the central nervous system was predicted by H. E. Webb and C. E. G. Smith and the possible mechanisms explained. There is no reason to suppose that such lesions cannot be caused by any virus which can gain access to the central nervous system (and which need not be capable of causing acute encephalitis). Indeed, there is recent evidence that repeated infections with the same virus may cause subacute and chronic diseases of the central nervous system in experimental animals in which it does not cause acute disease.18

Perhaps the most important question is whether live measles vaccine can cause this disease. If it does it is likely to be a rare complication which will become apparent some considerable time after vaccination. It is therefore essential that in future trials of measles vaccination careful and long-term surveillance should be maintained, and the same consideration should apply to any new live vaccine. This risk must not be exaggerated, particularly in areas of the world where measles is a severe and lethal illness,27 but when the risk can be assessed it must be balanced against the risks of measles itself.28 Inactivated measles vaccines have already been abandoned because they can aggravate disease due to subsequent natural infection.29

Benign Sixth-nerve Palsy in Children

An external rectus palsy in a child raises the suspicion of serious neurological disease—raised intracranial pressure, an infiltrating glioma of the pons, and tuberculous meningitis being possibilities. D. L. Knox, D. B. Clark, and F. F. Schuster,1 however, have drawn attention to the benign sixth-nerve lesions that can occur in children after minor febrile episodes or upper respiratory infections. They report 10 patients aged between 1 and 15 with this condition seen in the course of 13 years at Johns Hopkins Hospital. There was a history of febrile or respiratory illness from 7 to 21 days before the onset of the external rectus palsy in eight of the ten patients. Two of the children had had recurrent otitis media, and one had scarred ear drums, but in none of them was there pain in the ear or eye when the sixth-nerve palsy appeared. In none of these ten cases were there other abnormal neurological signs found; in six in whom lumbar puncture was done the cerebrospinal fluid was normal, and in five there was a relative lymphocytosis in the peripheral blood. The prognosis was good. Improvement started within three to six weeks and complete recovery had occurred within ten weeks in all except one child, who recovered completely in nine months.

The aetiology of this condition remains uncertain. The authors suggest that it may be comparable to Gradengo's syndrome,4 in which otitis media is complicated by an ipsilateral sixth-nerve lesion. C. P. Symonds suggested that the cause of the sixth-nerve lesion in this condition was thrombosis in the inferior petrosal sinus. The sixth nerve and the sinus pass from the posterior to the middle fossa through a tightly fitting dural sheath, Dorello's canal, and compression of the nerve could readily occur if the sinus became thrombosed. Function in the nerve would return with organization and canalization of the clot. The alternative explanation for the benign palsies suggested from Johns Hopkins is that the nerve lesion is due to a viral neuritis.

The practical problem remains: how far should investigations be carried out in a child with an isolated external rectus palsy of sudden origin? If there is a history of a preceding febrile illness and if there are no other abnormal neurological signs, normal x-rays of the skull and sinuses, no abnormality in the cerebrospinal fluid, and no response to pharmacological tests for myasthenia gravis, it is reasonable to delay other investigations and keep the child under observation for three to six weeks, when improvement should be starting if he is suffering from this type of "benign sixth-nerve palsy."

Heatstroke

Since John Davy1 measured the penetration of sunlight through the cranium we have learnt a great deal about heatstroke. Though many uncertainties remain,2 there is now a broad area of agreement about its causation, prevention, and treatment.3 Heatstroke results from an imbalance between heat gain and heat loss, with a rise in body temperature and subsequent collapse.4 This imbalance may be due to inadequate mechanisms for heat loss, excessive heat production, and high environmental temperatures—alone or in combination. The mechanism of the collapse, with loss of consciousness, delirium, and convulsions, is uncertain.

Hyperpyrexia causes cellular damage, the severity of which is related to its duration. Death may occur in the acute phase of heatstroke, without recovery of consciousness, or it may occur later, after the body temperature has been restored to normal and consciousness has been temporarily regained. The later deaths are the result of profound cellular damage and haemorrhage into the brain and elsewhere.

This sequence of events makes the principles of the prevention and treatment of heatstroke clear. The occurrence of heatstroke, like that of frostbite,4 implies that preventive measures have been allowed to break down. Thus excessively hot or humid environments should be avoided, or adequate protection provided, and energy expenditure should be limited. Heat loss from the body should be aided both by the choice of suitable clothing and by prior training of the thermoregulatory mechanism by acclimatization.5 The subject who is to work in a hot environment should be fit for his job, free from disease, well hydrated, and without an alcoholic hangover.

If by misfortune heatstroke does occur the first aim of treatment is to restore the body temperature to normal as quickly as possible by cooling. Nevertheless, it should be remembered that vasoconstriction or shivering may prevent over-enthusiastic efforts. A most effective and easily available method is to wet the skin, using terry towels, etc., or a spray to cool the body, but the skin should not be allowed to cool down so much that shivering starts. Then the body is allowed to cool until normal temperature is reached.

