Appendix A

Analysis of Initial Antibiotic Therapy in 64 Consecutive Cases of Bacterial Meningitis

<table>
<thead>
<tr>
<th>Antibiotic Combination</th>
<th>Number of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin and sulphadiazine</td>
<td>26</td>
</tr>
<tr>
<td>Penicillin, sulphadiazine, and streptomycin</td>
<td>13</td>
</tr>
<tr>
<td>Penicillin and streptomycin</td>
<td>8</td>
</tr>
<tr>
<td>Penicillin and tetracycline</td>
<td>6</td>
</tr>
<tr>
<td>Penicillin only</td>
<td>5</td>
</tr>
<tr>
<td>Chloramphenicol only</td>
<td>2</td>
</tr>
<tr>
<td>Penicillin, sulphadiazole, and tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Penicillin, streptomycin, and tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Streptomycin, P.A.S., and isoniazid</td>
<td>1</td>
</tr>
</tbody>
</table>

Treatment included:
- Penicillin: 61/64
- Penicillin and a sulphonamide: 47/64
- Streptomycin: 22/64
- Tetracycline: 9/64
- Chloramphenicol: 2/64
- P.A.S. and isoniazid: 1/64

Initial treatment with one drug only:
- Penicillin: 5 cases (2 changed to chloramphenicol on second day. One died)
- Chloramphenicol: 2 cases (both changed to other effective drugs in second week to avoid toxicity)

Intrathecal treatment:
- None: 20 cases
- Penicillin one day: 9 cases
- Penicillin 2 to 4 days: 17 cases
- Penicillin 5 to 7 days: 10 cases
- Penicillin 8 to 14 days: 5 cases
- Streptomycin: 2 cases (1 for 1 week, 1 for 1 day)
- Chloramphenicol: 1 case for 2 days

Appendix B

Analysis of Reasons for Changes Made in the Initial “Blind” Antibiotic Therapy

1. No change ...

No reason was found either clinically or as a result of sensitivity studies for change in the first blind choice of single or combined antibiotic therapy. One patient died within six hours of admission before any treatment could become effective.

2. Withdrawal of an antibiotic

Antibiotic treatment changed solely by the withdrawal of an antibiotic subsequently shown to be ineffective by a sensitivity test from a group of otherwise effective antibiotics.

3. Toxicity

Change of antibiotics in view of toxicity or possible toxicity. The change in each case was from one effective drug to another or by the withdrawal of a toxic member of an otherwise effective group.

4. Change of one agent as indicated by sensitivity tests ...

Change of one member of a group only, the others being already effective.

5. Change of whole treatment as indicated by sensitivity tests ...

Change of the single antibiotic or of the whole group, none of which were effective as judged by sensitivity tests.

6. Change of antibiotic on clinical grounds ...

In all these cases, the antibiotic was already adequate as judged by sensitivity tests, and the change involved either the addition of a further effective drug or the substitution of one “effective” drug for another.

<table>
<thead>
<tr>
<th>Group</th>
<th>Total Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 to 6 total 65 cases, but one case was included twice.</td>
</tr>
<tr>
<td>2</td>
<td>In groups 1, 2, 3, and 4 (a total of 54 cases, including 1 death) there was no reason, either clinically or bacteriologically, to think that the antibiotic cover was not fully effective throughout. In group 6, which contains seven cases, it is known that antibiotic cover was effective in all cases as shown by sensitivity tests, but changes were made in view of an apparently unsatisfactory initial clinical response.</td>
</tr>
<tr>
<td>3</td>
<td>There was no cause for any change on clinical grounds in any of the 12 cases in which we failed to culture an organism from the C.S.F. (usually because of previous treatment), although in Case 53 P.A.S. and isoniazid were stopped when initial doubts about the possibility of tuberculous meningitis were resolved.</td>
</tr>
<tr>
<td>4</td>
<td>Group 5, containing only three cases, is the only group in which it is known that initial therapy was probably ineffective. In all these cases, however, the change to effective antibiotic therapy, as judged by sensitivity tests, was made within the first two or three days after admission (in two cases chloramphenicol was substituted for penicillin, and in one case chloramphenicol for sulphadiazine).</td>
</tr>
</tbody>
</table>

Adrenal Function and the Inhibition of Allergic Responses Under Hypnosis

STEPHEN BLACK,* M.R.C.S., L.R.C.P.; MAX FRIEDMAN,† M.B., M.R.C.P.ED.

