Plasma Renin Concentration in Human Hypertension
IV: Renin in Relation to Treatment and Prognosis

J. J. BROWN,* M.B., B.S., B.Sc., M.R.C.P.; D. L. DAVIES,* M.B., B.S.
A. F. LEVER,* M.B., B.S., B.Sc., M.R.C.P.; J. I. S. ROBERTSON,* M.B., B.S., B.Sc., M.R.C.P.

In previous papers we have seen that in clinical hypertension plasma renin concentration is inversely related to plasma sodium, and we have discussed this association from the aspects of aetiology and complications (Brown et al., 1965a, 1965b, 1965c, 1966a). The present paper is concerned with renin in relation to treatment and prognosis. As we shall show, treatment apparently causes changes in renin mainly when alterations in sodium balance are involved.

The clinical material studied and the methods used are as given previously (Brown et al., 1965b, 1965c, 1966a). The relationship between plasma renin concentration and other components of the renin-angiotensin system, such as substrate concentration, angiotensin concentration, and "renin activity," was also discussed in these earlier papers, and will not be considered further here.

Primary Hyperaldosteronism

In this condition overproduction of aldosterone is found, the most common cause being a benign adrenocortical adenoma (or adenoma) (Conn, 1955; Mader and Iseri, 1955; Milne et al., 1957; Luetscher, 1964; Conn et al., 1964). Less often the syndrome may occur in the absence of a discrete tumour (Barter and Biglieri, 1958; Relman, 1963). Typically, plasma sodium is increased, and the raised blood-pressure is accompanied by abnormally low plasma renin concentration (Brown et al., 1963, 1964a, 1964b, 1964c).

Surgical removal of the tumour may correct the electrolyte abnormalities, plasma renin concentration then returning to normal (Brown et al., 1964a, 1965b, 1965c, 1965d). The blood-pressure also falls, though it may not always return to strictly normal levels (see Conn et al., 1964). Occasionally the adenoma is difficult to locate; in these circumstances the adrenals may suffer ischaemic damage during the course of surgical exploration, or the tumour may not be revealed until both adrenals have been removed and sectioned (Relman, 1963; Slaton and Biglieri, 1965).

An alternative method of treatment, which avoids damaging the adrenals in cases where a tumour is not apparent at exploration, is the prolonged administration of spironolactone. By blocking the action of the excess aldosterone this drug corrects the electrolyte abnormalities, and, probably as a consequence, the arterial pressure is lowered. The establishment of normal plasma sodium concentration and normal total exchangeable sodium is accomplished by restoration of a normal plasma renin. Aldosterone secretion rate may, however, be unaltered in these circumstances, thus emphasizing the absence of a direct relationship between aldosterone and renin (Brown et al., 1963, 1964a). One such patient, in whom an adrenal tumour was not found on surgical exploration, has been maintained free of symptoms, with normal blood-pressure, electrolytes, and renin concentration, for more than two years on oral Aldactone-A (spironolactone), 300 mg. daily (Brown et al., 1963, 1964a, 1964b, 1964c). Similar results were obtained over a period of 10½ months in another patient, from whom an adrenal adenoma was later removed (Brown et al., 1963, 1964a, 1965d).

Hyponatraemic Hypertensive Syndrome

This condition provides a contrast to primary hyperaldosteronism. Though increased aldosterone secretion and hypokalaemia may be present, the plasma sodium is low, and renin concentration high (Brown et al., 1965b, 1965c). Renal artery stenosis or a parenchymal renal lesion was found in 25 cases of this syndrome, all of which also had evidence of the malignant phase (Brown et al., 1965b). The syndrome is therefore of concern when considering the treatment of renal artery stenosis, the malignant phase, and chronic renal failure. We shall discuss each of these aspects separately, though it will be evident that they overlap considerably.

Renal Artery Stenosis

Plasma renin concentration was found to be in the normal range in about one-third of the cases of hypertension and renal artery stenosis studied (Brown et al., 1965c, 1965e). The remainder had elevated renin, there being throughout the whole group a close reciprocal relationship between plasma sodium and renin concentration, and definite, though less close, direct relationship between the severity of the stenosis and the renin level (Brown et al., 1965c). The cases with high renin, low sodium, and severe renal artery narrowing frequently had other evidence of the hyponatraemic hypertensive syndrome, such as hypokalaemia, increased aldosterone secretion, and the changes of malignant hypertension. The effects of treatment were most striking in these hyponatraemic cases.

