Prevention of Deep Vein Thrombosis by Intermittent Pneumatic Compression of Calf

N. H. HILLS, J. J. PFLUG, K. JEYASINGH, LYNN BOARDMAN, J. S. CALNAN

British Medical Journal, 1972, 1, 131-135

Summary
A consecutive, randomly allocated, controlled clinical trial of the prophylactic effect of intermittent pneumatic compression of the calf on the incidence of postoperative deep vein thrombosis showed that in patients without malignant disease there was a highly significant reduction in the incidence of thrombosis. In patients with malignant disease the incidence of thrombosis was higher than in those without, and there was no reduction in incidence by the application of intermittent compression. In the absence of malignant disease, severity of operation and the age of the patient were the most significant aetiological factors. We found no relation between the incidence of deep venous thrombosis and obesity, length of preoperative stay, location of hospital, or duration of anaesthesia. We suggest that intermittent pneumatic compression as used in this trial is a safe, effective, and extremely practical method of preventing postoperative deep vein thrombosis in patients not suffering from malignant disease.

Introduction
Methods for the prevention of deep vein thrombosis have been slow to develop for two reasons. On the one hand the aetiology of the condition is still poorly understood, so that well-rationed attempts at prophylaxis are difficult, and on the other hand there had previously not been a satisfactory objective method for assessing any reduction in the incidence achieved. In the past many erroneous claims have been made and later discredited.

Materials and Methods
A pneumatic legging which produces intermittent calf compression was described by Calnan et al. (1970). The apparatus has since been modified and now consists of a single-piece P.V.C. legging incorporating the foot and calf in a unitary design (see Fig.). The electric pump inflates each legging alternately so that compression at 40-45 mm Hg for one minute is achieved followed by relaxation for one minute.

P.V.C. applied to the skin prevents evaporation of moisture and may become uncomfortable. An undersock consisting three layers of Tubegauze was therefore used beneath the legging, and this arrangement is comfortable for the patient and well tolerated for 24-28 hours without removal.

Selection of Patients
Patients were drawn from two hospitals—Hammersmith Hospital, a large postgraduate teaching hospital in London, and Barnet General Hospital, a busy district general hospital on the northern outskirts of London, serving an area which is partly urban and partly rural. In all cases the informed consent of the patient was obtained.

Hammersmith Patients.—All patients undergoing elective general surgical procedures under general anaesthesia over the age of 40 years were admitted to the trial with the following exceptions: (a) patients having operations on the legs, breasts,
or thyroid glands, because these interfered with the assessment method; (b) patients having vagotomy and drainage procedures, because such persons were the subjects of a separate study; (c) patients having had tracers likely to interfere with the radioactive fibrinogen test; (d) patients likely to be in hospital for less than five days postoperatively, who could not therefore be followed up long enough after surgery; and (e) patients on prophylactic anticoagulants before operation. All patients were then stratified into three groups according to age. Thus group 1 comprised patients aged 40-49 years, group 2 patients aged 50-59 years, and group 3 patients aged 60 years and over.

Barnet General Patients.—At Barnet Hospital selection was confined to patients aged 60 years and over, and those undergoing vagotomy and drainage were included. The patients were divided into two groups—those not suffering from malignant disease, and those known to have some form of malignant disease.

In both series patients were entered into the trial consecutively and were allocated to treatment or control groups by a series of random numbers predetermined for each stratum and contained in sealed envelopes. The patients in the treated group had the leggings applied at the time of premedication and received intermittent calf compression throughout the preoperative, peroperative, and postoperative periods. The leggings were removed when the patient was ready to get out of bed, usually on the day after operation.

Diagnosis

The diagnosis of deep vein thrombosis was made with the radioactive fibrinogen test by using the modification described by Negus et al. (1968). All patients received approximately 100 μCi of 131I-fibrinogen intravenously one to six hours after operation, and scintillation counts (with a J. & P. counter) were performed daily for seven days. If the presence of a thrombus was diagnosed counting was continued for at least 10 days.

A thrombus was deemed to be present if there was a difference in percentage uptake of 15% or more between adjacent points on the same leg, or corresponding points on the opposite leg, and if this difference was maintained for at least 48 hours.