Possible psychophysiological mechanisms to explain the inhibition of allergic skin reactions by direct suggestion under hypnosis (D.S.U.H.) were reviewed in the British Medical Journal (1964). As one possible explanation of these phenomena it was suggested that “tissue permeability can be altered by adrenocortical hormones, the secretion of which is controlled by the anterior pituitary and hence governed by the hypothalamus and all nervous mechanisms working thereon.” Experimental investigation in this field, using hypnosis as a research tool (Black, 1963b), has demonstrated the production by D.S.U.H. of a shift in the dose-response curve of the Prasunz-Küstner (P.K.) reaction. This technique of inves-

* Division of Human Physiology, Medical Research Council Laboratories, Hampstead, London.
† Medical Unit, University College Hospital, London.
In man, in contrast to the rat, the main free 11-
hydroxycorticoid in plasma is cortisol (hydrocortisone),
although corticosterone and aldosterone are also present
in smaller amounts (Bush and Sandberg, 1953). In further
experiments the effect of forceful D.S.U.H. of fear on
the plasma-cortisol levels of one subject was also determined
to assay the maximum levels of plasma cortisol which might be
expected to occur as a result of hypnotic techniques in general.
Adrenal function was then stimulated in both subjects by
intravenous administration of adrenocorticotropic hormone
(A.C.T.H.) in appropriate dosage and the effects of such
stimulation on the dose-response curve of the P.K. reaction
were observed.

Methods and Materials

The dose-response curve of the P.K. reaction was estimated
by techniques already described (Black, 1963b). The
immediate skin response to horse serum was measured in terms of
the weal areas resulting from the presence in the skin of
passively transferred skin-sensitizing antibodies in an anti-
horse human serum, which had been previously inoculated
intradermally at dilutions of 1/10, 1/50, 1/250, 1/500, and
1/1,000, and which gave an onset at 15 and 40 minutes after
pricking-in the horse serum, and P.V. was therefore considered impracticable to assay adrenal function in
terms of the urinary metabolites of adrenal steroids over this
short period of time. Moreover, the alternative possibility of
estimating adrenal function in terms of the eosinophil count—
which is known to fall on adrenal stimulation (Thorn, Forsham,
Prunty, and Hills, 1948)—was also ruled out because of the
numerous other factors known to influence the number of
eosinophils in the blood (Acland and Gould, 1956).

The plasma cortisol was estimated by one of us (M.F.) by
a modification of the fluorometric method described by
Mattingly (1962). Plasma steroids were extracted into
methylene chloride and fluorescence was induced by mixture
with a fluorescence reagent consisting of 7 volumes of con-
centrated sulphuric acid and 3 volumes of ethyl alcohol. The
fluorescence was read on a Locarte fluorimeter, using a zinc
lamp as the exciting light in place of the mercury source
employed by Mattingly. The primary filters used were Chance
OB10 blue and Locarte LF3, which were found to provide
greater specificity with excitation at 468, 472, and 481 mμ.
The secondary filters used were Chance OG1 and OY3,
which give a peak transmission around 540 mμ, while exclud-
ing light below 510 mμ.

There is a normal diurnal rhythm in the plasma-cortisol
levels, which are highest between 08.00 and 09.00 hours and
lowest at midnight, so that throughout the day a steady drop
is recorded in normal individuals in good health (Mattingly,
1963). Our experiments were accordingly conducted over a
standard period of time between 14.00 and 16.00 hours. To
establish a baseline, from the onset of each experiment the
subject rested supine on a couch in a quiet room with curtains
drawn, and venous blood in 10-ml volumes was taken at set
intervals throughout the experimental period. These samples
were taken at 14.00 hours and from then on at intervals of
30, 60, 75, 90, and 105 minutes.

To record the dose-response curve of the P.K. reaction the
subject was prepared 24 hours previously at 15.00 hours by
intradermal inoculation on the flexor surface of the forearm
with freshly made-up dilutions of the anti-horse human serum
as already described (Black, 1963b). On the day of the ex-
periment the subject then rested on the couch from 14.00
hours onwards and blood samples were taken at the times
stated. After the 60-minute sample—at 15.00 hours—drops
of horse serum were placed on the inoculation sites and were
then pricked-in. The horse serum was left in situ for one
minute and then wiped off, and the resulting weal areas
were recorded on Sellotape as described by Mason and Black (1958).

