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ABSTRACT
OBJECTIVE
To systematically examine the design, reporting 
standards, risk of bias, and claims of studies 
comparing the performance of diagnostic deep 
learning algorithms for medical imaging with that of 
expert clinicians.
DESIGN
Systematic review.
DATA SOURCES
Medline, Embase, Cochrane Central Register of 
Controlled Trials, and the World Health Organization 
trial registry from 2010 to June 2019.
ELIGIBILITY CRITERIA FOR SELECTING STUDIES
Randomised trial registrations and non-randomised 
studies comparing the performance of a deep 
learning algorithm in medical imaging with a 
contemporary group of one or more expert clinicians. 
Medical imaging has seen a growing interest in deep 
learning research. The main distinguishing feature 
of convolutional neural networks (CNNs) in deep 
learning is that when CNNs are fed with raw data, 
they develop their own representations needed 
for pattern recognition. The algorithm learns for 
itself the features of an image that are important 
for classification rather than being told by humans 
which features to use. The selected studies aimed 
to use medical imaging for predicting absolute risk 
of existing disease or classification into diagnostic 
groups (eg, disease or non-disease). For example, 
raw chest radiographs tagged with a label such as 
pneumothorax or no pneumothorax and the CNN 
learning which pixel patterns suggest pneumothorax.

REVIEW METHODS
Adherence to reporting standards was assessed 
by using CONSORT (consolidated standards of 
reporting trials) for randomised studies and TRIPOD 
(transparent reporting of a multivariable prediction 
model for individual prognosis or diagnosis) for non-
randomised studies. Risk of bias was assessed by 
using the Cochrane risk of bias tool for randomised 
studies and PROBAST (prediction model risk of bias 
assessment tool) for non-randomised studies.
RESULTS
Only 10 records were found for deep learning 
randomised clinical trials, two of which have been 
published (with low risk of bias, except for lack of 
blinding, and high adherence to reporting standards) 
and eight are ongoing. Of 81 non-randomised clinical 
trials identified, only nine were prospective and 
just six were tested in a real world clinical setting. 
The median number of experts in the comparator 
group was only four (interquartile range 2-9). 
Full access to all datasets and code was severely 
limited (unavailable in 95% and 93% of studies, 
respectively). The overall risk of bias was high in 58 
of 81 studies and adherence to reporting standards 
was suboptimal (<50% adherence for 12 of 29 TRIPOD 
items). 61 of 81 studies stated in their abstract that 
performance of artificial intelligence was at least 
comparable to (or better than) that of clinicians. Only 
31 of 81 studies (38%) stated that further prospective 
studies or trials were required.
CONCLUSIONS
Few prospective deep learning studies and 
randomised trials exist in medical imaging. Most non-
randomised trials are not prospective, are at high risk 
of bias, and deviate from existing reporting standards. 
Data and code availability are lacking in most studies, 
and human comparator groups are often small. 
Future studies should diminish risk of bias, enhance 
real world clinical relevance, improve reporting and 
transparency, and appropriately temper conclusions.
STUDY REGISTRATION
PROSPERO CRD42019123605.

Introduction
The digitisation of society means we are amassing 
data at an unprecedented rate. Healthcare is no 
exception, with IBM estimating approximately one 
million gigabytes accruing over an average person’s 
lifetime and the overall volume of global healthcare 
data doubling every few years.1 To make sense of these 
big data, clinicians are increasingly collaborating with 
computer scientists and other allied disciplines to 
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WHAT IS ALREADY KNOWN ON THIS TOPIC
The volume of published research on deep learning, a branch of artificial 
intelligence (AI), is rapidly growing
Media headlines that claim superior performance to doctors have fuelled hype 
among the public and press for accelerated implementation

WHAT THIS STUDY ADDS
Few prospective deep learning studies and randomised trials exist in medical 
imaging
Most non-randomised trials are not prospective, are at high risk of bias, and 
deviate from existing reporting standards
Data and code availability are lacking in most studies, and human comparator 
groups are often small
Future studies should diminish risk of bias, enhance real world clinical relevance, 
improve reporting and transparency, and appropriately temper conclusions
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make use of artificial intelligence (AI) techniques that 
can help detect signal from noise.2 A recent forecast 
has placed the value of the healthcare AI market as 
growing from $2bn (£1.5bn; €1.8bn) in 2018 to $36bn 
by 2025, with a 50% compound annual growth rate.3