In one example surgical relief of the renal artery stenosis was followed by restoration of normal blood-pressure, correction of hyponatraemia and hypokalaemia, a fall in aldosterone secretion rate from 1,197 to 142 μg./day, and a fall in plasma renin concentration from 1,920 to 16 units/l. (Barraclough et al., 1965; Barraclough, 1966) (Fig. 1).

In another patient the removal of a kidney with a thrombosed renal artery restored normal blood-pressure, while renin dropped from 72 to 17 units/l. (Fig. 1).

In a third case plasma renin concentration fell from 26 to 7.5 units/l. when the blood-pressure was lowered with guanethidine, and the retinal lesions cleared (Fig. 1). At subsequent surgical exploration in this patient a pressure drop of 50 mm. Hg was demonstrated across a renal artery stenosis. After the insertion of a bypass graft from aorta to distal renal artery the blood-pressure, although not restored to normal, was controlled with considerably smaller doses of drugs than were required previously. This last case raises two important points. Firstly, the presence of a renal artery lesion does not necessarily prevent successful drug treatment of the hypertension (see Brown et al., 1960). Secondly, it demonstrates that an elevated plasma renin concentration may in these
circumstances revert to normal with correction of the arterial pressure before operation.

Features Indicating a Favourable Response to the Surgical Treatment of Renal Artery Stenosis

Pre-operative plasma renin estimations were available in six patients with renal artery stenosis in whom nephrectomy or correction of a renal artery lesion was followed by a satisfactory reduction in arterial pressure. All these cases had bilateral retinal haemorrhages or exudates or papilloedema before operation, and in all of them the retinopathy subsequently resolved without drug therapy. Renin concentration ranged from 24 to 1,920 units/l. The mean pre-operative plasma sodium was 133.7 mEq/l, and the mean potassium 3.88 mEq/l.

By contrast, six patients with renal artery stenosis who failed to respond to surgical treatment had plasma renin ranging from 3 to 30 units/l (mean 14.0; S.E. 4.5 units/l). One of these had unilateral exudates; none of the others had retinal changes. The mean plasma sodium was 139.4 mEq/l, and the mean potassium 3.78 mEq/l. The differences between the means of both sodium and renin before operation in the two groups were marginally significant (in each 0.02<P<0.05).

Three further cases of the present series had the combination of retinopathy and high renin concentration, and were not cured by surgery. Two of these were responsive to hypotensive drugs after operation, having been refractory before.

These data suggest the possibility that the patients most likely to respond to surgical treatment of renal artery stenosis may be those with features of the hypotensive hypertensive syndrome. Evidence of this syndrome appears in varying degrees in numerous reports of cases successfully treated by surgery (Oster, 1947; Deming, 1954; Brust and Ferris, 1957; Connor et al., 1957; Adams and Newman, 1958; Peabody and Gates, 1958; Dollery et al., 1959; Brown et al., 1960; Laidlaw et al., 1960; Yendt et al., 1960; Gowenlock and Wrong, 1962; Goldberg and McCurdy, 1963; Scherlis and Lee, 1964; Salton and Biglieri, 1965).

While deficiencies of surgical technique may have accounted for a number of failures in both the present cases and in other series when the prospects were otherwise favourable, it must also be recognized that surgical successes have been reported in patients who did not have retinal lesions, and in whom no other evidence of the hypotensive hypertensive syndrome is mentioned—for example, Brust and Ferris (1957), Yendt et al. (1960), and Stamey et al. (1961). Similar examples may well be concealed in the several papers reporting a high incidence of success but lacking detailed information—for example, Rob (1961), Morris et al. (1962).

Measurements of plasma renin or angiotensin have often been suggested as pre-operative diagnostic tests in renal artery stenosis, but in the absence of either adequate assay methods or of a clear understanding of the role of the renin-angiotensin system in renal hypertension their value has been limited (see discussions by Oster, 1947; Deming, 1954; Page et al., 1959; Brown, 1962; Helmer, 1963; Itskovitz et al., 1963; Langford, 1963; Morris et al., 1964; Mulrow, 1964). While the point is far from established, the present observations suggest that an elevated plasma renin concentration may help to forecast a favourable response to renal arterial surgery. If this tentative suggestion should be correct the further issue is then raised whether assay of renin or angiotensin is an essential investigation where such surgical measures are contemplated, or whether the relevant information could be more simply inferred either from repeated and careful estimation of the plasma sodium concentration, or from some more precise measure of the state of sodium balance (see also discussion by Brown et al., 1966b).

