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The central premise of evidence based medicine (EBM) 
is the recognition that Hill’s assertion was (at least par-
tially) wrong: RCTs can be used to guide clinical decision 
making for individuals. In emphasizing this, RCTs were 
repurposed from tools to establish causality into tools for 
prediction, through reference class forecasting, in indi-
vidual patients. There is now a wealth of evidence—in 
medicine and other fields—that predictions based on the 
inside view (even by “experts”) are vulnerable to all man-
ner of cognitive biases, and that prioritizing impersonal 
data generally improves decision making.2 4 EBM has 
become the dominant paradigm both for medical deci-
sion making and for clinical practice guidelines.

Nevertheless, it is easy to recognize that Hill’s view 
was, in part, right. The result of a positive RCT only pro-
vides evidence that at least some of the enrolled patients 
benefited from the intervention. Logically, the impact 
this knowledge has on decision making in an individual 
(even one qualifying for the trial) is unclear when treat-
ments can have very different effects in different patients. 
For example, thrombolysis in acute ischemic stroke can 
improve functional outcomes (through recanalization) 
but also worsen functional outcomes (through intrac-
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Introduction
Austin Bradford Hill, the epidemiologist who formal-
ized randomized clinical trial (RCT) methods, noted in 
the 1960s that although RCTs can determine the better 
treatment on average, they “do not answer the practicing 
doctor’s question: what is the most likely outcome when 
this particular drug is given to a particular patient?”1 But, 
if not with an RCT, how can we forecast outcomes in indi-
viduals under alternative treatments?

Kahneman and others have described two distinct 
approaches to single case prediction, the “inside view” 
and the “outside view.”2 3 The inside view considers a 
problem by focusing on the specifics of each case and 
understanding the many characteristics that make it 
unique. It is the view prioritized by “traditional” physi-
cians who emphasize clinical experience and expert judg-
ment and the view we spontaneously adopt for making 
decisions in virtually all aspects of life. By contrast, the 
outside view predicts by explicitly identifying a group 
of similar cases (a “reference class”) and ignoring some 
potentially important particulars; the reference class pro-
vides a statistical basis for prediction. This is referred to 
as “reference class forecasting.”
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erebral hemorrhage); angiotensin converting enzyme 
inhibitors can prevent progression of renal insufficiency 
but can also cause it in some patients; antihypertensives 
prevent serious cardiac events but can also cause them; 
bisphosphonates can prevent fracture from osteoporo-
sis but can also cause them5; carotid endarterectomy for 
symptomatic carotid stenosis can prevent strokes but 
can also cause them.6 Moreover, individual patients have 
many characteristics that might affect the likelihood of an 
outcome and the benefits or harms of treatment. Deter-
mining the best treatment for a given patient, the task of a 
clinician, is thus very different from determining the best 
treatment on average.

Thus, interest in understanding how a treatment’s 
effect varies across patients—a concept described as het-
erogeneity of treatment effects (HTE)—has been growing. 
This concept is central to the agenda for both personal-
ized (or precision) medicine and comparative effective-
ness research. HTE has been defined as non-random 
variability in the direction or magnitude of a treatment 
effect, in which the effect is measured using clinical 
outcomes.7 Despite this definition, the broad concept of 
HTE accommodates different perspectives8 and different 
goals,9 which have at times confused discussions.10

In this article, we focus on what we consider the most 
essential goal of HTE analysis for clinical decision mak-
ing: prediction in the individual patient of outcomes 
under alternative treatments. Although we discuss 
fundamental difficulties in the prediction of treatment 
effects for individuals, we emphasize this goal because 
HTE analysis is of little value if it does not improve our 
ability to make predictions and decisions one patient at 
a time. Below, we discuss: fundamental difficulties with 
the prediction of “individual” risk and treatment effect 
common to all approaches; limitations of conventional 
(one-variable-at-a-time) subgroup analysis; and several 
different regression based approaches to “predictive” HTE 
analysis.