Deep learning is a subset of AI which is formally 
defined as “computational models that are composed 
of multiple processing layers to learn representations of 
data with multiple levels of abstraction.”4 In practice, 
the main distinguishing feature between convolutional 
neural networks (CNNs) in deep learning and traditional 
machine learning is that when CNNs are fed with raw 
data, they develop their own representations needed 
for pattern recognition; they do not require domain 
expertise to structure the data and design feature 
extractors.5 In plain language, the algorithm learns 
for itself the features of an image that are important 
for classification rather than being told by humans 
which features to use. A typical example would be 
feeding in raw chest radiographs tagged with a label 
such as either pneumothorax or no pneumothorax 
and the CNN learning which pixel patterns suggest 
pneumothorax. Fields such as medical imaging have 
seen a growing interest in deep learning research, 
with more and more studies being published.6 Some 
media headlines that claim superior performance to 
doctors have fuelled hype among the public and press 
for accelerated implementation. Examples include: 
“Google says its AI can spot lung cancer a year before 
doctors” and “AI is better at diagnosing skin cancer 
than your doctor, study finds.”7 8

The methods and risk of bias of studies behind such 
headlines have not been examined in detail. The danger 
is that public and commercial appetite for healthcare AI 
outpaces the development of a rigorous evidence base 
to support this comparatively young field. Ideally, the 
path to implementation would involve two key steps. 
Firstly, well conducted and well reported development 
and validation studies that describe an algorithm and 
its properties in detail, including predictive accuracy 
in the target setting. Secondly, well conducted and 
transparently reported randomised clinical trials that 
evaluate usefulness in the real world. Both steps are 
important to ensure clinical practice is determined 
based on the best evidence standards.9-12

Our systematic review seeks to give a contemporary 
overview of the current standards of deep learning 
research for clinical applications. Specifically, we 
sought to describe the study characteristics, and 
evaluate the methods and quality of reporting and 
transparency of deep learning studies that compare 
diagnostic algorithm performance with human 
clinicians. We aim to suggest how we can move forward 
in a way that encourages innovation while avoiding 
hype, diminishing research waste, and protecting 
patients.

Methods
The protocol for this study was registered in the 
online PROSPERO database (CRD42019123605) 
before search execution. The supplementary appendix 

gives details of any deviations from the protocol. 
This manuscript has been prepared according to the 
PRISMA (preferred reporting items for systematic 
reviews and meta-analyses) guidelines and a checklist 
is available in the supplementary appendix.13

Study identification and inclusion criteria
We performed a comprehensive search by using free 
text terms for various forms of the keywords “deep 
learning” and “clinician” to identify eligible studies. 
Appendix 1 presents the exact search strategy. Several 
electronic databases were searched from 2010 to June 
2019: Medline, Embase, Cochrane Central Register of 
Controlled Trials (CENTRAL), and the World Health 
Organization International Clinical Trials Registry 
Platform (WHO-ICTRP) search portal. Additional 
articles were retrieved by manually scrutinising the 
reference lists of relevant publications.

We selected publications for review if they satisfied 
several inclusion criteria: a peer reviewed scientific 
report of original research; English language; assessed 
a deep learning algorithm applied to a clinical problem 
in medical imaging; compared algorithm performance 
with a contemporary human group not involved in 
establishing the ground truth (the true target disease 
status verified by best clinical practice); and at least 
one human in the group was considered an expert. 
We included studies when the aim was to use medical 
imaging for predicting absolute risk of existing disease 
or classification into diagnostic groups (eg, disease 
or non-disease). Exclusion criteria included informal 
publication types (such as commentaries, letters to the 
editor, editorials, meeting abstracts). Deep learning 
for the purpose of medical imaging was defined as 
computational models that are composed of multiple 
processing layers to learn representations of data with 
multiple levels of abstraction (in practice through a 
CNN; see box 1).4 A clinical problem was defined as a 
situation in which a patient would usually see a medical 
professional to improve or manage their health (this 
did not include segmentation tasks, eg, delineating the 
borders of a tumour to calculate tumour volume). An 
expert was defined as an appropriately board certified 
specialist, attending physician, or equivalent. A real 
world clinical environment was defined as a situation 
in which the algorithm was embedded into an active 
clinical pathway. For example, instead of an algorithm 
being fed thousands of chest radiographs from a 
database, in a real world implementation it would exist 
within the reporting software used by radiologists and 
be acting or supporting the radiologists in real time.