Results

HAMMERSMITH HOSPITAL

A total of 104 patients from Hammersmith Hospital were studied. Four of these were later withdrawn from the trial—two had the operation performed under local anaesthesia, two had their operations cancelled after being allocated to the trial, and one patient in the treatment group did not have the leggings applied until after the induction of anaesthesia and then had them removed almost immediately after operation. The remaining 100 patients were divided equally into treated and control groups. The male/female ratio was almost identical in both groups (Table I). The mean values for height, weight, and age, with standard deviations for each group, are shown in Table II. The closeness of the figures in the two groups provides some indication that an effective random allocation was achieved.

The incidence of deep vein thrombosis (D.V.T.) in the control group was 30% (Table III), whereas in the treated group it was only 12%, which is a statistically significant reduction in thrombosis at the 5% level of confidence. Nevertheless, five of the six patients in the treated group who in fact developed a thrombosis were suffering from histologically proved malignant disease. Since the overall proportion of patients with malignant disease in the trial was only 25%, five out of six of the treated group seemed to be a very high figure.

The incidence of thrombosis in the 25 patients with proved malignant disease is shown in Table IV. It is seen that there was an incidence of 50% in the control group and a slightly higher figure in the treated group, but clearly there was no significant difference between the two; hence intermittent compression was not effective in reducing the occurrence of thrombosis.

The remaining 75 patients were not suffering from malignant disease, and the incidence of thrombosis for this group was very different (Table IV). Thrombosis occurred in 21% of

Table I—Sex Distribution in the First 100 Patients (Hammersmith)

<table>
<thead>
<tr>
<th></th>
<th>Males (n = 57)</th>
<th>Females (n = 43)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>28</td>
<td>22</td>
<td>50</td>
</tr>
<tr>
<td>Treated</td>
<td>29</td>
<td>21</td>
<td>50</td>
</tr>
</tbody>
</table>

Table II—Mean Age, Weight, and Height (with Standard Deviations in Parenthesis) in the First 100 Patients (Hammersmith)

<table>
<thead>
<tr>
<th></th>
<th>Age (years)</th>
<th>Weight (kg)</th>
<th>Height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>59 (16-4)</td>
<td>63 (13-7)</td>
<td>163 (12-6)</td>
</tr>
<tr>
<td>Treated</td>
<td>59 (10-6)</td>
<td>65 (12-7)</td>
<td>164 (10-6)</td>
</tr>
</tbody>
</table>

\[x^2 = 4.94; 0.05 > P > 0.02.\]

Table III—Incidence of Thrombosis in the First 100 Patients (Hammersmith)

<table>
<thead>
<tr>
<th></th>
<th>No D.V.T.</th>
<th>D.V.T.</th>
<th>Total</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>35</td>
<td>44</td>
<td>50</td>
<td>30%</td>
</tr>
<tr>
<td>Treated</td>
<td>8</td>
<td>5</td>
<td>9</td>
<td>55-5%</td>
</tr>
</tbody>
</table>

Table IV—Incidence of Thrombosis in Patients with and without Malignant Disease (Hammersmith)

<table>
<thead>
<tr>
<th></th>
<th>No D.V.T.</th>
<th>D.V.T.</th>
<th>Total</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>8</td>
<td>4</td>
<td>16</td>
<td>50%</td>
</tr>
<tr>
<td>Treated</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>21%</td>
</tr>
</tbody>
</table>

For patients without malignant disease $P = 0.015$ (Fisher's test).
the controls but in only 2.4%, of the treated group—a highly significant reduction as shown by Fisher’s test, giving the exact value of \(P = 0.015 \).

Whereas age did not appear to be a significant factor in the incidence of thrombosis in those with malignant disease there was a pronounced difference in the non-malignant group. The incidence of thrombosis in those aged 40-59 was low (less than 6%) in both the treatment and the control groups (Table V). In those aged 60 and over the incidence was 38%.