Sources and selection criteria
This narrative review provided background for a larger 
project supported by both a 14 member technical expert 
panel and an evidence review committee. We used our 
extensive libraries for the review of basic epidemiologi-
cal and statistical concepts relevant to HTE. For emerging 
methods related to predictive approaches to HTE, articles 
recommended by the technical expert panel and two tar-
geted systematic searches by the evidence review commit-
tee were also used. The aims were to discover consensus 
based methodological recommendations for predictive 
HTE analysis in RCTs and to identify methodological 
papers evaluating regression based approaches to predic-
tive HTE analysis. Key search terms included “heterogene-

ity of treatment effect”, “treatment effect”, “regression”, 
“statistical models”, “randomized controlled trials” (as 
topic), and “precision medicine”. These search terms were 
combined using appropriate Boolean operators to yield 
2851 abstracts, which were hand searched. The evidence 
review committee prepared an annotated bibliography 
(see supplemental table).

Conceptual background
Although the goal of predictive HTE analysis is to improve 
the prediction of the treatment effect and decision making 
in each patient,9 11 we acknowledge that this enterprise 
has fundamental limitations. Both risks and treatment 
effects can be determined only at the group level.12-15 
Indeed, under a deterministic framework (that is, when 
outcomes in patients are viewed as being fully deter-
mined by prior causes and conditions), given complete 
knowledge, the only “true risk” for an individual would 
be either 0 or 1 for a binary outcome (such as death), and 
risk prediction should be regarded as a quantification of 
the limits of our knowledge, rather than an intrinsic prop-
erty of the patient. Even if we accept the existence of a 
“true” risk for an individual (that is, a fundamentally sto-
chastic universe), this true risk cannot be directly meas-
ured. Instead, a person’s risk is estimated by examining 
the frequency of outcomes in a group of other “similar” 
patients. But because similarity can in practice always 
be defined in many different ways (as we will discuss), a 
person’s risk cannot typically be uniquely determined; 
rather, it is a “model dependent” property.14 15

The prediction of treatment effect in individual patients 
is even more challenging than prediction of outcomes. 
This is because treatment effects at the person level are 
inherently unobservable even in retrospect; outcomes 
under two counterfactual treatment conditions can-
not be ascertained in the same person simultaneously. 
Thus, predicting treatment effect, and evaluating models 
that predict treatment effect, is fundamentally different 
from (and more difficult than) predicting outcome risk, 
because we are attempting to predict an “outcome” (that 
is, the difference in potential outcomes, with and without 
treatment) that is only partially observable in any patient.

Thus, both risk and the prediction of treatment effect 
must rely on assigning patients to groups (reference 
classes) to which the individual of interest is similar. But 
how can similarity be defined? Mathematician John Venn 
pointed out in 1876 that “every single thing or event has 
an indefinite number of properties or attributes observ-
able in it, and might therefore be considered as belonging 
to an indefinite number of different classes of things.”16 
Alternative methods of classifying patients will lead to 
different inferences for any given patient. This “reference 
class problem” has been subject to much discussion in 
other fields but has received surprisingly scant attention 
in the EBM literature.

The approach of EBM to the reference class problem 
has generally been to emphasize the broad reference 
class of the RCT population. Guyatt and colleagues’ clas-
sic User’s Guide to the Medical Literature II stated: “if 
the patient meets all the inclusion criteria, and doesn’t 
violate any of the exclusion criteria—there is little ques-

Treatment effect is mathematically dependent on the control 
event rate*

Measure Definition
Absolute risk difference CER-EER
Relative risk reduction 1-(EER/CER)
Odds ratio EER/(1-EER) ÷ CER/(1-CER)
*CER: control event rate; EER: experimental event rate.
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tion that the results are applicable.”17 The enthusiasm 
for pragmatic trials, enrolling ever broader populations, 
represents an extrapolation of the view that broad based 
populations provide the most useful reference class for 
clinical decisions.18

Another approach to the reference class problem was 
suggested by Reichenbach, the theorist who first coined 
the term. He recommended calibration to “the narrowest 
reference class for which reliable statistics can be com-
piled,”19 but matching on just 10 binary characteristics 
gives rise to more than 1000 distinct subgroups (and 20 
binary characteristics give rise to more than a million). 
Thus, this approach is limited by the problem of small 
samples, leaving the reference class problem unresolved. 
The narrowest possible class is the patient himself or her-
self, who is unique; the uniqueness of each case is why 
medicine at times becomes an improvisational, “inside 
view” enterprise so dependent on “clinical intuition.” 
What is needed is a principled way of prioritizing relevant 
patient characteristics.