Study selection and extraction of data
After removal of clearly irrelevant records, four people 
(MN, YC, CAL, Dina Radenkovic) independently 
screened abstracts for potentially eligible studies so 
that each record was reviewed by at least two people. 
Full text reports were then assessed for eligibility with 
disagreements resolved by consensus. At least two 
people (MN, YC, CAL) extracted data from study reports 
independently and in duplicate for each eligible study, 
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with disagreements resolved by consensus or a third 
reviewer.

Adherence to reporting standards and risk of bias
We assessed reporting quality of non-randomised 
studies against a modified version of the TRIPOD 
(transparent reporting of a multivariable predic-
tion model for individual prognosis or diagnosis) 
statement.14 This statement aims to improve the trans-
parent reporting of prediction modelling studies of 
all types and in all medical settings.15 The TRIPOD 
statement consists of a 22 item checklist (37 total points 
when all subitems are included), but we considered 
some items to be less relevant to deep learning studies 
(eg, points that related to predictor variables). Deep 
learning algorithms can consider multiple predictors; 
however, in the cases we assessed, the only predictors 
(almost exclusively) were the individual pixels of 
the image. The algorithm did not typically receive 
information on characteristics such as patient age, sex, 
and medical history. Therefore, we used a modified list 
of 29 total points (see appendix 2). The aim was to 
assess whether studies broadly conformed to reporting 
recommendations included in TRIPOD, and not the 
detailed granularity required for a full assessment of 
adherence.16

We assessed risk of bias for non-randomised 
studies by applying PROBAST (prediction model 
risk of bias assessment tool).17 PROBAST contains 
20 signalling questions from four domains (partici-
pants, predictors, outcomes, and analysis) to allow 

assessment of the risk of bias in predictive modelling 
studies.18 We did not assess applicability (because 
no specific therapeutic question existed for this 
systematic review) or predictor variables (these are 
less relevant in deep learning studies on medical 
imaging; see appendix 2).

We assessed the broad level reporting of randomised 
studies against the CONSORT (consolidated standards 
of reporting trials) statement. Risk of bias was evaluated 
by applying the Cochrane risk of bias tool.11 19

Data synthesis
We intentionally planned not to conduct formal 
quantitative syntheses because of the probable hetero-
geneity of specialties and outcomes.

Patient and public involvement
Patients were not involved in any aspect of the study 
design, conduct or in the development of the research 
question or outcome measures.

Results
Study selection
Our electronic search, which was last updated on 
17 June 2019, retrieved 8302 records (7334 study 
records and 968 trial registrations; see fig 1). Of the 
7334 study records, we assessed 140 full text articles; 
59 were excluded, which left 81 non-randomised 
studies for analysis. Of the 968 trial registrations, we 
assessed 96 in full; 86 were excluded, which left 10 
trial registrations that related to deep learning.

Box 1: Deep learning in imaging with examples

Deep learning is a subset of artificial intelligence that is formally defined as “computational models that are composed 
of multiple processing layers to learn representations of data with multiple levels of abstraction.”4 A deep learning 
algorithm consists of a structure referred to as a deep neural network of which a convolutional neural network (CNN) 
is one particular type frequently used in imaging. CNNs are structurally inspired by the hierarchical arrangement of 
neurons within the brain. They can take many nuanced forms but the basic structure consists of an input layer, multiple 
hidden layers, and a final output layer. Each hidden layer responds to a different aspect of the raw input. In the case of 
imaging, this could be an edge, colour, or specific pattern.

The key difference between deep learning and other types of machine learning is that CNNs develop their own 
representations needed for pattern recognition rather than requiring human input to structure the data and design 
feature extractors. In plain language, the algorithm learns for itself the features of an image that are important for 
classification. Therefore, the algorithm has the freedom to discover classification features that might not have 
been apparent to humans (particularly when datasets are large) and thereby improve the performance of image 
classification.

CNNs use raw image data that have been labelled by humans in a process known as supervised learning. Each image 
is fed into the input layer of the algorithm as raw pixels and then processed sequentially through the layers of the CNN. 
The final output is a classification likelihood of the image belonging to a prespecified group.
Some examples from this review include the following:
• Feeding in raw chest radiographs tagged with a label (pneumothorax or no pneumothorax) and the CNN learning 

which pixel patterns suggest pneumothorax. When fed with new untagged images, the CNN outputs a likelihood of 
the new image containing a pneumothorax or not.

