Mountain Accidents

This year a good many walkers and climbers will have to be rescued from British hills. Though most of them will suffer no long-lasting ill effects, some will be permanently disabled to a greater or less extent. An appreciable number of others will be dead before rescuers can reach them or die soon afterwards. Some of the deaths will be due to physical injury, especially in rock-climbing accidents, but a high proportion, especially among young or inexperienced hill-walkers, will be the result of exhaustion or exposure. Indeed these factors often combine to aggravate the effects of physical injury.

The number of accidents reported to the Mountain Rescue Committee (158 in 1964) represents only the tip of the iceberg. As Mr. N. F. Kirkman reports in his paper in the B.M.J. this week (page 162), rescue teams are often permanently out to search for and rescue uninjured climbers. In addition, there must be many occasions when climbers or walkers get into difficulties but manage to avoid serious trouble without calling for help. Mr. Kirkman has much of interest to say on the problems of dealing with mountain accidents and describes the organization of the rescue services. In a paper complementing Mr. Kirkman’s Dr. L. G. C. Pugh (page 123) discusses the importance of hypothermia in cases of exhaustion caused by severe weather conditions. What he records is a sad commentary on the incompetence of some of the people who venture on British hills. It might be thought that the amount of publicity given to mountain accidents, which always make headline news, would have made climbers and particularly walkers aware of the need to be properly equipped, especially in winter. But the toll of accidents goes on, and any climber of even moderate experience will readily call to mind parties he has seen dressed more for the sea-front or dance-hall than for the rigours of our mountains. For British mountains can be dangerous. Their low altitude and often innocuous shape may lull the unwary visitor into taking them too lightly, but their wetness and windiness can make them just as hazardous as more imposing hills elsewhere. Pugh indicates the importance of even a moderate degree of cold, when combined with rain and wind, in causing accidental hypothermia, and he shows that in these conditions the insulating efficiency of clothing may be reduced as much as 10 times. If the climber has only a little subcutaneous fat the conditions are then set for a progressive and often disastrous loss of body heat.

Like many other valuable institutions the mountain rescue service is essentially a voluntary one. When it began in 1936 the number of climbers was relatively small, and the majority of them took their first faltering steps on the hills with more experienced companions. There was a tradition of apprenticeship to mountaineering which may perhaps seem unduly cautious to the present generation, but it resulted in a comparatively low accident rate. Nowadays things are rather different. Certainly personal friendship and membership of clubs which undertake to train their members in mountain craft still play important parts in
introducing young people to the hills, and in addition many local authorities as well as the Central Council for Physical Recreation run courses both in mountain activities and in rock-climbing. But large numbers of complete novices do go hill-walking or rock-climbing entirely on their own, ill-equipped and incompetent. As a result the numbers of emergencies have greatly increased and they put a great strain on the rescue services, especially during the major public holidays. Were it not for the help of the National Health Service and the Red Cross and St. John organizations in providing much of the equipment used, and of the R.A.F. Mountain Rescue Service in giving their practical assistance so generously, many injured or exhausted climbers who now live to tell the tale probably not have been brought down alive.

In economic terms mountain rescue is becoming increasingly expensive, partly because equipment is becoming more sophisticated. Many teams are now being provided with radiotelecommunication apparatus—an almost essential item of equipment when large areas of rough ground have to be searched for missing climbers. The cost of equipping a team with an adequate number of sets is considerable, and although money can be and is raised by local effort and enthusiasm it seems reasonable to suggest that people whose survival has depended on the efficiency of the rescue services should be asked to make some contribution to their cost. If practicable this would seem to be preferable to seeking aid from Treasury funds.

How may mountain accidents be avoided? It is worth noting that mountainering, whether easy hill-walking or severe rock- or snow-climbing, has natural hazards the facing and overcoming of which are part of the immense satisfaction the sport can give. Thus the risk of accident is ever present. But the climber should be adequately trained and equipped both to avoid unnecessary risk and to deal with emergencies, particularly sudden changes of weather. He should have enough common sense and emotional stability to enable him to relate the conditions to his own capabilities and to decide dispassionately on his course of action in any given circumstances. By training and experience the majority of climbers eventually become competent in all these respects, and administrative measures designed to reduce their freedom of action would be both superfluous and unwellcome. One way in which a little effort may yield notable rewards is the raising of the standard of competence of leaders of parties of young people. Such groups do seem unduly liable to get into difficulties, and this must reflect on the quality of the people in charge. All too often, it seems, this responsibility is taken lightly, with sometimes fatal consequences. The recently instituted training courses for youth leaders, teachers, and others who may have to take young people on the hills, provided they are widely publicized, should have a beneficial effect on mountain safety in this country.

Food-poisoning

A "General Practitioners' Memorandum on Food Poisoning," prepared by the Standing Medical Advisory Committee for the Central Health Services Council and the Ministry of Health, was issued on 30 December. It defines the several conditions covered by this rather unsatisfactory term, giving their incubation periods and principal symptoms. They include those due to the presence of adventitious chemical poisons in food, three varieties due to bacterial toxins formed in the food (staphylococcal, Clostridium welchii, and Cl. botulinum), and one straightforward infection—that due to a salmonella of the food-poisoning type, as distinct from the species causing enteric fever. Two other conditions are described from which these have to be distinguished—bacillary dysentery and epidemic nausea and vomiting ("winter vomiting disease"). The memorandum also mentions that the term food-poisoning, for purposes of the notification which has been required since 1938, does not include infections such as enteric fever and dysentery, which are "notifiable in their own right." The memorandum complains that notification has been far from complete. Since one reason for that may be some understandable confusion about what the term food-poisoning covers, the memorandum should help to dispel this.

Some interesting figures are given of the incidence of this group of diseases. The total number of outbreaks steadily rose from 2,428 in 1949 to 8,961 in 1955; they remained at almost as high a level until 1959, but fell progressively to 4,465 in 1963. No explanation is offered for the startling increase in the early 1950s, though several suggest themselves. Possible causes of it include the importation of a greater amount and variety of contaminated foodstuffs, changes in methods of handling food in communal eating places, and perhaps better diagnosis owing to the extension of the Public Health Laboratory Service. Subdivision into general and family outbreaks shows the former to have been slightly more numerous until 1954, when those confined to the family went ahead and are now more than twice as common. Classification by aetiology shows Salmonella infections preponderating in family outbreaks, together with a high proportion of "unknowns." General outbreaks are more nearly evenly distributed among the aetiological classes, and include most of those due to Cl. welchii.

Brief descriptions are given of how food comes to be contaminated with the causative bacteria. These might with advantage have been expanded somewhat. It is rather too sweeping to say that "Salmonellae are found in all foods of animal origin—meats, meat products, soups, milk, eggs..." In home-killed meat they are unlikely to be present except after emergency slaughter, and for eggs a distinction should be drawn between those of hen and duck, and between shell egg and imported canned or dried eggs. Mouse and rats, imported coconut powder, and human carriers might also have been mentioned. The memorandum rightly emphasizes that Cl. welchii food-poisoning is almost wholly the result of cooking meat the day before it is served and failing to refrigerate it adequately overnight, but it might have added that this almost ubiquitous organism is incapable in its ordinary form of causing food-poisoning. The form that causes it is a subvariety of type A, distinguished by being non-haemolytic and possessing greater resistance to heat; it is fortunately not, like the normal type A, an inhabitant of

---

3 Ibid., 1966, 1, 711.