TABLE V—Distribution of Thrombosis according to Age in the 75 Patients without Malignant Disease (Hammersmith)

<table>
<thead>
<tr>
<th>Age (Years)</th>
<th>No D.V.T.</th>
<th>D.V.T.</th>
<th>Total</th>
<th>No D.V.T.</th>
<th>D.V.T.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-59</td>
<td>17</td>
<td>1 (5.6%)</td>
<td>18</td>
<td>17</td>
<td>1 (5.6%)</td>
<td>18</td>
</tr>
<tr>
<td>≥60</td>
<td>10</td>
<td>6 (58.3%)</td>
<td>16</td>
<td>22</td>
<td>1 (4.5%)</td>
<td>23</td>
</tr>
</tbody>
</table>

For age group 60 years and over \(P = 0.01 \) (Fisher’s test).

in the control group; no patient in this age group who was treated with intermittent compression developed a thrombus, and even on such small total numbers a significant reduction was achieved (\(P = 0.01 \)).

BARNET GENERAL PATIENTS

At Barnet General Hospital a further 51 patients were studied, 11 of whom had malignant disease. There were more males than females in this section but the distribution between control and treatment groups was not statistically significantly different (Table VI). The mean age, height, and weight and standard deviations are shown in Table VII; the values in both groups were similar. The incidence of thrombosis in patients not suffering from malignant disease is shown in Table VIII. The incidence of thrombosis in the controls was 40%, similar to that for the comparable group at Hammer-smith Hospital, whereas the incidence in the treated group was 5%. This is a highly significant reduction statistically (\(P = 0.01 \)) and confirms the results obtained at Hammersmith. The combined totals of patients aged 60 and over without malignant disease are shown in Table IX.

The number of patients suffering from malignant disease in this part of the trial was very small, but it is of interest that thrombosis occurred in 50% in both the treated and the control groups. This again confirms that the incidence of thrombosis was higher than in the non-malignant group and, further, that there was no reduction in incidence from the use of intermittent compression.

OTHER FINDINGS

In analysing other factors which may have contributed to the occurrence of thrombosis it is necessary to consider those patients without malignant disease who acted as controls. This is because all other factors seem to be overwhelmed in the presence of malignancy, and in the non-malignant treated group we effectively interfered with the “natural” occurrence of thrombosis. Several interesting trends, however, appear in the total of 54 patients in this category.

Height and Weight.—We compared the weights and heights of patients who developed a thrombus with those who did not and no significant correlation was found. By using the formula described by Hume (1966) the lean body mass was calculated, and from this, by deduction, the total adipose tissue; again there was no direct correlation with the incidence of thrombosis. The ratio of adipose tissue to height was also not significant statistically.

Duration of Anaesthesia.—There was a significant difference in duration of anaesthesia between those with and those without thrombosis. The mean length of anaesthesia in the no-thrombus group was 1.49 (±0.83) hours, compared with 2.62 (±2.05) hours in the group with thrombosis. The \(t \) ratio (6.107) for these two standard deviations shows that there was no normal distribution, and therefore the standard \(t \) test is not applicable. When a modified \(t \) test is used, however, this difference is significant at the 2.5% level of confidence; but this does not take account of the severity of the operation.

Type of Operation.—The types of operation have been classified into three groups, as shown in Table X. The first group included all inguinal herniorrhaphies, the second all major gastrointestinal surgery (such as cholecystectomies, partial gastrectomies, and bowel resections), and the third included a miscellaneous collection ranging from one Heller’s operation to several haemorrhoidectomies. The incidence of thrombosis was low in herniorrhaphy operations—only 1 case in 12. In the major gastrointestinal group of 31 patients, however, the incidence was 39%. The mean length of anaesthesia for the herniorrhaphy group was 1.30 (±0.81) hours. Several of these operations were bilateral, which accounts for the rather long mean duration. In the gastrointestinal group the mean duration of anaesthesia was 2.73 hours (±2.28) in those who developed a thrombus; in those who did not it was 1.81 (±0.77) hours. These figures suggested that operations in the no-thrombus group were significantly shorter than those in the thrombus group. Analysis, made with a modified \(t \) test because of the skew distribution, showed, however, that this was not so (even at the 5% level of confidence). It is stressed that the total number of patients considered here was small.