• Feeding in raw retinal images tagged with the stage of age related macular degeneration and the CNN learning which 
pixel patterns suggest a particular stage. When fed with new untagged images, the CNN outputs a likelihood of the 
new image containing a specific stage of age related macular degeneration.

• Feeding in optical coherence tomography scans tagged with a management decision (urgent referral, semi urgent 
referral, routine referral, observation). When fed with new untagged images, the CNN outputs a likelihood of the most 
appropriate management decision.
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Randomised clinical trials
Table 1 summarises the 10 trial registrations. Eight 
related to gastroenterology, one to ophthalmology, 
and one to radiology. Eight were from China, one was 
from the United States, and one from Taiwan. Two 
trials have completed and published their results 
(both in 2019), three are recruiting, and five are not 
yet recruiting.

The first completed trial enrolled 350 paediatric 
patients who attended ophthalmology clinics in 
China. These patients underwent cataract assessment 
with or without an AI platform (using deep learning) 
to diagnose and provide a treatment recommendation 
(surgery or follow-up).20 The authors found that 
accuracy (defined as proportion of true results) of 
cataract diagnosis and treatment recommendation 
with AI were 87% (sensitivity 90%, specificity 
86%) and 71% (sensitivity 87%, specificity 44%), 
respectively. These results were significantly lower 
than accuracy of diagnosis (99%, sensitivity 98%, 
specificity 99.6%) and treatment recommendation 
(97%, sensitivity 95%, specificity 100%) by senior 
consultants (P<0.001 for both); and also lower than 
the results for the same AI when tested in a non-

randomised clinical trial setting (98% and 93%, 
respectively). The mean time for receiving a diagnosis 
with the AI platform was faster than diagnosis by 
consultants (2.8 v 8.5 minutes, P<0.001). The authors 
suggested that this might explain why patients were 
more satisfied with AI (mean satisfaction score 3.47 
v 3.38, P=0.007). Risk of bias was low in all domains 
except for blinding of participants and personnel. The 
reporting showed high adherence (31 of 37 items, 
84%) to the CONSORT checklist (which was included 
with the manuscript).

The second completed trial enrolled 1058 patients 
who underwent a colonoscopy with or without the 
assistance of a real time automatic polyp detection 
system, which provided simultaneous visual and 
sound alerts when it found a polyp.21 The authors 
reported that the detection system resulted in a 
significant increase in the adenoma detection rate 
(29% v 20%, P<0.001), and an increase in the number 
of hyperplastic polyps identified (114 v 52, P<0.001). 
Risk of bias was low in all domains except for blinding 
of participants, personnel, and outcome assessors. 
One of the other trial registrations belongs to the 
same author group. These authors are performing a 

Additional records identified through trial registry

Full text articles excluded
Not contemporary comparison, not
  only human or human involved with
  ground truth
Not a clinical problem
Not English language
Not an article
No experts
Not deep learning

34

12
4
3
3
3

Records screened aer duplicates removed

Records identified through publication databases

Records excluded

Full text articles assessed for eligibility

Records included in qualitative synthesis
81   Studies 10   Trial registrations

968

236

Quantitative synthesis (meta-analysis) not performed

7334

8302

8066

59

Full text trial registrations excluded
Not randomised
Not deep learning

76
10

86

91

0

Fig 1 | PRISMA (preferred reporting items for systematic reviews and meta-analyses) flowchart of study records
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double blind randomised clinical trial with sham AI 
to overcome the blinding issue in the previous study. 
The reporting showed high adherence (30 of 37 items, 
81%) to the CONSORT checklist (though the CONSORT 
checklist itself was not included or referenced by the 
manuscript).

Non-randomised studies
General characteristics
Table 2 and table 3 summarise the basic characteristics 
of the 81 non-randomised studies. Nine of 81 (11%) 
non-randomised studies were prospective, but only 
six of these nine were tested in a real world clinical 
environment. The US and Asia accounted for 82% 
of studies, with the top four countries as follows: US 
(24/81, 30%), China (14/81, 17%), South Korea (12/81, 
15%), and Japan (9/81, 11%). The top five specialties 
were radiology (36/81, 44%), ophthalmology (17/81, 
21%), dermatology (9/81, 11%), gastroenterology 
(5/81, 6%), and histopathology (5/81, 6%). Eighteen 
(22%) studies compared how long a task took in AI and 
human arms in addition to accuracy or performance 
metrics. Funding was predominantly academic (47/81, 
58%) as opposed to commercial (9/81, 11%) or mixed 
(1/81, 1%). Twelve studies stated they had no funding 
and another 12 did not report on funding. A detailed 
table with further information on the 81 studies is 
included as an online supplementary file.