Such records were made at 15 and 30 minutes after pricking-
in the horse serum. The blood samples taken during this
period at 75 and 90 minutes were obtained by venepuncture
and from the other arm immediately before the weal-area
records were made.

Not less than 14 days later the experiment was then
repeated on the opposite arm. On this occasion, however,
the subject was hypnotized before pricking-in the horse serum
and, as already described, D.S.U.H. was given that there
would be no response (Black, 1963b). In the case of subject
I, D.S.U.H. was given as post-hypnotic suggestion and the
subject was awakened before proceeding further with the
experiment. In the case of subject II, D.S.U.H. was given
and reinforced at intervals for 45 minutes, so that the subject
remained hypnotized throughout the rest of the experiment.
In both instances records of the weal areas, if present, were made as
before at 15 and 30 minutes after pricking-in horse serum
and blood samples were again taken by venepuncture from
the other arm.

Before proceeding to the second part of the experiment,
which involved estimating the effects on the P.K. reaction
of intravenous administration of A.C.T.H., it was necessary to
assay the physiological levels of plasma cortisol which might be
expected to occur as a result of D.S.U.H. This was carried
out on subject II and a baseline recorded in the usual way for
the first 60 minutes. Forceful D.S.U.H. of fear was then given
generally continuously over a period of 45 minutes to produce the
maximum subjective response possible. The words used were:
"You are frightened . . . you feel frightened . . . you
are frightened of something . . . you are frightened." Obvi-
ously the subject reacted to these suggestions with increased
heart rate, increased respiration rate, sweating hands, and
weeping and wringing of the hands. Subjectively, she declared
herself frightened by a variety of images, some of which were
regressive and some of which related to her current life as a
mother and housewife.

The 60-minute blood sample was taken before D.S.U.H.
was given and the other samples at 75, 90, and 105 minutes.
At this point in time (15.45 hours) the suggestions of fear were
clear, the subject was calmed and relaxed under hypnosis
and then awakened. A single further blood sample was then
taken an hour later, at 165 minutes (16.45 hours).

A psychophysiological variation in the plasma-cortisol levels
having been determined in this way, the adrenal function of
subject I was then titrated with A.C.T.H. in an intravenous
dextrose-saline drip, so as to estimate the amount of A.C.T.H.
required to produce variations in the plasma-cortisol levels of
the same order as those produced by D.S.U.H. of fear. The
second part of the experiment was then carried out on both
subjects.

The dose-response curve of the P.K. reaction was first elicited
in the waking state on one arm, but in the presence of an intraven-
ous drip of 4.3% dextrose and 0.9% saline, which was started
at the outset of the experimental period of 14.00 hours. This
was then repeated on the other arm, but after the usual resting
blood samples had been taken the drip-bottle was changed to
deliver 5 international units (I.U.) of crystalline A.C.T.H. over
45 minutes in the same dextrose-saline medium. With subject
II each arm was tested separately at an interval of 14 days and
records of the weal areas were made on both occasions 15
minutes after pricking-in the horse serum. With subject II both
arms were prepared simultaneously and were tested the
next day within 45 minutes of one another. The A.C.T.H.
 drip on this occasion was started 15 minutes prior to pricking-
in the horse serum on the second arm and on both arms the
weal areas were recorded 30 minutes after pricking-in the
horse serum.

Results

The resting plasma-cortisol levels of both subjects over the
experimental period from 14.00 hours onwards are shown in

References

Fig. 1. In Table I the falls in cortisol levels at rest are compared with the cortisol levels as recorded during the production of a P.K. reaction and during a shift in the dose-response curve of the P.K. reaction by D.S.U.H. in each subject.

![Graph showing changes in plasma-cortisol levels at rest over experimental period 14:00-16:00 hours.]

Fig. 1. Changes in plasma-cortisol levels at rest over experimental period 14:00-16:00 hours.