Chronic Renal Failure

Bilateral nephrectomy in patients with advanced renal disease may be followed by a fall in plasma renin to very low concentrations (Brown et al., 1966a), an observation which accords with earlier experiments in the rabbit (Lever and Robertson, 1964). This has possible therapeutic relevance in that it may provide a method of lowering plasma renin independently of changes in external sodium balance. Some cases of malignant hypertension with advanced renal failure have extremely low plasma sodium levels, and the plasma renin concentration is then correspondingly high (see Brown et al., 1965b). It is theoretically possible that in these circumstances sufficient angiotensin could be generated to have a substantial direct pressor effect; and it has been suggested (see Verniory, 1965) that bilateral nephrectomy, by lowering renin and consequently angiotensin, may be necessary to control the blood-pressure in some instances.

In one patient with chronic renal failure, malignant hypertension, and a plasma sodium of 132 mEq/l. bilateral nephrectomy was followed by a fall in plasma renin concentration from 35 to less than 1.5 units/l. within 48 hours. Over the same period the blood-pressure decreased from 200/140 to 140/80 mm. Hg, while plasma sodium was unchanged. Though these results are interesting, it would be premature on the present evidence to attribute the fall in blood-pressure simply to the drop in plasma renin concentration.

Malignant Phase of Hypertension

As a group, patients with malignant hypertension were found to have a high mean plasma renin, since numerous examples of the hypotensive hypertensive syndrome were included. Nevertheless, it must be stressed that both the retinal and histological stigmata of the malignant phase were seen also in patients with normal or low plasma renin concentration, this always
having a close reciprocal relationship to the plasma sodium (Brown et al., 1965b, 1965c, 1965e) (Fig. 2). The effect of treatment of malignant hypertension varied widely, but in general tended to restore renin to the normal range.

Thiazide Diuretics

We have previously described how the use of thiazides as an adjunct to hypotensive therapy may lead to an increase in plasma renin concentration. There was a highly significant inverse relationship between plasma renin and plasma sodium concentration in these cases (r = −0.495; n = 75; P < 0.001), while no significant relationship was found between plasma renin and plasma potassium (r = −0.079; P > 0.1) (Brown et al., 1965b).

Spironolactone

The results of spironolactone treatment in primary hyperaldosteronism have already been described. In other forms of hypertension, thiazide-sensitive patients showed a close inverse relationship between plasma renin and sodium loss, and blood-pressure very similar to those caused by thiazides were produced. Thus in these patients the administration of spironolactone, though associated with only a mild fall in blood-pressure, caused distinct hyponatraemia, while renin concentration became abnormally high.

Summary

Plasma renin concentration in hypertensive patients was studied in relation to treatment. Generally changes in renin resulting from treatment were such as to suggest that these probably resulted from changes in sodium balance.

The highest initial plasma renin concentrations were found in the hypertensive syndrome characterized by hyponatraemia, the malignant phase, a renal arterial or renal parenchymal lesion, hyperaldosteronism, and, frequently, hypokalaemia.

In one instance, where this syndrome was accompanied by severe renal disease and chronic renal failure, bilateral nephrectomy caused plasma renin to fall to very low levels.

In other cases, with less advanced renal disease, the raised plasma renin concentration returned to normal with correction of the plasma sodium after either surgical treatment of a renal lesion or the use of hypotensive drugs. This suggests, but does not prove, that renin fell because sodium was raised by treatment in these patients. Retinal evidence of the malignant phase was simultaneously resolved.

In other cases of malignant hypertension, where sodium and renin were initially normal, renin concentration remained normal after treatment unless sodium was lowered by diuretics, when renin rose.

In primary hyperaldosteronism with hyponatraemia the low plasma renin concentration could be returned to normal either by removal of an adrenal tumour or by spironolactone therapy, each of which also corrected plasma sodium.

No evidence was seen of a specific effect on renin due to ganglion-blocking or sympathetic drugs, or to methyldopa. The series did not, however, include observations on patients made frankly hypotensive by therapy, or instances where oedema developed on reducing the blood-pressure.