In 77 of 81 studies, a specific comment was included 
in the abstract about the comparison between AI and 
clinician performance. AI was described as superior 
in 23 (30%), comparable or better in 13 (17%), 
comparable in 25 (32%), able to help a clinician 
perform better in 14 (18%), and not superior in two 
(3%). Only nine studies added a caveat in the abstract 
that further prospective trials were required (this was 
missing in all 23 studies that reported AI was superior 
to clinician performance). Even in the discussion 
section of the paper, a call for prospective studies (or 
trials in the case of existing prospective work) was 
only made in 31 of 81 (38%) studies. Seven of 81 (9%) 
studies claimed in the discussion that the algorithm 
could now be used in clinical practice despite only 
two of the seven having been tested prospectively in 
a real world setting. Concerning reproducibility, data 
were public and available in only four studies (5%). 
Code (for preprocessing of data and modelling) was 
available in only six studies (7%). Both raw labelled 
data and code were available in only one study.22

Methods and risk of bias
Most studies developed and validated a model 
(63/81, 78%) compared with development only by 
using validation through resampling (9/81, 11%) or 
validation only (9/81, 11%). When validation occurred 
in a separate dataset, this dataset was from a different 
geographical region in 19 of 35 (54%) studies, from 
a different time period in 11 of 35 (31%), and a 
combination of both in five of 35 (14%). In studies that 
did not use a separate dataset for validation, the most 
common method of internal validation was split sample 

(29/37) followed by cross validation (15/37), and then 
bootstrapping (6/37); some studies used more than 
one method (box 2). Sample size calculations were 
reported in 14 of 81 (17%) studies. Dataset sizes were 
as follows (when reported): training, median 2678 
(interquartile range 704-21 362); validation, 600 (200-
1359); and test, 337 (144-891). The median event rate 
for development, validation, and test sets was 42%, 
44%, and 44%, respectively, when a binary outcome 
was assessed (n=62) as opposed to a multiclass 
classification (n=19). Forty one of 81 studies used data 
augmentation (eg, flipping and inverting images) to 
increase the dataset size.

The human comparator group was generally small 
and included a median of five clinicians (interquartile 
range 3-13, range 1-157), of which a median of four 
were experts (interquartile range 2-9, range 1-91). 
The number of participating non-experts varied from 
0 to 94 (median 1, interquartile range 0-3). Experts 
were used exclusively in 36 of 81 studies, but in the 
45 studies that included non-experts, 41 had separate 
performance data available which were exclusive to 
the expert group. In most studies, every human (expert 
or non-expert) rated the test dataset independently 
(blinded to all other clinical information except the 
image in 33/81 studies). The volume and granularity 
of the separate data for experts varied considerably 
among studies, with some reporting individual 
performance metrics for each human (usually in 
supplementary appendices).

The overall risk of bias assessed using PROBAST led 
to 58 of 81 (72%) studies being classified as high risk 
(fig 2); the analysis domain was most commonly rated 
to be at high risk of bias (as opposed to participant or 
outcome ascertainment domains). Major deficiencies 
in the analysis domain related to PROBAST items 4.1 
(were there a reasonable number of participants?), 
4.3 (were all enrolled participants included in the 
analysis?), 4.7 (were relevant model performance 
measures evaluated appropriately?), and 4.8 (were 
model overfitting and optimism in model performance 
accounted for?).