<table>
<thead>
<tr>
<th>Time of Day</th>
<th>Exp. of</th>
<th>Subject I</th>
<th>Subject II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Normal</td>
<td>Change</td>
</tr>
<tr>
<td>14:00</td>
<td>0</td>
<td>20-4</td>
<td>16-8</td>
</tr>
<tr>
<td>14:30</td>
<td>15-6</td>
<td>15-6</td>
<td>13-8</td>
</tr>
<tr>
<td>15:00</td>
<td>11-8</td>
<td>12-4</td>
<td>17-2</td>
</tr>
<tr>
<td>15:30</td>
<td>8-8</td>
<td>10-9</td>
<td>9-4</td>
</tr>
<tr>
<td>16:00</td>
<td>7-0</td>
<td>9-6</td>
<td>8-2</td>
</tr>
<tr>
<td>16:30</td>
<td>9-0</td>
<td>7-6</td>
<td>8-6</td>
</tr>
<tr>
<td>17:00</td>
<td>105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:30</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td>165</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table I. Variations in Plasma-cortisol Levels During a Shift in the Dose-response Curve of the P.K. Reaction by D.S.U.H.

Fig. 2 is a diagram which displays the response of subject I when a shift in the P.K. reaction dose-response curve was produced by D.S.U.H. using post-hypnotic suggestion. The height of each column records the P.K.-reaction weal area in sq. mm. as measured at 15 minutes for each dilution of skin-sensitizing serum inoculated. It will be seen that the response to a dilution of 1/10 was reduced from a weal area of 62 sq. mm. to zero and that a similar reduction to zero occurred at a dilution of 1/500. Reductions were also recorded at 1/50, 1/250, and 1/1,000. In general, clear-cut evidence of a shift in the dose-response curve was shown.

Fig. 3 records the plasma-cortisol levels during the normal P.K. reaction and the levels when the shift in the dose-response curve was produced by D.S.U.H. as shown in Fig. 2. Following D.S.U.H. “not to react” there was a continued drop as in the control, although a rise was recorded between 30 and 60 minutes before D.S.U.H. was given.

![Graph showing plasma-cortisol levels during P.K. reaction by D.S.U.H. by post-hypnotic suggestion.]

Fig. 3. Subject I. Plasma-cortisol levels during inhibition of P.K. reaction by D.S.U.H. by post-hypnotic suggestion.

Fig. 4 displays in the same way the response obtained in subject II, when a more pronounced shift in the dose-response curve of the P.K. reaction was produced by D.S.U.H. “not to react” with reinforcement under continued hypnosis for 45 minutes. The weal area at the serum dilution of 1/10 was reduced from 31 to 17 sq. mm. and to zero at all other dilutions. The weal areas shown were measured at 30 minutes after prickng-in-horse serum.

![Graph showing effect of D.S.U.H. “not to react” on P.K. reaction by post-hypnotic suggestion.]

Fig. 4. Subject II. Effect on P.K. reaction of D.S.U.H. “not to react”: hypnotized.

Fig. 5 records the plasma-cortisol levels during this shift in the dose-response curve in subject II, as recorded in Fig. 4. On this occasion a slight rise of some 3 g. of cortisol per 100 ml. of plasma was recorded after D.S.U.H. “not to react” was given, but is hardly significant.

The effect on the dose-response curve of the P.K. reaction of a rise in the plasma-cortisol levels was then investigated without the use of hypnosis. However, it was first necessary to determine the order of psychophysiological variation in the plasma-cortisol levels which might be produced by hypnotic techniques. Fig. 6 shows the variation in the plasma-cortisol levels of subject II when forceful D.S.U.H. of fear was given.
and reinforced for 45 minutes. It will be seen that a rise of 13.4 g. of cortisol per 100 ml. of plasma was recorded. After the suggestions were cleared and the subject was calmed and awakened, the fall rate in the plasma-cortisol level was relatively slow, and after one hour had dropped by only 8 μg. Titration of subject I with A.C.T.H. by intravenous drip in a glucose-saline medium then indicated that administration of 9 I.U. of crystalline A.C.T.H. over a period of 45 minutes produced a rise in the plasma-cortisol level of the same order as that recorded in response to D.S.U.H. of fear in subject II.

These results are displayed in Figs. 7–10. Fig. 7 shows the dose-response curves for subject II where dilution of skin-sensitizing serum is plotted log-log against weal area in sq. mm. x 10. The normal response on the left arm is compared with the response on the right arm in the presence of an A.C.T.H. drip which was started synchronously with the pricking-in of horse serum. Both sets of weal-area records were made 15 minutes after the horse serum was pricked-in. Fig. 8 shows the effect on the plasma-cortisol levels of the intravenous A.C.T.H. drip in this experiment. Comparing both figures, it can be seen that, although the plasma-cortisol level rose at the rate of 18.8 μg. per 100 ml. of plasma in 45 minutes, there was no shift in the dose-response curve of the P.K. reaction. This is confirmed by a statistical test of the difference of the two slopes which shows that there is no significant difference.

