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Brain HealtH

Decoding the brain through research—the future 
of brain health
David Z Wang and colleagues look at the latest advances in brain research and how they might 
affect treatment of brain disorders

The world has come a long way in 
solving the mystery of the brain, 
understanding its fundamental 
role in human consciousness 
and discovering methods to 

treat its disorders. In The Sacred Disease in 
~430 BC, Hippocrates wrote that the brain 
served to house the ventricles, whose main 
purpose was to be a container and transit 
point for the breath or air (pneuma) from 
outside the body—the force that brought to 
life our joys, pleasures, laughter, and grief. 
Thus, the brain was a reservoir for an ani
mated substance that produced the human 
experience of consciousness and personal
ity rather than the source of that activity 
itself.1 Our knowledge of the brain and its 
functional complexity remained at the level 
of three ventricles where our soul lies (Nem
esius, da Vinci) for hundreds of years until 
modern neuroscience began to uncover the 
fine network of neuronal circuits that made 
up the solid substance of the brain.

With the advent of modern neuro
imaging, the complex structure of the 
brain has been brilliantly revealed, and 
this has helped greatly in the treatment 
of many brain related disorders. Other 
articles in this series have provided 
updates on a wide range of topics, 
including neurodegenerative diseases, 
mental disorders, cerebrovascular 
diseases, epilepsy, monogenic neurological 

diseases, and in vivo brain function 
testing.26 With help from gross anatomy 
to electronic microscopy, tissue staining 
to profiling, cell physiology, and synaptic 
chemistry, neuroscientists have elucidated 
the mechanisms and pathophysiology 
of many common brain diseases. For 
example, trinucleotide repeat expansion 
is now known to be responsible for 
many genetically inherited degenerative 
diseases such as Huntington’s disease, and 
amyloid precursor gene or presenilin gene 
mutations can cause Alzheimer’s disease.

On the other hand, despite centuries of 
discovery on mechanisms of brain disease, 
treatment options remain limited. Most 
treatments still provide only alleviation of 
symptoms, though recent breakthroughs 
in gene therapy such as onasemnogene 
abeparvovecxioi to treat children with 
spinal muscular atrophy 7 and reperfusion 
therapy for acute ischaemic stroke hold the 
promise to truly revolutionise treatment 
for neurological disease. While options 
are available to modify disease expression 
with medications—such as in the treatment 
of Parkinson’s disease, multiple sclerosis, 
and epilepsy—we are far from curing them.

Entering the 21st century, perhaps 
we now have better ways to understand 
the mechanism of those brain disorders 
that are still a mystery and find the 
precise treatment. The key will likely be 
interdisciplinary research. Many ongoing 
brain health research programmes have 
already been multidimensional, combining 
neurobiology, physics, engineering, big 
data science, and artificial intelligence.

Imaging advances
In the future, it is likely that humans will 
be able to live longer, and do so with aug
mented capabilities supported by machine
human interactions. One exciting advance 
is new ways of observing in vivo brainwide 
activities at the cellular level. A real time, 
ultralarge scale, high resolution (RUSH) 
macroscope has recently been developed 
that can provide videorate gigapixel imag
ing of biological dynamics at centimetre 
scale and micrometre resolution, with a 

data throughput of up to 5.1 gigapixels a 
second.8 RUSH has enabled in vivo func
tional imaging of neural networks across 
the whole mouse brain at single dendrite 
resolution and brainwide tracking of leu
cocytes during pathological processes, and 
the technology opens up a new horizon for 
large scale brain imaging to study various 
brain diseases at a systematic level.8

Another example is the better under
standing of the precise number of brain 
cells needed to complete a particular 
task. By constructing an explicit model 
of face selective cells that could decode 
an arbitrary realistic face from face cell 
responses and predict the firing of cells 
in response to an arbitrary realistic 
face, Chao and colleagues identified 
that macaques require only 200 cells to 
remember a face.9 These findings have 
far reaching significance. For the first 
time, a specialised task of the brain can 
be attributed to a specific number and 
type of brain cells in a specific circuit. 
This may allow scientists to build artificial 
models of explicit brain functions and 
experiment with mechanisms of injury 
and repair at a cellular or molecular level. 
Such mapping may aid our understanding 
of brain function and recovery and guide 
the rebuilding of brain circuits or resection 
of dysfunctional brain cells rather than 
whole tissues. It may also help us pinpoint 
the cells and circuits that are responsible 
for addictive behaviours, from smoking to 
substance use disorders to gambling.

