such as drilling, but conservative measures are sufficient. Rest for the knees at the age of 13 may interfere temporarily, but unimportant, with her career: a persistently painful tibial tubercle may ruin it.

Causes of Deaf-mutism

Q.-What are the causes of deaf-mutism—other than the accepted theory of the mother contracting rubella while pregnant? Is it possible that large doses of quinine taken in an attempt to produce abortion in early pregnancy would be responsible for this condition?

A.—There is no evidence that quinine taken during pregnancy is a cause of deaf-mutism. It is in fact unlikely that abortion can be induced in any proportion of instances. Deaf-mutism may be hereditary or acquired; an estimate of 50% of cases falling into either category may, perhaps, prove to be not very wide of the mark. Any disease which may be sufficient to cause death may be the causal factor—for example, scarlet fever, meningitis, or syphilis.

Simple recessive inheritance accounts for at least the very large majority of the hereditary cases. The cause by which the type of transmission may be recognized are well exemplified: (a) The majority of deaf-mutes are the offspring of normal parents. (b) Frequently more than one child in the subsib is affected. (c) Consanguineous marriages among the parents are commoner than in the general population. (d) Affected persons who marry each other have affected children only. This is the usual finding in deaf-mutism. Certain instances in which the offspring were all normal are to be explained either by the condition of the parents being an acquired one (in which both parents have sometimes been observed), or it may be that more than one recessive gene may give rise to deaf-mutism—which would also lead to apparent exceptions.

Deaf-mutism can be inherited as part of more complex syndromes. For example, its occurrence in association with retinitis pigmentosa serves to distinguish one variety of that condition. This syndrome, like uncomplicated deaf-mutism, also depends upon a recessive gene.

Maturing of Threadworms

Q.—How long do threadworms take to mature, and what interval must elapse after the appearance of the last worm to consider the cure certain?

A.—The period of development, from the ingestion of the infected egg to the time of oviposition by the gravid female, is given by different authorities as from fifteen days to two months; probably it rarely exceeds one month. It must be remembered, however, that suitable conditions the ova may remain alive and infective for periods up to five days, and possibly longer. In such circumstances the patient may become infected from his own faeces, even when not in contact with infected neighbours.

Safety of Butter and Cheese

Q.—Is there much talk at present of the danger of allowing children to drink unboiled milk? Is there any similar danger in drinking raw butter or farmhouse butter?

A.—For general interest the answer to this question may be slightly extended. At present, about 94% of butter distributed in this country is imported, 4% is home-produced in factories, and 2% is home-produced on farms. Practically all imported and factory butter is made from pasteurized or otherwise heat-treated cream, and may therefore be regarded as free from living tubercle bacilli or other pathogenic bacteria. Farm butter is made from raw cream and must be considered potentially dangerous. Most pathogenic organisms, however, including the tubercle bacillus, die out fairly rapidly, and partly, at least, for the amount of acid produced. Though it would be unjustifiable to dogmatize, it is probably fair to say that the danger of contracting disease from farm butter is confined mainly to the fortnight following its manufacture. It is said that mice in a room filled with butter in farm houses, and that very little finds its way to the open market.

Of the cheese consumed in this country, 92% is imported, 7% is home-produced in factories, and 1% is home-produced on farms. Probably not less than 60% of imported and factory cheese is made from heat-treated milk; the remainder, including farm cheese, is made from raw milk. Before the war most hard cheeses (Cheddar, Lancashire, and Edam) were approved for sale—a process that led to the death of all pathogenic bacteria; but, as pointed out in the Journal (June 12, 1943, p. 730), it became common during the war to distribute improperly ripened cheeses from the United States. This process has been largely abandoned, and the ripening is not sufficiently prolonged to allow of a safe separation of the unripened cheese. The disease is illustrated by the occurrence in Canada during the past few years of three or four outbreaks of typhoid fever traceable to this source. These outbreaks were caused by cheese that had been consumed within two or three weeks or so of manufacture, and it is doubtful whether the cheese would have proved infective if it had been kept for longer. Between manufacture in America and distribution in this country several weeks elapse, and it is possible, therefore, that pathogenic bacteria are known to die out almost completely within two months in cheese kept at 50° F. or over, that very few, if any, of these organisms are alive by the time the cheese reaches the consumer. It is not easy to assess accurately the risk of disease being carried by cheese made from raw milk, but, considering the relatively small quantities that are eaten at a time, the danger of infection resulting from the consumption of factory-produced cheese must be very small. On the other hand, cheese produced on farms in this country—particularly if it is of the "soft" or cream cheese variety—should be treated with caution, since such cheese is often eaten within a week or so of production. Children had better avoid it altogether.

LETTERS, NOTES, ETC.

Pasture Institute during the Occupation

Dr. Ronald MacKeith (chairman, Medical Committee, Scientific Film Association) writes: I read with interest the leading article on gifts of medical and scientific books to reconstrucated libraries that the French Office of Information (54, Queen Anne Street, W.1) have just received from France a film made during the occupation, illustrating the work of the Pasture Institute. L'Institut Pasteur was the only scientific institute to remain open during the occupation. It was selected by the French Government as the centre of the scientific activities of the country. It is a sound film, available 16 or 35 mm., with a French commentary. The running time is 20 minutes.

Sprouting Legumes

J. A. N. writes: Your editorial note on sprouting legumes suggests that it might be of interest to recall the earliest mention of this expedient that I have so far come across. Capt. T. Forrest in his Voyage from Calcutta to the Mergui Archipelago (published in 1792) closes the book with "Thoughts on the Best Mode of Preserving Sea Provisions or of Viciouall Ships in Warm Climates." In this chapter he mentions "that great anticoriscutib salted limes, lemons or oranges"; he also relates (p. 135) that he sprouted his peas, and which he says he has often seen. I do not know if this is still practised in Malaya. Did Furst or Chik and Delf know where and how the idea came to be revived?

Books for Polish Doctors

The Polish Medical Association in the British Empire is appealing for gifts of medical and scientific books to reconstrucated libraries in Poland that have been destroyed in the war and to replace books that were confiscated or stolen during the German occupation. In the efforts now being made to train young people for the work of reconstruction and in the present formation of the Polish profession of medicine teachers badly need textbooks for their students, and books, reference books, and periodicals to bring their own knowledge abreast of the scientific progress made in recent years. Books for Great Britain are invited to offer to the Polish profession any medical or scientific books or periodicals they can spare; the language may be English, German, or French. Their help will be greatly appreciated. Books and periodicals may be sent to the Secretary of the British Medical Association at B.M.A. House, Tavistock Square, W.C.1. Correspondence on the subject should be addressed to Dr. B. Jedwelski, 43, Eaton Place, S.W.1.

Corrigenda

Owing to delay in the post the corrected proof of the letter on significance of the erythrocyte sedimentation rate by Drs. D. G. McIntosh and D. M. Keay was received after we had gone to press, with the issue dated Oct. 27. On page 584 in the fourth numbered paragraph (Disregard of Physiological Variables), line 20, the figures should be 13 of 53, instead of 13 of 55. In the table the reference to Ables and Pinner should read 86 in the second column, instead of 91.

Dr. K. R. Ogilvie wishes to correct an error in his letter on Ludwig's angina published on No. 3. In column 1 of page 623 when describing Case II he wrote "tracheotomy tube" by mistake for "endotracheal tube."