Intraperitoneal Insulin for Control of Blood Sugar in Diabetic Patients during Peritoneal Dialysis

KENT CROSSLEY, CARL MAGNUS KJELLSTRAND

Summary
We have added insulin to peritoneal dialysis fluid in three uraemic diabetic patients. The hyperglycaemia and pronounced fluctuations in blood glucose which complicate peritoneal dialysis in diabetic subjects have not occurred with this technique. Studies with 131I-labelled insulin showed that less than 5% of the intraperitoneally administered insulin was absorbed during a one-hour exchange. While the physiology of the procedure needs further evaluation, this procedure has reduced the morbidity of peritoneal dialysis in diabetic patients and made its management easier.

Introduction
Peritoneal dialysis is an accepted method for the treatment of acute and chronic renal failure. A number of persons with diabetes mellitus and secondary renal failure undergo peritoneal dialysis while awaiting haemodialysis and renal transplantation. Hyperglycaemia is a frequent and troublesome complication of peritoneal dialysis in these patients (Ribot et al., 1966; Chazan et al., 1969). To avoid this we have added insulin to the dialysate. We hoped that insulin would be absorbed in parallel with the absorption of glucose and that more precise control of blood sugar levels would be achieved.

Methods and Patients
Peritoneal dialysis was carried out in patients with diabetic renal failure by use of an electrolyte solution containing 1.5% or 7% glucose (Peridial). To each litre was added 250 units of aqueous sodium heparin and 0.5 ml of 1% lignocaine (lidocaine). In patients who were not hyperkalaemic 4 mEq of potassium chloride per litre was also added to the dialysate. To each 2 l. of dialysate 125 to 145 units of crystalline insulin was added. In each case described 1 l. of 1.5% glucose dialysate and 1 l. of 7% glucose dialysate were used during each exchange. The dialysis cycle was of one hour's duration (10-minute in-flow, 20-minute equilibration, and 30-minute out-flow). In the three cases presented the dialyses lasted 48 hours.

Glucose absorption was evaluated by measuring the difference in glucose content of dialysate before and after passage through the abdominal cavity. Insulin absorption was evaluated by adding 100 µCi of 131I-labelled insulin to 2 l. of dialysis fluid. After delivery of the dialysate into the abdomen and following its drainage, the bottles and tubing were eluted with 30% potassium hydroxide solutions (Weisenfeld et al., 1968). Aliquots of the eluate, the dialysis fluid, and the patient's blood were counted in a Picker automatic well counter.

Blood volume was measured by using 65Cr tagged red cells.

Case Reports
Case 1. Insulin Free Dialysate.—A 24-year-old woman was admitted because of renal failure. She had developed diabetes mellitus at the age of 2. There was an eight-month history of uraemia, hypertension, and anaemia. On her admission the blood urea nitrogen was 155 mg/100 ml, creatinine 13.8 mg/100 ml, sodium 132 mEq/l., potassium 8.1 mEq/l., and blood glucose 650 mg/100 ml. Because of uraemia and hyperkalaemia peritoneal dialysis was begun. No intraperitoneal insulin was given. During dialysis the patient received only small amounts of intravenous glucose and water. Though the blood sugar was measured every two to four hours and intravenous crystalline insulin was frequently administered the blood glucose ranged from 75 to 675 mg/100 ml during the course of the dialysis (Fig. 1).

Case 2. Insulin Added to Dialysate First Part of Dialysis.—A 36-year-old woman with a 20-year history of diabetes mellitus developed rapidly progressive renal failure. On admission the blood urea nitrogen was 193 mg/100 ml and the serum creatinine 11.3 mg/100 ml. During peritoneal dialysis she was maintained on her usual daily dose of 12 units of insulin zinc suspension. During the first 26 hours of treatment 145 units of crystalline insulin was added to each 2 l. dialysis exchange. In the 12 hours before dialysis the blood glucose ranged from 310 to 430 mg/100 ml. During the dialysis the blood glucose values varied from 30 to 100 mg/100 ml. The patient was asymptomatic. Because of hypoglycaemia the last 16 hours of dialysis was accomplished without the use of intraperitoneal insulin. During the latter period the blood glucose ranged from 170 to 600 mg/100 ml (Fig. 2).
glucose solution. Even in patients with a normal carbohydrate tolerance pronounced rises in blood glucose can occur and may result in significant extracellular fluid hyperosmolarity and non-ketoacidotic coma (Hutchings et al., 1966; Ribot et al., 1966; Boyer et al., 1967).

Our first case illustrates the problem in the management of diabetes mellitus during peritoneal dialysis. Urine glucose determinations are of no value and frequent blood glucose evaluations are required. In contrast there was no hyperglycaemia during the peritoneal dialysis of the second and third patients when intraperitoneal insulin was administered. Further, the blood sugar level remained very constant during the period of treatment.

The radioimmunoassay of insulin showed that 96% of the infused 125I insulin was recovered in the peritoneal drainage. The remaining 4% was present in the patient's blood (see Table). During the one-hour cycle studied 35 g of glucose was absorbed. The dynamics of the intraperitoneal administration of insulin have not been studied in man. In view of crystalline insulin's low molecular weight, the slow absorption from the peritoneum is difficult to explain. Data from our second patient suggest that the peritoneal absorption of insulin may be proportional to the quantity instilled with the dialysate, as lower blood sugar values were obtained with larger doses of insulin.

References

MEDICAL MEMORANDA

Lessons from Two Steering Wheels

WILLIAM GISSANE, JOHN BULL

British Medical Journal, 1971, 1, 270-272

Roberts (1967) considered that ruptures of the solid viscera in vehicle occupants were caused by "direct impingement and localized stress concentration" but that the mechanism of rupture of hollow viscera "must be one of shearing resulting from contact in the abdomen between the abdominal wall, which is thrust inward by the steering wheel, and the spinal column." This and similar research evidence has probably influenced the National Highway Safety Bureau of the United States in drafting their proposed new standards for car occupant protection (Docket No. 69-7 Notice 4). Standard 4.4.7 reads: "The force on the abdominal region shall not exceed 2,400 pounds [10.7 kg] and the pressure on the abdominal region shall not exceed 30 pounds per square inch [2.1 kg/cm2]."

An analysis of abdominal injuries found in 483 necropsies of car occupants we have studied has shown that about 50% of the victims suffered ruptures of the solid viscera (liver, spleen, adrenals, and kidneys in that order) and all also had injuries to other body areas. From the same material there were only 14 patients with ruptures of the intestinal tract—12 of the small bowel and 2 of the stomach. Two drivers had