Co-trimoxazole and cephalaxin in urinary tract infection

SIR—A plausible explanation is to hand for the superior performance of co-trimoxazole compared with cephalaxin in the urinary tract infection trial of Drs P E Gower and P R W Tasker (20 March, p 684). Contrary to their statement that “cephalexin readily induces spheroplast formation,” it has repeatedly been shown that the sole effect of therapeutically useful concentrations of cephalaxin (and the related cephradine and cephaloglycin) is to cause filamentation of enterobacteria by inhibiting the division process. Because of this cephalaxin is more slowly bactericidal than other β-lactam antibiotics and more bacteria are likely to survive in the urine, where, as Drs Gower and Tasker rightly point out, a twice-daily dosage may achieve only transient high levels.

In addition, all cephalosporins now available are somewhat susceptible to enterobacterial β-lactamases, including a slow-acting enzyme of ampicillin sensitive Escherichia coli strains. 4 Consequently tests of sensitivity of enterobacteria to cephalosporins are affected by inoculum size; this is particularly marked with ampicillin-resistant strains. 5 It frequently contains more than 10^6 bacteria/ml. Concentrations of cephalosporins achievable in urine only transiently suppress such a bacterial population, recovery occurring as the antibiotic is broken down, 6 and disc sensitivity tests may give an over-optimistic view of the sensitivity of such strains to cephalosporins, even when conventional “high inocula” are used, as in the Bauer-Kirby test. 7

Sulphamethoxazole and trimethoprim are also susceptible to inculom effects, but this is unrelated to degradation of the drugs. 8 In contrast to β-lactam antibiotics, the components of co-trimoxazole are excreted into the urine slowly and the antibacterial activity is maintained in support of intrinsic clearance mechanisms.

Evidence for the validity of these considerations has been provided by experiments employing an in-vitro model in which some important aspects of the treatment of bacterial cystitis can be simulated. 7 8 12 Such studies have shown that cephalosporins perform less well than penicillins (including benzyl- and phenoxymethyl-penicillin) in the dynamic conditions of the urinary bladder, using an initially dense, but ostensibly sensitive, bacterial population. 8 Tested against ampicillin-resistant strains, cephalaxin is superior 9 on the basis of disc tests, cephalosporins exhibited a further reduced capacity to suppress bacterial growth. 10 In both these studies cephalaxin was the least effective cephalosporin, but sulphonamides and trimethoprim were tested in the model their efficiency in clearing infection was rather better than predicted by conventional tests. 7

DAVID GREENWOOD
Francis O’Grady

University Department of Microbiology,
City Hospital, Nottingham

SIR—The paper by Professor G H Fallet and others (3 April, p 804) documents a series of observations that suggest the prevalence of rheumatoid arthritis and ankylosing spondylitis. They describe as extremely unlikely the possibility that these patients represent the random occurrence of two separate disease entities. Critical examination of the argument shows that coincidental occurrence is certainly not ruled out.

An accurate estimate of the real prevalence of ankylosing spondylitis is not available. The study of Wright when Professor Fallet and his colleagues quote gives an extremely unreliable estimate. They also quote de Blécourt et al, 3 but the frequency of ankylosing spondylitis in the controls used in that study is of no value in estimating the prevalence in the population as these controls were families of probands without spondylitis. The data of Lawrence 5 offer the best available estimate of the prevalence of ankylosing spondylitis, and there are methodological problems which suggest that his prevalence figures are only an approximation and probably an underestimate. The figure given by the authors for the proportion of patients with ankylosing spondylitis in a series of rheumatoid arthritis patients is not reliable for the same reason.

Rheumatoid arthritis and ankylosing spondylitis occurring together

SIR—The paper by Professor G H Fallet and others (3 April, p 804) documents a series of observations that suggest the prevalence of rheumatoid arthritis and ankylosing spondylitis. They describe as extremely unlikely the possibility that these patients represent the random occurrence of two separate disease entities. Critical examination of the argument shows that coincidental occurrence is certainly not ruled out.

An accurate estimate of the real prevalence of ankylosing spondylitis is not available. The study of Wright, when Professor Fallet and his colleagues quote gives an extremely unreliable estimate. They also quote de Blécourt et al, 3 but the frequency of ankylosing spondylitis in the controls used in that study is of no value in estimating the prevalence in the population as these controls were families of probands without spondylitis. The data of Lawrence 5 offer the best available estimate of the prevalence of ankylosing spondylitis, and there are methodological problems which suggest that his prevalence figures are only an approximation and probably an underestimate. The figure given by the authors for the proportion of patients with ankylosing spondylitis in a series of rheumatoid arthritis patients is not reliable for the same reason.