Intended for healthcare professionals

CCBY Open access

Physical activity trajectories and mortality: population based cohort study

BMJ 2019; 365 doi: (Published 26 June 2019) Cite this as: BMJ 2019;365:l2323
  1. Alexander Mok, PhD student1,
  2. Kay-Tee Khaw, professor2,
  3. Robert Luben, head of bioinformatics2,
  4. Nick Wareham, professor1,
  5. Soren Brage, research programme leader1
  1. 1MRC Epidemiology Unit, University of Cambridge, School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
  2. 2Department of Public Health and Primary Care, University of Cambridge, School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
  1. Correspondence to: S Brage soren.brage{at}
  • Accepted 25 April 2019


Objective To assess the prospective associations of baseline and long term trajectories of physical activity on mortality from all causes, cardiovascular disease, and cancer.

Design Population based cohort study.

Setting Adults from the general population in the UK.

Participants 14 599 men and women (aged 40 to 79) from the European Prospective Investigation into Cancer and Nutrition-Norfolk cohort, assessed at baseline (1993 to 1997) up to 2004 for lifestyle and other risk factors; then followed to 2016 for mortality (median of 12.5 years of follow-up, after the last exposure assessment).

Main exposure Physical activity energy expenditure (PAEE) derived from questionnaires, calibrated against combined movement and heart rate monitoring.

Main outcome measures Mortality from all causes, cardiovascular disease, and cancer. Multivariable proportional hazards regression models were adjusted for age, sex, sociodemographics, and changes in medical history, overall diet quality, body mass index, blood pressure, triglycerides, and cholesterol levels.

Results During 171 277 person years of follow-up, 3148 deaths occurred. Long term increases in PAEE were inversely associated with mortality, independent of baseline PAEE. For each 1 kJ/kg/day per year increase in PAEE (equivalent to a trajectory of being inactive at baseline and gradually, over five years, meeting the World Health Organization minimum physical activity guidelines of 150 minutes/week of moderate-intensity physical activity), hazard ratios were: 0.76 (95% confidence interval 0.71 to 0.82) for all cause mortality, 0.71 (0.62 to 0.82) for cardiovascular disease mortality, and 0.89 (0.79 to 0.99) for cancer mortality, adjusted for baseline PAEE, and established risk factors. Similar results were observed when analyses were stratified by medical history of cardiovascular disease and cancer. Joint analyses with baseline and trajectories of physical activity show that, compared with consistently inactive individuals, those with increasing physical activity trajectories over time experienced lower risks of mortality from all causes, with hazard ratios of 0.76 (0.65 to 0.88), 0.62 (0.53 to 0.72), and 0.58 (0.43 to 0.78) at low, medium, and high baseline physical activity, respectively. At the population level, meeting and maintaining at least the minimum physical activity recommendations would potentially prevent 46% of deaths associated with physical inactivity.

Conclusions Middle aged and older adults, including those with cardiovascular disease and cancer, can gain substantial longevity benefits by becoming more physically active, irrespective of past physical activity levels and established risk factors. Considerable population health impacts can be attained with consistent engagement in physical activity during mid to late life.


  • Contributors: KTK, RL, and NW contributed to the design of the EPIC-Norfolk study. AM and SB conceptualised the design of the present analysis and analysed the data. AM wrote the first draft of the manuscript. All authors had full access to the data in the study and can take responsibility for the integrity of the data and the accuracy of the data analysis. AM and SB and are the guarantors. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

  • Funding: The EPIC-Norfolk study is supported by programme grants from the Medical Research Council and Cancer Research UK with additional support from the Stroke Association, British Heart Foundation, Department of Health, Food Standards Agency, and the Wellcome Trust. AM was supported by the National Science Scholarship from Singapore, A*STAR (Agency for Science, Technology and Research). The work of NW and SB was funded by the Medical Research Council UK (MC_UU_12015/1 and MC_UU_12015/3). The funders had no role in the study design; the collection, analysis, and interpretation of data; the writing of the manuscript; or the decision to submit the article for publication.

  • Competing interests: All authors have completed the ICMJE uniform disclosure form at and declare: no support from any additional organisations for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

  • Ethical approval: The study was approved by the Norfolk District Health Authority Ethics Committee and adhered to the World Medical Association’s Declaration of Helsinki.

  • Patient consent: All participants gave written informed consent before enrolment in the study.

  • Data sharing: No additional data are available.

  • The lead author (AM) affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned have been explained.

This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See:

View Full Text