The selection of an appropriate reference class is the 
central problem when using group evidence to forecast 
outcomes (or treatment effects) in individuals.20 The 
mapping of an individual to a group of similar (but non-
identical) patients always requires (implicitly or explic-
itly) a model or scheme, whether that be the inclusion 
criteria of the overall trial or some narrower classification 
scheme. In this article we will review three broad analytic 
approaches used to derive more personalized treatment 
effect estimates: conventional (one-variable-at-a-time”) 
subgroup analysis, risk based subgroup analysis (or risk 
modeling), and treatment effect modeling.

Conventional subgroup analysis
The most common approach to HTE analysis is to divide 
patients serially on the basis of single characteristics 
defined at baseline (such as male v female; old v young) 
and to serially test whether the treatment effect varies 
across the levels of each attribute. The literature and 
guidance on the conduct of subgroup analyses is exten-
sive (and largely pejorative).21-34 Nevertheless, subgroups 
remain routinely reported, often in the form of forest plots 
(fig 1). Understanding these analyses and their limitations 
is central to the understanding of predictive HTE analysis.

Why most positive subgroup analyses are false
It is often emphasized that the appropriate statistical 
method for assessing HTE is to test for the contrastin 
effects among the levels of a baseline variable with a sta-
tistical test for interaction.38-41 This typically compares the 
relative risk (or the odds ratio or hazard ratio) across the 
levels of the subgrouping variable and corresponds to the 
epidemiologic concept of effect modification. A common 
mistake is to claim heterogeneity on the basis of separate 
tests of treatment effects within each subgroup22 23—for 
example, when a P value reaches statistical significance 
in one group (say, men) but not in another (say, women).

However, even when adhering to the recommended 
practice of performing interaction tests, the credibility 
of “statistically significant” subgroup effects should be 
regarded cautiously. Several recent meta-epidemiological 

studies have shown that very few are corroborated in sub-
sequent studies.24 42 43 A recent empirical evaluation of sex-
by-treatment interactions in 109 topics found only eight 
(7%) with statistically significant sex-by-treatment inter-
actions42—a result that was not much greater than what 
would be expected by chance if relative effects between 
the sexes were always identical. These results suggest that 
most statistically significant subgroup effects represent 
false discoveries.24 Well known examples of misleading 
positive subgroup analyses include not just the influence 
of astrological signs on the effects of aspirin for patients 
with myocardial infarction,44 but far more plausible and 
therefore more harmful results (eg, aspirin is ineffective 
in secondary stroke prevention in women,45 beta blockers 
are ineffective in inferior wall myocardial infarction).22 46

The low credibility of positive subgroup results is 
understandable because RCTs are powered for the main 
effect of treatment; at least four times the sample size 
would be needed to provide similar power for an interac-
tion effect of similar magnitude (eg, for a relative odds 
ratio equal to the odds ratio of the main effect), even for 
a perfectly balanced subgroup. Alternatively phrased, 
these interaction effects are anticipated to be powered at 
about 30% for perfectly balanced subgroups (eg, males 
v females) in trials powered at 80% for the main treat-
ment effect,38 47 and less for unbalanced subgroups or for 
smaller effects. Moreover, because subgroup analyses are 
typically viewed as being without cost, they are often per-
formed promiscuously across variables, with far less pre-
vious evidence than for the main effect in a RCT (which 
is typically not undertaken without a reasonable prob-
ability of success). The combination of a low proportion of 
anticipated true effects and low power explains the high 
proportion of false discoveries among “statistically signif-
icant” effects (fig 2). Thus, subgroup analyses generally 
provide the essential conditions for the reliable genera-
tion of false discoveries: weak theory and noisy data—
that is, exploratory analyses testing multiple hypotheses 
performed in databases with low power.48 50 In addition 
to false discovery, effect exaggeration—that is, “testima-
tion bias” (also known as the “winner’s curse”)49 51—can 
be anticipated because overestimated effects are prefer-
entially selected through the use of a statistical criterion 
(such as a P value threshold). These two concerns are 
important not only in conventional subgroup analysis, 
but also when considering how best to develop multivari-
able prediction models to estimate effects for individual 
patients, which is the focus of this article.