TABLE IX—Incidence of Thrombosis in All Patients aged 60 Years and over without Malignant Disease

<table>
<thead>
<tr>
<th></th>
<th>Controls</th>
<th>D.V.T.</th>
<th>Total</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>No D.V.T.</td>
<td>39</td>
<td>14</td>
<td>53</td>
<td>39%</td>
</tr>
<tr>
<td>D.V.T.</td>
<td>37</td>
<td>15</td>
<td>52</td>
<td>3%</td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>59</td>
<td>74</td>
<td>3%</td>
</tr>
</tbody>
</table>

TABLE X—Types of Operation in 54 Controls without Malignant Disease (Both Hospitals)

<table>
<thead>
<tr>
<th>Type</th>
<th>No D.V.T.</th>
<th>D.V.T.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hernia repairs</td>
<td>11</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Major gastrointestinal</td>
<td>19</td>
<td>12</td>
<td>31</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>8</td>
<td>3</td>
<td>11</td>
</tr>
</tbody>
</table>

\(P = 0.01 \) (Fisher’s test).
Length of Preoperative Hospital Stay.—The duration of
stay in hospital before operation was 4-97 (± 7-78) days for
the no-thrombus group and 7-00 (± 9-81) days for the thrombus
group. Again with use of the modified t test there was no
significant difference between the two.

Detection and Distribution of Thromb.—Forty-seven per cent.
of the thrombi were present on the first postoperative day—
that is, at the first time of counting—and 94%, were detectable
by the third day after operation. Of the total of 53 thrombotic
episodes 18 were bilateral, 11 occurred in the right leg, and
six occurred in the left leg.

Physical Signs.—Physical signs were present in only nine
of the 53 legs with thrombosis. In all nine cases the signs were
found two days or more after the scan was positive. The signs
were often transient while the scan remained positive. Further-
more, of those with a negative scan six patients developed
signs suggestive of thrombosis (a 10% incidence of false
positives).

Natural History of Thrombus.—Fifty-two thrombi occurred
in the calf and only one in the lower thigh region. Extension
from the calf to the thigh occurred in four patients, and of
these two developed pulmonary emboli in spite of anticoagulant
therapy with heparin for 48 hours and later warfarin. In one
case the infarct was small but in the other it was massive,
though the patient survived. In seven legs the raised counts
returned to normal within 10 days but in the remaining 41
the raised counts persisted for at least 10 days.

Discussion

It is now becoming accepted that clinical diagnosis of deep
vein thrombosis is inaccurate, not only because it fails to detect
a high percentage of thrombi but also because of the high
incidence of false-positive signs (Kakkar et al., 1969; Lambie
et al., 1970; Rosengarten, et al., 1970). The present study lends
further confirmation.

Methods of prophylaxis, the fibrinogen technique being
used for assessment, are beginning to appear in the literature.
Raising the legs (Rosengarten and Laird, 1971) and elastic
compression bandaging of the legs (Rosengarten et al., 1970)
and a combination of the two (Flanc et al., 1969) seem to be
effective, and a more active method is clearly required.

Browse and Negus (1970) showed that electrical stimulation
of the calf muscles during operation caused a reduction in the
incidence of thrombosis, and Sabri et al. (1971) have shown
passive flexion of the ankles to have a similar effect. The use
of external compression in venous disorders of the lower
limbs is not new. It was suggested by Pierre Dionis in the
seventeenth century (Foote, 1960), and there has been a renewal
of interest, concurrent with the development of pneumatic
splints for the immobilization of fractures and elastic bandages.
A considerable amount of work has been reported on the effects
of compression on venous flow measured by plethysmography
(Ashton, 1966), by isotopes (Makin et al., 1969), and by electro-
magnetic flow probes (Roberts et al., 1971). The inference has
been that if pressure is maintained above 20 mm Hg the total
limb flow and the flow in the femoral vein are reduced. It is
worth emphasizing that these conclusions were all obtained
when sustained compression was used. Applying intermittent
pressure, as used in this trial, Calnan et al. (1970) showed
that there is a phasic response in venous flow and that arterial
inflow into the limb is not affected. It is possible that this
phasic flow is important in the prevention of the accumulation
of thromboplastic substances by “flushing” them away and
that its absence may account for the failure of compression
bandaging in preventing venous thrombosis.

