participation in the E.E.C.? The Common Market countries are considering restrictions in the use of antibiotics. Some have already attempted to do so, but without a common policy the movement of foods, animals, and peoples between the various countries will reduce the effectiveness of the U.K. precautions. And what of the rest of the world? The W.H.O. information centre will help to collect data, but strong measures are needed until effective means are found to remove R-factors and plasmids from bacterial cells under natural conditions. In the meanwhile complete agreement should be established that our most powerful drug weapons will be used in their truly curative role to destroy and not to maintain infectious agents causing acute disease.

5 Jacobs, S. I., et al., Archives of Disease in Childhood, 1970, 45, 656.

Sleeping Sickness

For more than 50 years the epidemiology of sleeping sickness have been hampered by the problems of differentiating the causative organism of East African sleeping sickness, Trypanosoma brucei rhodesiense, and that of Gambian sleeping sickness, T.b.gambiense, from T.b.brucet, the morphologically identical parasite common in game and domestic animals which is not infective to man. What is needed is some means of determining the infectivity to man of strains which may be isolated from game and domestic animals, and thus to be able to assess the danger to health for men living or working in areas where such animals exist. Up to three years ago the only method available for differentiating T.b.brucet from T.b.rhodesiense was the use of human volunteers, who were used extensively in East Africa to test isolates originating from animals and from Glossina. A test was developed in 1970 by Rickman and Robson1 which made use of the fact that organisms from T.b.brucet strains are lysed after incubation with human serum. This test, the blood incubation infectivity test (B.I.I.T.), has been extensively investigated since it was first developed and modifications to the original technique proposed. Difficulties still remain, however, in the interpretation of so-called equivocal results which have been frequently obtained, and the B.I.I.T. has been used to categorize strains before human volunteers have been employed in a final test of infectivity to man. This fact alone indicates that the test is not absolutely reliable and does not enjoy the confidence of some workers. An excellent discussion on the limitation and use of the technique, based on the latest information, has recently been published.2

This problem of differentiating organisms dangerous to man is mainly one which confronts workers in Eastern Africa; in West and Central Africa the main problem for those working on human trypanosomiasis is the need for a rapid, efficient technique for screening large numbers of persons who may have early subclinical Gambian trypanosomiasis, while there is also a need for a technique which may allow any possible animal reservoirs of the disease to be identified. The fluorescent antibody technique has been used successfully for detecting early cases in Zaire—these are not capable of parasitological diagnosis during the early stage of the disease. This test has also been used in Liberia.4 Its great advantage is that blood can be taken on filter paper and it is, therefore, simple and rapid and many suspects can be sampled daily. It is also more specific than elevated serum IgM levels in Gambian sleeping sickness.

The differentiation of the subspecies of T.brucet by a fluorescent antibody technique has recently been reported by Latif and Adam,5 who were able to differentiate the three trypanosomases, T.b.rhodesiense, T.b.gambiense, and T.b.brucet on the basis of marked differences of the antibody endpoint titres against homologous and heterologous sera. This method of differentiation may not appeal to protozoologists, but the results seem convincing enough to suggest it will be reliable for field work especially if used in conjunction with the B.I.I.T. A further valuable tool still remains to be fully exploited in the differentiation of T.brucet subspecies. Recent work has made it possible to detect strain as well as specific differences in the isoenzyme pattern of the parasite aminotransferases in the ungulate trypanosomases T. vitatx and T. congolense and the rodent trypanosomases T.levisut and T.musculi. Other new techniques of biochemical taxonomy include the use of buoyant density of nuclear and kinetoplast DNA in caesium chloride gradients and the prospect of the development of a DNA:RNA slide hybridization technique for field use in trypa- somiasis — and possibly in leishmaniasis; if some or all of these techniques prove reliable in the field rapid progress should be made in the epidemiology and control of these parasites.

4 Lucasse, C., Tropical and Geographical Medicine, 1970, 22, 227.

Looking after Schizophrenics

By 1975 half our mental hospitals, described by Mr. Enoch Powell when Minister of Health with more eloquence than accuracy as: "majestic, brooding structures, dominated by the twin ideas of isolation and custodialism, housed in depressing and decaying buildings, suffering from acute staff shortages," should have been pulled down and their function split between psychiatric units in general hospitals and community care—if the 1962 Hospital Plan1 is carried through as originally intended. At first the plan was welcomed by the vast majority of British psychiatrists. Indeed, it was considered that to oppose it was reactionary if not sacrilegious. Those who did oppose it had doubts not about the doctrine but about the accuracy of the statistical analyses on which the future needs for beds in mental hospitals were based, and about the extent and speed with which the local authorities would make good the recommendations incorporated in the Mental Health Act, 1959. Implicit in these recommendations was the need to set up prophylactic services and all types of community care for those not needing to be treated in hospital: residential training centres, hostels, and general social help