Why claims of “consistency of effect” are often 
misleading
Results similar to those shown in fig 1 (in which none 
of the tested subgroup interaction effects reach statisti-
cal significance) are often the basis for claims of “con-
sistency of effects.” However, because trials are usually 
underpowered for subgroup analyses, the inability to 
find significant interactions should be anticipated. For 
example, fig 1A(the Occluded Artery Trial35) shows how 
clinically significant differences in effects between men 
and women and between young and old patients may not 
be statistically significant, even in large trials, and even 
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when the point estimate of these effects is qualitatively 
different (harm in one stratum and benefit in another). 
Additionally, even when results seem to be highly consist-
ent across “clinically important subgroups” (as in the Dan-
ish Multicenter Randomized Study on Fibrinolytic Therapy 
Versus Acute Coronary Angioplasty in Acute Myocardial 
Infarction (DANAMI-2) trial; fig 1B), null subgroup analy-
ses do not imply that benefit-harm trade-offs are likely to 

be similar across all trial enrollees or that the overall treat-
ment effect applies similarly across trial subjects. Indeed, 
a core assumption of personalized medicine is that, at the 
person level, HTE is ubiquitous (some patients benefit and 
others don’t, and this is not totally random).13 52 Because 
one-variable-at-a-time subgroup analyses compare groups 
of patients who differ systematically on only a single vari-
able, whereas individual patients differ from one another 

Fig 1 |  Forest plots of conventional (one-variable-at-a-time) subgroups suggesting consistency of effects in clinically relevant subgroups. Claims of “consistency 
of effects” on the hazard ratio and odds ratio scales of one-variable-at-a-time subgroup analysis may be of relatively limited value, as they can mislead readers 
into falsely assuming that benefit-harm trade-offs should be similar for patients meeting trial enrollment criteria. The forest plots show subgroup results from two 
clinical trials that were negative for any statistically significant subgroup effects. (A) OAT tested the hypothesis that a strategy of routine PCI for total occlusion of 
the infarct-related artery three to 28 days after acute myocardial infarction would reduce the occurrence of a composite primary endpoint of death, reinfarction, or 
advanced heart failure.35 HRs (black squares) and 95% confidence intervals (horizontal lines) for the primary outcome for PCI versus medical therapy for subgroups 
are shown. Despite what seems to be clinically significant differences in treatment effects across several variables (eg, qualitative interactions for both age and 
sex), no statistically significant interaction was found between treatment and any of the subgrouping variables, indicating “consistency of effects across clinical 
significant subgroups.” The discrepancy between the apparent clinical importance of the observed effect heterogeneity and the lack of statistical significance 
reflects the very low statistical power for interaction effects, which is typical of most trials. (B) The DANAMI-2 trial also showed “consistency of effects” across 
all subgroups for the primary composite endpoint of death, reinfarction, or disabling stroke in 1572 patients randomly assigned to primary angioplasty versus 
fibrinolysis.36 Despite the similarity of effects in these one-variable-at-a-time subgroup analyses, a subsequent risk stratified analysis,37 using the TIMI (mortality) 
risk score, showed that patients who are at low risk of mortality are less likely to benefit than those at high risk, particularly on the clinically important absolute risk 
difference scale. Indeed, for the outcome of mortality, there was a slight trend for harm among the three quarters of patients at lowest risk and a very large benefit 
for the quarter of patients classified as high mortality risk (see fig 5). Conventional subgroup analyses, such as those described in this forest plot, can miss these 
clinically important differences because, when patients are serially divided into groups defined one-variable-at-a-time, each analysis grossly under-represents 
the heterogeneity across individual patients who differ from one another in many variables simultaneously. These analyses also obscure variation in treatment 
effect on the risk difference scale, which is the most important scale to assess clinically. Abbreviations: ACE: angiotensin converting enzyme; DANAMI-2: Danish 
Multicenter Randomized Study on Fibrinolytic Therapy Versus Acute Coronary Angioplasty in Acute Myocardial Infarction; LAD: left anterior descending; MI: 
myocardial infarction; OAT: Occluded Artery Trial; PCI: percutaneous coronary intervention.
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across many variables simultaneously, the conventional 
approach greatly under-represents the heterogeneity cli-
nicians observe clinically (that is, at the person level). 
Subgrouping schemes, defined more comprehensively 
across many clinically salient variables simultaneously, 
may detect important differences in treatment effects that 
are obscured in conventional subgroup analysis.53 Indeed, 
clinically important HTE was subsequently identified in 
the DANAMI-2 trial when a risk modeling approach was 
applied.37

