pupils; and in another, a woman of 38, the clinical picture closely resembled disseminated sclerosis. Nearly half (13 cases) were over the age of 60, and 6 of them were over the age of 70. It came as a surprise to find such a large number in my files. Comparable figures in the same period of other neurological diseases are subacute combined degeneration 32 cases, syringomyelia 27 cases. The figures confirm the view that the era of neurosyphilis is still very much with us.—I am, etc.,

K. W. G. Heathfield.
London W.1.

Gastrectomy and Vagotomy

Sir,—We read with interest the article by Mr. Alan G. Cox (3 February, p. 88), comparing symptoms after vagotomy and partial gastrectomy.

Perhaps it should be made clear that in the partial gastrectomy cases referred to in the anastomosis has been made by bringing up a jejunal loop to reach the gastric stump, either in front of or behind the colon. We have shown that if this technique is avoided and a no loop gastrectomy is made i those sequelae in Mr. Cox's list which cause the real distress are virtually eliminated. The loss of pyloric function and control in this as in most operations for duodenal ulcer entails the need for meals to be taken slowly, reducing the sweet course, and taking drinks at other times, but this is not important: the crus of the matter is that those sequelae such as bilious vomiting, recurrent ulcer, and insidious obstructive symptoms which make up the "gastric cripple" are avoided by the no loop technique.

The best surgical procedure for the intractable duodenal ulcer will remain debatable for many years, but it is misleading to compare gastrectomy without qualifications—loop or no loop—with other methods such as vagotomy.—We are, etc.,

HERMION TAYLOR.
DOUGLAS EADIE.
London Hospital.
London E.1.

Alcohol and Electrolyte Movements in the Colon

Sir,—May I reply to the letter of Dr. Oliver Wrong (10 February, p. 379) written in response to our paper on the altered colonic absorption and secretion of water and electrolytes in a patient with primary aldosteronism (13 January, p. 93)?

Firstly, it is not very surprising that in our patient sodium absorption by the colon was within normal limits. After all, sodium retention by the kidney is not a feature of primary aldosteronism, and, as we discussed in our paper, in this disease the colon may "escape" in a similar manner to the kidney from the sodium-retaining activity of aldosterone. Secondly, I do not think that Dr. Wrong is quite fair either to us or to Levitan and his colleagues by implying that grossly dissimilar results can be obtained by small differences in experimental technique. The composition of the solution perfused through the colon, the difference between our study and those of Levitan et al., is critical, and the choice of perfusion solution requires considerable care. Thus Levitan et al. admitted that their results were "in agreement with the effect of 9-α-fluorohydrocortisone on potassium handling by the colon because the solution which he had used did not contain potassium. Although I must congratulate Dr. Wrong and his colleagues for the excellent demonstration of the action of aldosterone on electrolyte handling by defunctioned colon, distal to a transverse colostomy, I cannot agree that this type of patient should be preferred for studies of colonic absorption. Firstly, to have normal colonic mucosa distal to a transverse colostomy is very rare. Surely colon affected by diverticulitis to such an extent that a colostomy was required cannot be regarded as normal? Obviously it would be rarer still to encounter a patient with a colostomy and primary aldosteronism. Moreover, it would be impossible to study patients with ulcerative colitis or a villous papilloma, whom colostomy is often unwise or unnecessary. Finally, by using patients with a colostomy only the left side of the colon can be studied. We are more interested in the absorptive capability of the entire colon, especially because the right colon has a greater absorptive power than the left. For these reasons I feel that we shall have to continue with what Dr. Wrong regards as more complicated experiments.—I am, etc.,

R. SHELDRICK.
Surgical Unit.
Royal Infirmary.
Cardiff.

References

Haemophilus Epiglottis

Sir,—Dr. L. Crome and others (24 February, p. 508) state, "In spite of stridor and croup in our two cases the fatal outcome was not due to upper respiratory obstruction, and intubation was not helpful. Death was probably caused by pulmonary collapse, peripheral circulatory failure, and rapidly developing cerebral oedema."

The three pathological findings to which they refer are all the end result of other processes, and can be explained by the presence of respiratory obstruction. Hypoxia and hypercarbia are well-known causes of cerebral oedema; respiratory and/or metabolic acidosis will cause "peripheral circulatory failure" and could explain the failure of intubation alone to produce clinical improvement; air respiratory obstruction will cause pulmonary collapse.

It is difficult to understand how they can conclude that upper airway obstruction did not cause death (in the sense that it inexorably led up to the final collapse) when one child had stridor and was dyspnoeic and cyanosed, and the other had stridor, tachypnoea, and tachycardia.

Unless Dr. Crome and his colleagues can produce evidence of a normal acid–base state, and show that cerebral oedema was not due to hypercapnia and/or hypoxia, I do not think that their implication that Haemophilus influenzae infection of the epiglottis causes death other than from the sequelae of its local effect is valid. If they have drawn attention away from the importance of relief of respiratory obstruction, the correction of hypoxia and hypercapnia, and the treatment of metabolic acidosis and cerebral oedema, if present, they have not helped the management of this difficult disease.—I am, etc.,

H. G. Pledger.
Royal Aberdeen Hospital.
for Sick Children.
Aberdeen.

Deaths from Asthma

Sir,—I would like to make a few points on the management of acute and chronic bronchial asthma. You state in your leading article (10 February, p. 329) that practitioners should give patients in status asthmaticus intravenous or intramuscular hydrocortisone every 15 minutes. Oral prednisolone given in a dose of 20 mg. before the patient is sent to hospital, where he can be given a further 40 mg. will probably be of greater value. This is because the blood levels produced by parenteral hydrocortisone do not last very long, especially when given intravenously. The blood levels of corticosteroids taken from six to 10 hours to become established. Oral prednisolone is well absorbed and maintains adequate blood levels till this effect is produced. I would suggest 40 mg. a day of prednisolone as an adequate dose. The arterial PO2 of patients in status