Adherence to reporting standards
Adherence to reporting standards was poor (<50% 
adherence) for 12 of 29 TRIPOD items (see fig 3). 
Overall, publications adhered to between 24% and 
90% of the TRIPOD items: median 62% (interquartile 
range 45-69%). Eight TRIPOD items were reported in 
90% or more of the 81 studies, and five items in less 
than 30% (fig 3). A flowchart for the flow of patients 
or data through the study was only present in 25 of 
81 (31%) studies. We also looked for reporting of the 
hardware that was used for developing or validating 
the algorithm, although this was not specifically 
requested in the TRIPOD statement. Only 29 of 81 
(36%) studies reported this information and in most 
cases (n=18) it related only to the graphics processing 
unit rather than providing full details (eg, random 
access memory, central processing unit speed, 
configuration settings).
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Discussion
We have conducted an appraisal of the methods, 
adherence to reporting standards, risk of bias, and 
claims of deep learning studies that compare diagnostic 
AI performance with human clinicians. The rapidly 
advancing nature and commercial drive of this field 
has created pressure to introduce AI algorithms into 
clinical practice as quickly as possible. The potential 
consequences for patients of this implementation 
without a rigorous evidence base make our findings 
timely and should guide efforts to improve the design, 
reporting, transparency, and nuanced conclusions of 
deep learning studies.23 24

Principal findings
Five key findings were established from our review. 
Firstly, we found few relevant randomised clinical 
trials (ongoing or completed) of deep learning in 
medical imaging. While time is required to move from 
development to validation to prospective feasibility 
testing before conducting a trial, this means that 
claims about performance against clinicians should 
be tempered accordingly. However, deep learning 
only became mainstream in 2014, giving a lead time 
of approximately five years for testing within clinical 
environments, and prospective studies could take a 
minimum of one to two years to conduct. Therefore, 
it is reasonable to assume that many similar trials 
will be forthcoming over the next decade. We found 
only one randomised trial registered in the US despite 
at least 16 deep learning algorithms for medical 
imaging approved for marketing by the Food and 
Drug Administration (FDA). These algorithms cover a 
range of fields from radiology to ophthalmology and 
cardiology.2 25

Secondly, of the non-randomised studies, only 
nine were prospective and just six were tested in a 
real world clinical environment. Comparisons of AI 
performance against human clinicians are therefore 
difficult to evaluate given the artificial in silico context 
in which clinicians are being evaluated. In much the 
same way that surrogate endpoints do not always 
reflect clinical benefit,26 a higher area under the curve 
might not lead to clinical benefit and could even 
have unintended adverse effects. Such effects could 
include an unacceptably high false positive rate, 
which is not apparent from an in silico evaluation. 
Yet it is typically retrospective studies that are 
usually cited in FDA approval notices for marketing 

of algorithms. Currently, the FDA do not mandate 
peer reviewed publication of these studies; instead 
internal review alone is performed.27 28 However, the 
FDA has recognised and acknowledged that their 
traditional paradigm of medical device regulation 
was not designed for adaptive AI and machine 
learning technologies. Non-inferior AI (rather than 
superior) performance that allows for a lower burden 
on clinician workflow (that is, being quicker with 
similar accuracy) might warrant further investigation. 
However, less than a quarter of studies reported time 
taken for task completion in both the AI and human 
groups. Ensuring fair comparison between AI and 
clinicians is arguably done best in a randomised 
clinical trial (or at the very least prospective) setting. 
However, it should be noted that prospective testing 
is not necessary to actually develop the model in the 
first place. Even in a randomised clinical trial setting, 
ensuring that functional robustness tests are present 
is crucial. For example, does the algorithm produce 
the correct decision for normal anatomical variants 
and is the decision independent of the camera or 
imaging software used?

Thirdly, limited availability of datasets and code 
makes it difficult to assess the reproducibility of deep 
learning research. Descriptions of the hardware used, 
when present, were also brief and this vagueness 
might affect external validity and implementation. 
Reproducible research has become a pressing issue 
across many scientific disciplines and efforts to 
encourage data and code sharing are crucial.29-31 Even 
when commercial concerns exist about intellectual 
property, strong arguments exist for ensuring that 
algorithms are non-proprietary and available for 
scrutiny.32 Commercial companies could collaborate 
with non-profit third parties for independent 
prospective validation.

Fourthly, the number of humans in the comparator 
group was typically small with a median of only 
four experts. There can be wide intra and inter case 
variation even between expert clinicians. Therefore, 
an appropriately large human sample for comparison 
is essential for ensuring reliability. Inclusion of non-
experts can dilute the average human performance 
and potentially make the AI algorithm look better 
than it otherwise might. If the algorithm is designed 
specifically to aid performance of more junior clinicians 
or non-specialists rather than experts, then this should 
be made clear.