Why conventional subgroup analyses are incongruent 
with the goals of predictive HTE analysis
Conventional subgroup analysis may detect “relative 
effect modification.” This can help inform theories 
about conditions under which treatments are especially 
effective or ineffective. However, this approach does not 
directly address the reference class problem—that all 
patients belong to multiple different subgroups, each of 
which may yield different inferences. For example, even 
assuming the that subgroup effects shown for both age 
and sex in the Occluded Artery Trial (fig 1A) are wholly 
credible, the optimal treatment for a young woman (or 
an old man) would be unclear. Because a patient has an 
indefinite number of attributes and can thus belong to an 

indefinite number of different reference classes, there are 
as many probabilities for a given patient (and by exten-
sion estimable treatment effects) as there are specifiable 
classes.

The application of conventional subgroup analysis to 
clinical decision making is further complicated because 
HTE is typically tested (and presented) on a relative scale 
(eg, odds ratio or relative risk), whereas the absolute risk 
difference (RD) scale (or its inverse, number needed to treat 
(NNT)) is the most important scale for clinical decision  
making.13 54-56 Although the literature sometimes empha-
sizes the distinction between “predictive factors” (relative 
effect modifiers) and “prognostic factors,” this distinction 
is somewhat artificial and can be as confusing as it is clari-
fying. This is because prognostic factors are “predictive” 
(that is, effect modifying) when effect is considered on the 
clinically important absolute scale, and predictive factors 
typically have “prognostic” effects that complicate clinical 
interpretation. For clinical decision making, prognostic and 
predictive effects should be considered simultaneously, 
because the ARD is a product of both the outcome risk and 
the relative treatment effect (fig 3). Thus, the presence of 
statistically significant heterogeneity on the relative scale 
does not necessarily imply clinically important HTE, which 
should always be assessed on the ARD scale (fig 3). Indeed, 

→

→

→

→

Fig 2 |  Why most positive subgroup effects are false or overestimated. The well known unreliability of subgroup analysis arises from the fact that interaction tests 
typically have weak power when performed in randomized clinical trials designed to have 80% or 90% power to detect main treatment effects, and also by the 
fact that multiple poorly motivated subgroups are typically evaluated.48 “Exploratory” analyses are depicted by the distributions on the left, in which subgroup 
analyses are undertaken across multiple variables to detect the 5% that represent true effect modification (shown in red). This prevalence of “true effects” was 
chosen to emulate previous meta-epidemiologic studies.42 Assuming 30% power to detect interaction effects,38 47 only a minority of these true effects (1.5/5=30%) 
are anticipated to show statistically significant effects. Meanwhile, with an α of 0.05 (P value threshold), 5% of the null variables (shown in black) are also 
anticipated to be statistically significant (5/95=4.8%). Thus, only a minority of results with a P value <0.05 (1.5/6.3 of the effect estimates falling to the right of 
the blue threshold) represent true subgroup effects. The false discovery rate is much lower when only variables with a higher prior probability are tested. The 
distribution on the right depicts “confirmatory” analyses with a prior probability of 25%. Here, about two thirds of subgroups with a P value <0.05 (7.5/11.3) are 
anticipated to represent true effects. Even then, subgroup effects will generally be overestimated because exaggerated effects are preferentially identified. This 
exaggeration of effects has been referred to as “testimation bias” because it arises when hypothesis testing statistical approaches (eg, for biomarker discovery) 
are combined with effect estimation.49
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prognostic modeling can often reveal clinically important 
HTE, because differences in outcome risk are just as impor-
tant as similar changes in relative risk when determining 
the ARD. Moreover, prognostic factors are much easier to 
model than relative effect modifiers, given abundant prior 
knowledge and much greater statistical power for main 
effect analyses rather than tests for interaction.