Fig. 9 shows the two dose-response curves for subject I, when both arms were prepared synchronously and horse serum was pricked-in to the right arm within 45 minutes of

The weal areas for the different dilutions of skin-sensitizing serum as recorded on both subjects in this part of the experiment are shown in Table II. From these figures it can be seen that the normal response and the response during administration of A.C.T.H. by intravenous drip are very similar to one another in both subjects.

<table>
<thead>
<tr>
<th>Dilution of Skin-sensitizing Serum</th>
<th>Subject II P.K.-reaction</th>
<th>Subject II Weal Areas at 15 mins. in sq. mm.</th>
<th>Subject II Normal Response</th>
<th>Subject II Response on A.C.T.H. Drip Left Arm</th>
<th>Subject I P.K.-reaction</th>
<th>Subject I Weal Areas at 30 mins. in sq. mm.</th>
<th>Subject I Normal Response</th>
<th>Subject I Response on A.C.T.H. Drip Left Arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/10</td>
<td>52</td>
<td>66</td>
<td>42</td>
<td>64</td>
<td>32</td>
<td>42</td>
<td>59</td>
<td>32</td>
</tr>
<tr>
<td>1/50</td>
<td>32</td>
<td>28</td>
<td>22</td>
<td>32</td>
<td>18</td>
<td>22</td>
<td>30</td>
<td>18</td>
</tr>
<tr>
<td>1/250</td>
<td>16</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>10</td>
<td>18</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>1/500</td>
<td>10</td>
<td>11</td>
<td>6</td>
<td>26</td>
<td>5</td>
<td>21</td>
<td>28</td>
<td>5</td>
</tr>
<tr>
<td>1/1,000</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>21</td>
<td></td>
<td>21</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

Table II.—Effect of Intravenous A.C.T.H. on the Dose-response Curve of the P.K. Reaction.
the left. The normal response on the left arm as recorded at 30 minutes is very similar to the 30-minute response on the right arm after the A.C.T.H. drip had been running 45 minutes and the full dose of 9 I.U. of A.C.T.H. had been administered. Fig. 10 shows the effect on the plasma-cortisol levels of the A.C.T.H. drip which produced a rise of 26 μg. of cortisol per 100 ml. of plasma in the 45 minutes before the weal-area records from the right arm were made as in Fig. 9. Comparing both figures, it can be seen that no shift in the dose-response curve of the P.K. reaction was produced, in spite of this marked rise in the plasma-cortisol level. The absence of any shift is again confirmed statistically.

![Diagram](https://www.bmj.com/first-published-as-10.1136/bmj.1.5434.562-on-27-february-1965/downloaded-from-http://www.bmj.com/)

Discussion

A good source of information on the effects of stress on adrenal function is the monograph by Thomason (1959), which reviews the literature and presents his findings in a series of normal subjects and surgical patients. Clearly there is already much evidence that variations in the plasma-cortico-steroid levels occur as a result of stress situations in general. The hypothesis that such changes might play some part in the inhibition of allergic responses by suggestion therefore seemed likely. However, the results of our experiments reported here indicate that a shift in the dose-response curve of the P.K. reaction by D.S.U.H. can be brought about without any significant change in the plasma-cortisol levels. Moreover, the subsequent intravenous administration of A.C.T.H. during the production of a P.K. reaction would appear to have clinched the matter. The intravenous administration of 9 I.U. of A.C.T.H. over 45 minutes in a glucose-saline medium produced a rise in plasma cortisol of the same order as that recorded when forceful D.S.U.H. of fear was given—yet there was no shift in the dose-response curve of the P.K. reaction in either subject.