The first part of the trial reported here suggests that there
is a significant reduction in the incidence of thrombosis with
the use of intermittent pneumatic compression in patients
aged 60 and over who do not have malignant disease. This
inference is open to the criticism that though the patients
had been stratified for age they had not initially been stratified
for the presence or absence of malignant disease. What we
had, in fact, done was to omit a group of patients in order that
the results in the remainder appeared more impressive.

It could be argued that we had in effect carried out a retro-
spective analysis of the results and from this that we could
produce only a hypothesis, not a conclusion. In order to confirm
or refute this hypothesis the second trial at Barnet General
Hospital was done, restricting entry to the high-risk age
group and stratifying for malignancy. The results confirm
the original hypothesis, and it seems to us that intermittent
compression is a preventive prophylaxis against deep vein
thrombosis in patients who do not have malignant disease.

In both hospital trials there was one patient in the non-
malignant group who developed a thrombus in spite of inter-
mittent compression. At Hammersmith this was the first
patient of the whole series. We have no explanation of why
thrombosis occurred and it must be designated as a failure of
the method. At Barnet, however, the patient who developed
a thrombus had had an operation seven days previously; it
may well be that she developed a thrombus during the first
operation and not during the second, when intermittent
compression was given. A more likely hypothesis is that
she was such a poor risk that she should not have been
accepted for the trial.

Patients found the apparatus to be comfortable for long
periods, even when wide awake, and, in fact, many seemed
to enjoy its rather relaxing effect. In most instances surgeons
were not aware of movement of the leggings throughout
the operation, and the motor is practically silent. The nursing
staff found no difficulty with their application and there has
not been any resistance to their use (Doran et al., 1970). Even
with several machines working in one ward they are virtually
inaudible. In short, we believe that this system is safe, reliable,
and an extremely practical method for the prevention of deep
vein thrombosis in patients not suffering from malignant
disease.

In considering the patients who were suffering from some
form of malignant disease two points of importance emerge.
Firstly, the incidence of thrombosis was higher than in the
non-malignant group and, secondly, intermittent compression
of the calves had no effect in reducing this. That venous
thrombosis commonly occurs in this group of patients has
long been recognized; it was first reported by Trouseau in
1877, and Sproul (1938) recorded an incidence of thrombosis
of 56-2% in patients who died from carcinoma of the body
of the pancreas (an interesting figure in the light of those
reported here). Many reports have appeared, but Miller and his
co-workers (1967) were among the first to present the results
of a systematic study of coagulation mechanisms in such
patients, and produced a hypothesis to explain the hypercoagul-
able state they had found. They postulated that when circulating
tumour cells died a thromboplastin was released into the cir-
culation which caused a secondary rise in fibrinolysins.

The haemostatic mechanism was thus still in equilibrium but set
at a higher level, the balance being more precarious and more
easily disturbed. Hence when a relatively minor stimulus, such
as tissue trauma, occurred this might be enough to precipitate
thrombotic manifestations in such patients.

It had also been suggested that this hypercoagulable state
in combination with venous stasis could account for the presence
of thrombosis in the legs. This now seems unlikely, since we have
shown that even if stasis is prevented by the use of the leggings
thrombosis may still occur. It seems to us that a more likely
explanation is that thrombosis occurs in the legs because the
intrinsic fibrinolytic activity in the leg veins is lower than
elsewhere (Nilsson, 1967) and is insufficient to overcome
the thrombotic tendency induced by a combination of operative
trauma and the hypercoagulable state. It is likely, however,
that in patients without malignant disease stasis alone plays
a major part in the development of thrombosis, because we
have shown that the application of intermittent compression
reduces the incidence dramatically. It may be simply that the
prevention of an accumulation of thromboplastins by inter-

mitten compression in a patient who has a normal coagulation mechanism before operation allows the relatively low fibrinolytic activity of the leg veins to cope with the thrombotic tendency induced by operation.