Resilience and plasticity of brain cells
The common belief is that when a brain has 
been removed, brain death is imminent. 
However, such belief has recently been 
shattered. Sestan and colleagues collected 
brains of 68 month old pigs four hours 
after death and bathed them in special
ised perfusate solutions. They found that 
brain cells and synapses of certain areas 
of brain began to recover and show signs 
of cellular activities.10 Their finding sug
gests that there may be a late window of 
treatment after onset of brain anoxia when 
brain tissue can recover, analogous to the 

Key Messages

•   In the past decade, neuroscience and 
brain research have entered into a new 
era

•   It is now possible to understand brain 
physiology and pathophysiology bet-
ter through direct and in vivo obser-
vation of live brain

•   In the coming years, artificial intel-
ligence will likely be part of brain 
science and assist or replace certain 
brain function

•   Genetic or protein alterations may 
provide a cure for many brain disor-
ders in the near future
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benefit of late window thrombectomy. This 
discovery has taught us that brain cells 
can survive and recover after loss of cir
culation, and that favourable conditions 
may preserve a reservoir of resilient brain 
cells that are slow progressors to ischaemic  
necrosis.

Evidence is also emerging on how 
brain cells can adapt. A recent report of 
functional neuronal connectivity in adults 
without apparent loss of function after 
brain hemispherectomy sheds new light 
on brain plasticity. The study provides 
the first comprehensive analysis of whole 
brain functional connectivity across the full 
repertoire of resting state networks after 
hemispherectomy and shows preservation 
of resting state networks but an increase 
in internetwork connectivity with other  
functional brain networks. When hemi
spheric resection occurred in patients 
younger than 11, the retained hemisphere 
was able to protect the jeopardised 
functions by enhancing cellular interaction 
and synaptic activity.11

Harnessing the power of big data
Artificial intelligence (AI) has been widely 
applied in clinical diagnosis and patient 
monitoring. Recent studies have attempted 
to classify or detect Alzheimer’s disease 
and other cognitive impairment,12 13 acute 
neurological events,1418 focus of epilepsy, 
autism spectrum disorder, and attention 
deficit/hyperactivity disorder by using 
deep learning based algorithms. The data 
in these AI models include not only medi
cal images but also clinical scores, in vitro 
diagnostic test results, and other functional 
and structure information.1925 These stud
ies showed high sensitivity and specificity 
from their test set, and work is ongoing on 
how to incorporate the routine use of these 
AI systems into a clinical setting.

The lack of a large dataset from multiple 
centres, the limited coverage of a disease 
spectrum, and unclear risk of using AI 
are major limitations of these blackbox 
systems. In contrast, Wang and colleagues 
have recently proposed a “vascular 
aware” unsupervised learning technique, 
VasNet,26 which provides the end users 
with explainable images, including both 
vascular structures and multidimensional 
features such as anatomical, physiological, 
biochemical, and cellular details. The 
enriched outputs could augment human 
decision making on treating vascular 
diseases and contribute to the emergence 
of the next generation of healthcare 
engineering.

The US Food and Drug Administration 
has already approved several automatic 
quantitative measurement software 
systems for disease classification (eg, 
NeuroQuant, Quantib, RAPID). Brain 
morphometry analysis software can 
automatically examine segments of brain 
tissue and detect minute changes. This 
technology can help early detection of 
degenerative brain diseases by comparing 
the results from individuals with a large 
dataset and images of healthy people. To 
take racial differences in the brain into 
account, some Asian companies have 
developed software based on datasets 
acquired from Asian populations (http://
quanthealth.com). Use of a deep learning 
based segmentation algorithm could 
improve the accuracy and testretest 
stability in segmenting and measuring 
the volume of brain structure, abnormal 
lesions, perfusion deficit area, and other 
characteristics. The resulting quantified 
values could be used to assign a clinical 
score automatically, avoiding the variation 
arising from subjective measurement and 
interobserver inconsistency.

AI algorithms can also objectively analyse 
the data collected from a depth camera 
or wearable devices, assess behaviour, 
and evaluate facial expressions.2729 The 
quantified values produced would not be 
affected by the physicians’ experiences, 
and errors can be avoided since the spatial
temporal resolution of the hardware is 
much smaller than visual evaluation by 
humans. Such early detection may allow 
treatment of a disease before a person 
shows clinical signs of brain dysfunction. 
Quantified measurements can be used as 
biomarkers to monitor the progress of the 
disease and help evaluate the efficacy of 
precision therapy.

Prospect of cure
One of the potential ways of curing a brain 
disorder is to correct its diseased protein 
structure. Many neurological diseases are 
caused by misfolded proteins, including 
Huntington’s, Parkinson’s, and Alzheimer’s 
disease. AlphaFold, a Google company, has 
successfully predicted a protein structure 
by using large genomic data. The 3D mod
els of proteins that AlphaFold generates are 
far more accurate than any that have come 
before—making significant progress on one 
of the core challenges in biology. The ability 
to predict a protein’s shape from its DNA 
sequence is useful to scientists because it 
is fundamental to understanding its role 
within the body, as well as diagnosing and 

treating diseases believed to be caused by 
protein misfolding.30

We have entered into an exciting new era 
of brain science research and discovery. 
With the advent of AI, advanced imaging, 
genomics, psychosocial analytics, and 
protein engineering we may be closer than 
ever to new precision medicine approaches 
to treat many brain disorders.
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