Limitations of guidance for subgroup analysis
Guidance for analyzing, reporting, and interpreting sub-
group analysis typically includes key recommendations13: 
subgroups should be fully defined a priori (to prevent 

data dredging); be limited in number (or corrected for 
multiplicity, or both); be well motivated by clinical rea-
soning or previous empirical studies; be in the expected 
(and pre-specified) direction9 22; be supported by formal 
tests for interaction; and be fully reported and cautiously 
interpreted.’21 22 30 57-59 It has also been recommended that 
the type of subgroup analysis (eg exploratory (fun to look 
at) or confirmatory (potentially actionable)) should be 
specified.9 56 60 A further refinement is the development 
of an instrument to help evaluate the credibility of any 
positive subgroup effects.21 30 61

Although this guidance thoughtfully deals with one 
aspect of the central dilemma of subgroups—the risk of 
a falsely positive subgroup—it mostly ignores the other 
term: the risk of overgeneralizing summary results to 
all patients who meet the enrollment criteria. Although 
the potential importance of HTE is increasingly recog-
nized,34 62-66 trialists, peer reviewers, and regulators have 
very little guidance on which subgroup analyses should 
be routine, expected, and necessary for the results to be 
considered fully and transparently reported.

Predictive approaches to heterogeneous treatment effects
Predictive approaches to HTE are intended to ameliorate 
many of the above limitations of one-variable-at-a-time 
subgroup analysis. The goal of predictive HTE analysis 
is to develop models that can be used to predict which of 
two or more treatments will be best for individual patients 
when multiple variables that influence the benefits or 
harms of treatment are taken into account. We divide this 
type of analysis into two subcategories:

Firstly, risk modeling: an approach to predictive HTE 
analysis whereby a multivariable model (either externally 
or internally developed) that predicts the risk of an out-
come (usually the primary study outcome) is applied to 
disaggregate patients in trials so that treatment effects 
can be examined across risk groups

Secondly, treatment effect modeling (or “effect mode-
ling”): an approach to predictive HTE analysis that devel-
ops a model directly on trial data to predict treatment 
effects (that is, the difference in outcome risks under two 
alternative treatment conditions). Unlike risk modeling, 
such a model incorporates a term for treatment assign-
ment and permits the inclusion of treatment by covariate 
interaction terms.

Risk modeling
We have previously proposed a framework for risk mod-
eling that prioritizes the reporting of relative and abso-
lute treatment effects across risk strata for the primary 
trial outcome and suggests that these should be routinely 
reported.56 Why should outcome risk be prioritized as a 
subgrouping variable over other variables, such as age, 
sex, or comorbidities? Unlike other variables that may or 
may not modify treatment effect, outcome risk is a math-
ematical determinant of treatment effect. Table 1 shows 
the definition of several different measures of treatment 
effect. All of these measures depend on the outcome rate 
in the control group (the control event rate; CER), which 
is itself an observable proxy for outcome risk. Because 
outcome risk typically varies substantially in a trial popu-

Fig 3 |  The value of a marker for targeting of treatment depends on its influence both on outcome 
risk and on relative treatment effect. The domain along the x axis quantifies prognostic effects; 
the range along the y axis quantifies relative effect modification (sometimes called “predictive” 
effects). The clinically significant effect measure (absolute risk difference or number needed 
to treat (NNT)) is depicted by the contour plot. The average effect in the overall trial is shown by 
the large red dot, which can be disaggregated into subgroups (shown by the smaller black and 
white dots) in different ways. Both pure prognostic markers (which scatter patient subgroups 
horizontally) and pure relative effect modifying (“predictive”) markers (which scatter patient 
subgroups vertically) help discriminate patient groups with different degrees of absolute 
benefit. Asymmetry of the scatter represents the usual non-normal distribution of risk (here 
shown as log normal, with a greater number of low risk and low benefit patients). Generally, 
“predictive” markers are more difficult to identify than prognostic markers, both because 
reliable information about effect modifiers is usually scant and because power to examine 
treatment effect interactions is substantially lower than prognostic effects. However, factors 
are often both prognostic and relative effect modifying, and these effects may be “synergistic” 
(relative risk reduction and outcome risk positively correlated) or “antagonistic” (relative 
risk reduction and outcome risk negatively correlated). The most useful factor for treatment 
selection is that for which the absolute risk difference most varies as a function of that factor’s 
value (here, the “synergistic” example). This corresponds to improved discrimination for 
treatment benefit on the risk difference scale. Note that for the factor with antagonistic effects, 
patients with the largest relative treatment effect paradoxically benefit the least on the absolute 
scale. From a decision analytic perspective, the clinical value of the marker is determined by 
its ability to distribute patients across a decisionally important threshold, which depends on 
the treatment burden (accounting for patient preferences, adverse effects, and costs). These 
decision thresholds are represented by the contours
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lation when risk is described through a combination of 
factors,67 the CER will also vary across the trial population 
when it is disaggregated with a prediction model. Except 
when trials have null effects, the ARD will generally vary 
when CER varies across the population (fig 3). Mathemati-
cally, only one measure of treatment effect (at most) can 
remain consistent when risk varies across the population.