Box 2: Specific terms
• Internal validation: evaluation of model performance with data used in development process
• External validation: evaluation of model performance with separate data not used in development process
• Cross validation: internal validation approach in which data are randomly split into n equally sized groups; the 

model is developed in n−1 of n groups, and performance evaluated in the remaining group with the whole process 
repeated n times; model performance is taken as average over n iterations

• Bootstrapping: internal validation approach similar to cross validation but relying on random sampling with 
replacement; each sample is the same size as model development dataset

• Split sample: internal validation approach in which the available development dataset is divided into two datasets: 
one to develop the model and the other to validate the model; division can be random or non-random.
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Fifthly, descriptive phrases that suggested at least 
comparable (or better) diagnostic performance of an 
algorithm to a clinician were found in most abstracts, 
despite studies having overt limitations in design, 
reporting, transparency, and risk of bias. Caveats 
about the need for further prospective testing were 
rarely mentioned in the abstract (and not at all in 
the 23 studies that claimed superior performance 
to a clinician). Accepting that abstracts are usually 
word limited, even in the discussion sections of the 
main text, nearly two thirds of studies failed to make 
an explicit recommendation for further prospective 
studies or trials. One retrospective study gave a 
website address in the abstract for patients to upload 
their eye scans and use the algorithm themselves.33 
Overpromising language leaves studies vulnerable 
to being misinterpreted by the media and the public. 
Although it is clearly beyond the power of authors 
to control how the media and public interpret their 
findings, judicious and responsible use of language in 
studies and press releases that factor in the strength 
and quality of the evidence can help.34 This issue is 
especially concerning given the findings from new 

research that suggests patients are more likely to 
consider a treatment beneficial when news stories are 
reported with spin, and that false news spreads much 
faster online than true news.35 36

Policy implications
The impetus for guiding best practice has gathered 
pace in the last year with the publication of a 
report that proposes a framework for developing 
transparent, replicable, ethical, and effective research 
in healthcare AI (AI-TREE).37 This endeavour is led by 
a multidisciplinary team of clinicians, methodologists, 
statisticians, data scientists, and healthcare policy 
makers. The guiding questions of this framework 
will probably feed into the creation of more specific 
reporting standards such as a TRIPOD extension for 
machine learning studies.38 Key to the success of these 
efforts will be high visibility to researchers and possibly 
some degree of enforcement by journals in a similar 
vein to preregistering randomised trials and reporting 
them according to the CONSORT statement.11 39  
Enthusiasm exists to speed up the process by which 
medical devices that feature AI are approved for 
marketing.40 41 Better design and more transparent 
reporting should be seen eventually as a facilitator of 
the innovation, validation, and translation process, 
and could help avoid hype.

Study limitations
Our findings must be considered in light of several 
limitations. Firstly, although comprehensive, our 
search might have missed some studies that could 
have been included. Secondly, the guidelines that we 
used to assess non-randomised studies (TRIPOD and 
PROBAST) were designed for conventional prediction 
modelling studies, and so the adherence levels we 
found should be interpreted in this context. Thirdly, 
we focused specifically on deep learning for diagnostic 
medical imaging. Therefore, it might not be appropriate 
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to generalise our findings to other types of AI, such as 
conventional machine learning (eg, an artificial neural 
network based mortality prediction model that uses 
electronic health record data). Similar issues could 
exist in many other types of AI paper, however we 
cannot definitively make this claim from our findings 
because we only assessed medical imaging studies. 
Moreover, nomenclature in the field is sometimes used 
in non-standardised ways, and thus some potentially 
eligible studies might have been presented with 
terminology that did not lead to them being captured 
with our search strategy. Fourthly, risk of bias entails 
some subjective judgment and people with different 
experiences of AI performance could have varying 
perceptions.

Conclusions
Deep learning AI is an innovative and fast moving 
field with the potential to improve clinical outcomes. 
Financial investment is pouring in, global media 
coverage is widespread, and in some cases algorithms 
are already at marketing and public adoption stage. 
However, at present, many arguably exaggerated 
claims exist about equivalence with or superiority 
over clinicians, which presents a risk for patient 
safety and population health at the societal level, 
with AI algorithms applied in some cases to millions 
of patients. Overpromising language could mean that 
some studies might inadvertently mislead the media 
and the public, and potentially lead to the provision 
of inappropriate care that does not align with patients’ 
best interests. The development of a higher quality and 
more transparently reported evidence base moving 
forward will help to avoid hype, diminish research 
waste, and protect patients.
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