Effect of Hypotensive Drugs on Plasma Renin Concentration

Apart from the hyponatraemic hypertensive syndrome, discussed earlier, we found no evidence in the present series of a specific change in plasma renin concentration as a result of treatment with a variety of ganglion-blocking or sympatholytic drugs, or with methyldopa. The series did not, however, include observations on patients made frankly hypotensive by therapy, or instances where oedema developed on reducing the blood-pressure.
Effect of Hydramitrazine (Lisidoniil) in the Treatment of Neurogenic Bladder Dysfunction

EJNER PEDERSEN,*† M.D.; VAGN GRYNDERUP,*‡ B.M.

Bladder dysfunction is a serious problem in many patients with neurological disorders. Such symptoms as frequency, urgency, and urge incontinence may compromise the patient's well-being and social adjustment. There is thus every reason to give energetic treatment to the neurogenic bladder.

The experience gained in urological treatment of patients with traumatic paraplegia has to some extent been applied to other groups of patients, such as those suffering from multiple sclerosis or non-traumatic paraplegia. This actually marks a big step forward.

However, there is some divergence of opinion on the value of medical treatment of the neurogenic bladder, and several writers have expressed fairly pessimistic views. As a recent example may be cited McAlpine (1965), who states that drugs may be given a trial, but that patients with a tendency to incontinence must be advised to use a urinal, which—as is well known—involve special problems for females.

In our opinion this pessimistic assessment of the value of medical treatment of the uninhibited neurogenic bladder is not justified. We shall try to demonstrate our reasons for this view by reporting our experience of seven years' work with the problems of bladder dysfunction. Lisidoniil has occupied a central position in our programme of treatment.

Material and Results

Chemical Data and Animal Pharmacology

Chemically Lisidoniil (Hydramitrazine) is 2-hydrazino-4,6-bis-diethyl-amino-7,3-triazine-6-tartrate. Animal experiments have shown that the drug inhibits the polysynaptic much more than the monosynaptic reflexes, which indicates that the substance has an inhibitory effect on spinal interneurones. The drug has no effect on neuromuscular transmission. Its action is of the same type as that exerted by mehenesin, but as distinct from the latter hydramitrazine has scarcely any pronounced effect on the brain; it is thus ineffective in the treatment of convulsions provoked by strychnine or leptazol. Hydramitrazine has no structural resemblances to mehenesin or any other available muscle relaxant. Further details of the pharmacology of Lisidoniil are given by Bcm (1959).

* Chief Neurologist.
† From the Department of Neurology, Aarhus Kommunehospital, University of Aarhus, and the Multiple Sclerosis Hospital, Ry, Denmark.

†† From the Department of Neurology, Aarhus Kommunehospital, University of Aarhus, and the Multiple Sclerosis Hospital, Ry, Denmark.

† From the Department of Neurology, Aarhus Kommunehospital, University of Aarhus, and the Multiple Sclerosis Hospital, Ry, Denmark.

References

----- (1965c). Ibid., 2, 1125.

Arst. J., 90, 272.

 EFFECT OF HYDRAMITRAZINE (LISIDONIIL) IN THE TREATMENT OF NEUROGENIC BLADDER DYSFUNCTION

BRITISH MEDICAL JOURNAL 271

30 July 1966

Hypertension—Brown et al.

Dr. M. A. Barracough, and Dr. V. Wynn. Dr. C. L. Cope, Mr. Robert Fraser, Dr. V. H. T. James, and Dr. R. V. Brooks performed aldosterone estimations; Miss J. McCuikier, isotope dilution studies; and Dr. B. J. Houghton and his staff, plasma and urinary electrolyte measurements. Secretarial and technical assistance was provided by Mrs. D. M. Roberts, Mrs. E. M. Maxwell, Mr. Patrick Trust, Mr. George Todd, and Mr. Malcolm Tree.

Dr. A. Buchan, Dr. P. B. Doak, Dr. T. Stamp, and Dr. W. B. Thomson performed many of the renal biopsies, which were interpreted by Dr. R. A. Parker and Dr. K. A. Porter.

The work was supported by grants from the Medical Research Council, the Wellcome Trust, and Pfizer, Ltd.

REFERENCES

----- (1965c). Ibid., 2, 1125.

Arst. J., 90, 272.