The trials conducted by Browse and Negus (1970) and by Sabri et al. (1971) were in the form of a sequential analysis, stimulating one leg only and using the other as a control. We chose to use an interpatient control because we believe that it has several advantages. For instance, we were not convinced that by altering the flow in one femoral vein the opposite side was not affected. Furthermore, legs are rarely symmetrical. Perhaps most important, information regarding aetiological factors operating in different patients is gathered more readily from this form of clinical trial.

There were only 54 patients in the control group who did not have malignant disease and from these it is possible to discern some interesting trends.

AGE

There was a pronounced disparity in the incidence of thrombosis in the age groups 40-59 and 60 and over in the Hammersmith trial. This may to some extent reflect the method of selection of patients, for more excluded were the younger age group. For instance, patients undergoing vagotomy (who were excluded because they were already the subject of an intensive metabolic survey) were mostly aged 40-59. The same was true for most of those who had thyroid operations. Thus the series of patients below 60 years was heavily weighted with relatively minor operations, such as herniorrhaphies, in which the incidence is low anyway (Table X). In spite of this, age appears to be a most significant factor (Kakkar et al., 1970).

OBESITY

It has long been assumed that obesity is one of the major aetiological factors in deep vein thrombosis. Henderson (1927), on the basis of postmortem examinations, and Snell (1927), on the basis of clinical causes of death, suggested that obesity was an important factor in deaths from pulmonary embolism.

The reports in the literature linking obesity with thrombosis in the leg veins on clinical grounds are now known to be subject to serious errors, but Kakkar et al. (1970) found a significant correlation in a study using the radioactive fibrinogen technique for diagnosis. In the present study, however, we have been unable to confirm this by considering height and weight directly or by calculating lean body mass and hence amount of adipose tissue. It seems that further study is necessary to elucidate this point.

ANESTHESIA

The mean duration of anaesthesia was shown to be greater in those patients who developed a thrombus than in those who did not. It is difficult to separate the effects of anaesthesia alone from the degree of surgical trauma. This is reflected in the separation into groups of operations where patients undergoing herniorrhaphy are at low risk (8%) of developing a thrombus, whereas those undergoing gastrointestinal surgery have a much higher risk (38%). Both the severity of the operation and the length of anaesthesia are correspondingly increased in the latter group. We have shown, however, that in this high-risk group there is no statistically significant difference in length of anaesthesia between those patients who developed a thrombus and those who did not when account is taken of the abnormal distribution. This suggests, therefore, that it is the degree of operative trauma which puts these patients at risk, rather than just the length of anaesthesia.

Sripad et al. (1971) have suggested that in operations lasting less than one hour there is a low incidence of thrombosis, and we must agree with this. We suspect, however, that this is because these are less severe operations and consequently shorter. They also implied that length of preoperative stay in hospital was related to the occurrence of thrombosis, but we failed to find a significant correlation in this study. It seems reasonable to conclude, however, that patients undergoing similar operations, such as repair of a hernia, are unlikely to be admitted several days previously for investigation. Measuring length of anaesthesia and preoperative stay in hospital, therefore, may just be an oblique way of assessing the severity of operation.

LOCATION OF HOSPITAL

Sripad et al. (1971) have shown a noticeably lower incidence of venous thrombosis at two country hospitals when compared with teaching centres. In our series, however, we found that at the two hospitals concerned the incidence of thrombosis was almost identical. The reasons for the discrepancy are not clear but the explanation may be due to the difference in the number of patients with malignant disease and the types of operation performed in the two hospitals.

We would like to acknowledge the co-operation of Professor R. B. Welbourn, Mr. A. K. Munro, Mr. J. I. Burn, Mr. R. H. Franklin, and Mr. J. Spencer, of Hammersmith Hospital, and Mr. A. Small, Mr. V. J. Downie, Mr. B. D. Stutter, and Mr. M. Noraras, of Barnet General Hospital, for allowing us to study patients under their care.

We are extremely grateful to Mr. A. H. Nicholls, of Kabi Pharmaceuticals, for the generous supply of fibrinogen. The leggins and pumps were manufactured by Flowtron-Aire Ltd., City Road, London.

One of us (N.H.H.) is in receipt of a research fellowship provided by the Ministry of Health.

References