Figure 4 shows the 30 day mortality risk estimates for 
1058 patients with ST elevation myocardial infarction 
based on pretreatment clinical and electrocardiographic 
variables.69 The risk of mortality in the quarter of patients 
at highest risk is about 16 times higher than it is in the 
quarter at lowest risk. Doctors know (and simple alge-
bra confirms) that for interventions that carry some risk 
of serious treatment related harm, benefit-harm trade-
offs differ in patients at such different risks of mortality. 
However, it is common practice in research to aggregate 
these patients together in a trial and emphasize the 
overall summary results, thereby obscuring whether the 
differences in treatment effect across risk categories are 
clinically important. Thus, our view is that trial results 
are incompletely disclosed unless both outcome rates and 
treatment effects across risk groups are described.56 66 70 71

Figure 4 illustrates another commonly observed prop-
erty67 72—that the distribution of the predicted risk is 
skewed, such that the risk of mortality is lower than the 
average risk for about 75% of patients; the risk of mor-
tality in the “typical” (median risk) patient is about 3%, 
about half the average risk that would be reflected in the 
summary result. The higher mortality risk is driven by 
the influential quarter of patients at highest risk. When 
the risk distribution is skewed, the overall benefit for a 
treatment seen in the trial’s summary results may not 

reflect the benefits or the benefit-to-harm trade-offs even 
in patients who are at typical risk (especially when there 
is some treatment related harm).66 72

An understanding of the underlying distribution of 
risk for patients in RCTs can help inform anticipated 
subgroup effects, which by their nature are more cred-
ible than unanticipated subgroup effects (in the same way 
that confirmatory subgroup analysis is more credible than 
exploratory subgroup analysis (fig 2)). For example, when 
considering the use of a potentially effective invasive pro-
cedure (such as percutaneous coronary intervention; PCI) 
with a small risk of serious treatment related harm, it is 
anticipated that the benefit-harm trade-offs would be very 
different across the risk distribution shown in fig 4. Thus, 
despite “consistency of effects” in conventional subgroup 
analysis of the DANAMI-2 trial (fig 1B) (which compared 
PCI versus medical therapy in patients with ST-elevation 
myocardial infarction (STEMI)), clinically important HTE 
emerged when the population was subsequently stratified 
by mortality risk using the TIMI (thrombolysis in myocar-
dial infarction) score (fig 5A). A risk stratified analysis 
based on an internally derived model using the data from 
the RITA-3 trial, which compared an invasive to a non-
invasive approach for patients with non-STEMI/unstable 
angina, showed similar results (fig 5B).

The pattern observed in these trials is not rare. Rather, 
risk distributions seem to conform to predictable patterns, 
based on the prevalence of the outcome and the discrimi-
natory performance of the prediction model.67 Other exam-
ples in which effects in high risk subpopulations obscure 
the lack of benefit (and even harm) in many typical or low 
risk patients include more intensive versus less intensive 
thrombolytic therapy in STEMI,73 activated protein C for 
sepsis (https://s3-us-west-2.amazonaws.com/drugbank/
fda_labels/DB00055.pdf?1265922807),74 enoxaparin or 
tirofiban in acute coronary syndrome,75-77 anticoagulation 
for stroke prevention in non-valvular atrial fibrillation,78 79 
fidaxomicin versus vancomycin to prevent recurrence of 
Clostridium difficile infection, and many others.6 73 80-84

The examples in fig 5 show how risk modeling can lead 
not only to important changes on the ARD scale but to 
statistically significant HTE on the relative scale. This 
interaction can emerge for many reasons but should be 
expected when there are known treatment related harms 
that are reflected in the primary outcome, because similar 
degrees of treatment related harm will outweigh (or sub-
stantially reduce) the benefits in low risk patients but not 
high risk patients.53 66 At the same time, the importance of 
a significant “P value for interaction” should not be over-
emphasized when subgroups have very different outcome 
rates because the clinical importance of HTE needs to be 
determined on the absolute scale. For example, the Diabe-
tes Prevention Program (DPP) trial tested both a lifestyle 
modification program and metformin pharmacotherapy 
against usual care in patients with pre-diabetes. It pro-
vides an interesting case where statistically significant 
relative effect modification was shown for one interven-
tion (lifestyle modification) but not the other (metformin), 
even though clinically important HTE was shown for both 
interventions when effects were examined on the absolute 
scale (fig 6).