The problem of the nature of the psychophysiological inhibition in the inhibition of such allergic skin reactions by suggestion therefore still remains unsolved. The *British Medical Journal* (1964) raised, in addition, the question of whether such effects might be produced by neurovascular mechanisms, and cited the work of Rosenbluth and Cannon (1934) because of their conclusion that antidromic impulses in afferent nerves were responsible for peripheral vasodilatation observed in emotionally disturbed dogs—an effect which was also produced by electrical stimulation of the medulla. However, Black, Edholm, Fox, and Kidd (1963a) showed that when D.S.U.H. of thermal stimuli was given no significant variation was produced in forearm and hand blood-flow. In general, this work and that of Doupe, Miller, and Keller (1939), suggests that neurovascular mechanisms are unlikely to play any part in the inhibition by D.S.U.H. of the P.K. reaction as in our experiments, or in the inhibition by D.S.U.H. of the immediate-type hypersensitivity response (Black, 1963a), or the inhibition by D.S.U.H. of local oedema in the delayed-type hypersensitivity response as typified by the Mantoux reaction (Black, Humphrey, and Niven, 1963b).

The blood-flow studies of Black et al. (1963a) emphasized the importance of distinguishing between (1) hypnosis per se, (2) direct suggestion under hypnosis, and (3) indirect suggestion under hypnosis when using hypnosis as a research tool in the study of psychophysiological mechanisms. Neither hypnosis per se nor the direct suggestion “You are hot” produced any significant change in the haemodynamic picture. However, the indirect suggestion “You are hot because the house is on fire” produced forearm and hand blood-flow changes similar to those observed in cases of anxiety by Blair, Glover, Greenfield, and Roddie (1959) and Barcroft, Brod, Hejil, Hirsjärvi, and Kitchin (1960). Moreover, Black and Wigan (1961), working in acoustics, demonstrated that variations in the physiological response could result from semantic differences in the hypnotic suggestion, as has now been confirmed by Arwyn Evans (1965), investigating the use of hypnosis in obstetrics.

In general, the use of hypnosis as a research tool in both allergy and neurophysiology has shown the extreme delicacy of the informational mechanisms involved. In their work in the expectancy waves in anterior cortex Black and Walter (1965) demonstrated that even an implied suggestion could produce its effects. Such implied suggestion is possibly the explanation of the relative inhibition of the immediate-type hypersensitivity response by hypnosis per se in cases of atopic asthma as reported by Fry, Mason, and Pearson (1964). In our experiments, for example, it will be noted that when D.S.U.H. of fear was given to assay the psychophysiological variations in the plasma-cortisol levels as produced by hypnotic techniques, although the suggestion “You are frightened . . .” was technically “direct,” the subject’s report of her experience implied “indirect” features to which her fears were spontaneously related.

However, unlike variations in blood-flow and apparently in adrenal function also, inhibition of allergic responses can be brought about by “direct” suggestion alone—a fact now firmly established, both clinically (Mason and Black, 1958) and experimentally (Black, 1963a, 1963b; Black et al., 1963b). Inhibition as a result of such suggestion is usually immediate (instant inhibition), but it may be delayed, suggesting the build-up of a humoral factor. That the effects of suggestion under hypnosis appear to be a function of the depth of trance of the subject indicates perhaps that emotional tone plays some part.

In considering other mechanisms in the psychophysiological inhibition of allergy it should be recognized that the elimination of cortisol and the stimulation of adrenal function by A.C.T.H. does not rule out the possibility of pituitary-adrenal mechanisms not yet open to investigation.

Conclusions

It is concluded that a shift in the dose-response curve of the P.K. reaction produced by direct suggestion under hypnosis does not involve stimulation of adrenal function by the hypothalamic-pituitary-adrenal axis to produce a rise in the plasma-cortisol levels, measured by free plasma 11-hydroxycorticoids. Moreover, it seems most unlikely that a shift in the dose-response curve of the P.K. reaction is produced by mechanisms which differ greatly from those involved in inhibition by direct suggestion under hypnosis of the immediate-type hypersensitivity response, or the inhibition of local oedema in the delayed-type hypersensitivity response as...
typified by the Mantoux reaction. It is therefore further concluded that, in general, inhibition of all allergic reactions by direct suggestion under hypnosis is very unlikely to involve any rise in the plasma cortisol levels due to central stimulation of adrenal function.

Summary

The plasma cortisol levels were estimated in two deep-trance hypnotic subjects during production of a shift in the dose-response curve of the Prausnitz–Küstner reaction by direct suggestion under hypnosis. The results showed that no significant change of the plasma cortisol levels occurred during such a shift in the curve. Moreover, there was no shift in the curve when a rise in plasma cortisol occurred as a result of adrenal stimulation by adrenocorticotrophic hormone in dosage established as being within the psychophysiological limits.

