations of immunoreactive plasma AVP in patients taking this drug.

Our patient's hyponatraemia appeared to be related only to carbamazepine treatment. Interaction with a diuretic was excluded, and hyponatraemia recurred on reintroduction of carbamazepine. Furthermore, the hyponatraemia, low plasma osmolality, and high urine osmolality with normal renal and adrenal function could be attributed to the syndrome of inappropriate antidiuretic hormone secretion, and inappropriately high concentrations of plasma AVP were found. This supports the indirect evidence referred to above.

A major problem has been measurement of extremely low plasma concentrations of AVP by either bioassy or immunoassay. With the recent improvement of radioimmunoassay techniques for measuring plasma AVP we expect confirmation that carbamazepine exerts its antidiuretic effect by raising the concentration of endogenous vasopressin.

5 Meinders, A E, Gejeka, V, and Robertson, G L, Clinical Science and Molecular Medicine, 1974, 47, 289.

(Accepted 17 June 1977)

Derbyshire Royal Infirmary, Derby DE1 2QY

N J SMITH, MRCP, registrar in neurology
M L E ESPIR, MD, FRCP, consultant neurologist

University Department of Medicine, Queen Elizabeth Hospital, Birmingham B15 2TH

P H BAYLIS, MB, MRCP, senior registrar