It is concluded that a shift in the dose-response curve of the Prausnitz–Küstner reaction by direct suggestion under hypnosis does not involve stimulation of adrenal function by the hypothalamic–pituitary–adrenal axis to produce a rise in the plasma cortisol levels. It is further concluded that cortisol is unlikely to play any part in the inhibition by direct suggestion under hypnosis of allergic skin reactions in general.

Our thanks are due to the Medical Research Council, Ergonomics Limited, the Parapsychology Foundation of New York, and the Nuffield Foundation for financial assistance. Our thanks are also due to Dr. O. G. Edholm for the technical assistance provided by the Division of Human Physiology of the Medical Research Council, and to Dr. J. H. Humphrey, of the National Institute for Medical Research, Mill Hill, for supplying the “hepatitis-free” skin-sensitizing human serum used throughout in the production of the Prausnitz–Küstner reaction. We would also like to thank Mr. Martin Whittaker, of the Medical Research Council Laboratories, London, for his statistical tests of the significance of our results.

References

Medical Memoranda

Acute Renal Failure Complicating Lymphosarcoma

Several reports of acute renal failure complicating reticulosarcoma have appeared in recent years (Merrill, 1940; Merrill and Jackson, 1943; Kravitz et al., 1951; Krizler, 1958; Greenbaum and Hope Stone, 1959; Duncan et al., 1963). Disease infiltration of the kidney, amyloidosis, or hyperuricaemia may be responsible. Hyperuricaemia occurs in untreated reticulosarcoma (Sandberg et al., 1956), but is increased by radiotherapy (Lennox and Means, 1923), cytotoxins, and corticosteroids. Urate precipitation may then obstruct the renal tract. Successful treatment by haemodialysis has been reported (Firmat et al., 1960; Duncan et al., 1963).

A patient with lymphosarcoma developed renal failure on two occasions; the first was due to hyperuricaemia following radiotherapy, and the second, four months later, was produced by extensive infiltration of both kidneys by lymphosarcoma. It is noteworthy that severe hyperuricaemia followed a small dose of radiotherapy.

Case Report

A 47-year-old man developed a painful swelling in his right groin in mid-February 1963. Biopsy at a hospital in France was unsatisfactory and he was admitted to R.A.F. Hospital, Wegberg, where axillary, right cervical, and right inguinal glands were found to be enlarged. Biopsy of a right cervical gland showed lymphosarcoma.

He was admitted to R.A.F. Hospital, Uxbridge, on 25 March, and between 17 April and 20 May was treated at Westminster Hospital by radiotherapy to the right groin (5,000 r) and to both axillae (4,000 r). The masses regressed rapidly and he was discharged from hospital on 23 May. In early July he developed listlessness, anaemia, and progressive abdominal distension. He was readmitted to Uxbridge on 2 August, when marked abdominal swelling due to ascites, para-aortic glandular masses, and hepatomegaly was found.

Between 8 and 13 August he received 500 r (100 r daily x 5) to the whole abdomen (36 sq. cm.) at Mount Vernon Hospital. On 11 August remarkable regression of the abdominal glands was noted, but he had considerable nausea and severe abdominal pain. On 13 August he had an epileptiform convulsion and complained of blurred vision and severe lower abdominal pain.

His symptoms persisted next day, when a 24-hour urine output of 360 ml. was noted. On 15 August renal failure was diagnosed; serum uric acid was 45 mg./100 ml., blood urea 203 mg./100 ml., and serum potassium 6.8 mEq/l. Conservative treatment was instituted and on 16 August his condition had improved, but serum uric acid was 42.5 mg./100 ml., blood urea 214 mg./100 ml., serum potassium 6.5 mEq/l.; a 30-hour urine volume was 275 ml., S.G. 1011. At this stage he was transferred to the Renal Unit, Princess Mary's R.A.F. Hospital, Halton.

On admission he was uraemic and overhydrated, and urine deposit showed many uric acid crystals. The next morning (17 August) serum uric acid was 34 mg./100 ml., plasma urea 475 mg./100 ml., and potassium 7 mEq/l. He was dialysed for six hours, using a Kolff twin-coil artificial kidney. Blood uric acid and urea, and urine volumes, are shown in the Chart. He produced 100 ml. of urine.