Fig 4 |  Distribution of mortality risk. This distribution displays the predicted mortality risk in 
1058 patients who received reperfusion therapy for ST elevation myocardial infarction at 28 
US hospitals from the lowest risk (0th centile) to the highest risk (100th centile). Mortality risk 
is calculated using the individual patients’ clinical and electrocardiographic variables and a 
validated logistic regression equation.68 The dotted red line indicates that the average mortality 
risk is about 6%. However, about three quarters of patients have a risk lower than the average 
risk, and the typical (median) risk patient has a risk that is around half the average risk. The 
quarter of patients at lowest risk have only a 1% probability of 30 day mortality, so an invasive 
procedure such as percutaneous coronary intervention, is unlikely to reduce the risk of mortality 
any further in these patients. However, the quarter of patients at highest risk have substantial 
potential for benefit. In a conventional clinical trial, these patients with highly different risks 
are collapsed into a single overall population, even though benefit-harm trade-offs may differ 
greatly. This risk distribution is typical of trials with a low outcome rate, when a reasonably good 
multivariable predictive model is available to describe risk.67
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Fig 5 |  Analyses showing that invasive coronary procedures improve mortality in patients with ST elevation MI (DANAMI-2) in high risk but not low risk groups; this 
pattern holds true for mortality or reinfarction in non-ST elevation MI (RITA-3). (A) The DANAMI-2 trial tested an invasive procedure (PCI) against medical treatment 
in patients with ST elevation MI. (B) The RITA-3 trial compared an invasive strategy against medical treatment in patients with non-ST elevation MI/unstable angina. 
Event rates (upper plot), hazard ratios (middle plot) and absolute risk reductions (lower plot) are shown for each trial, with the average effect depicted by a dotted 
line. In DANAMI-2 (N=1527), a post hoc subgroup analysis stratified by risk showed that the approximately 75% of patients at low risk (TIMI score 0-4) received 
no mortality benefit—indeed, they had a non-significant trend towards harm. High risk patients (TIMI score ≥5) benefitted greatly from the invasive procedure 
(∼10% absolute reduction in mortality). The interaction (on the hazard ratio scale) between TIMI risk score and treatment effect was statistically significant 
(P<0.008). These effects were seen despite “consistency of effects” across all subgroups in conventional (one-variable-at-a-time) subgroup analyses. The RITA-3 
trial (N=1810) showed a similar risk by treatment interaction for the outcome of death or non-fatal MI at four months when analyzed with an internally derived 
risk model. Absolute risk reduction in the primary outcome was very pronounced in the eighth of patients at highest risk, whereas the half at lowest risk received 
no benefit. DANAMI-2: Danish Multicenter Randomized Study on Fibrinolytic Therapy Versus Acute Coronary Angioplasty in Acute Myocardial Infarction; MI: 
myocardial infarction; OAT: Occluded Artery Trial; PCI: percutaneous coronary intervention; RITA-3: Randomized Intervention Trial of unstable Angina 3.
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Fig 6 |  High risk patients with pre-diabetes benefit more than low risk patients from interventions with both homogeneous relative treatment effects (lifestyle) 
and heterogeneous relative treatment effects (metformin). The Diabetes Prevention Program trial compared three approaches to diabetes prevention among 
patients with pre-diabetes: (1) a rigorous lifestyle modification program; (2) metformin treatment; (3) and usual care. (A) The graphs show event rates, hazard 
ratios, and risk differences for (A) lifestyle modification versus usual care and (B) metformin versus usual care for the outcome of development of diabetes. 
Overall results are depicted by the horizontal dotted line; both lifestyle modification and metformin showed substantial effectiveness in preventing diabetes.85 
When patients were stratified by their risk of diabetes according to a simple internally developed risk model,86 the treatment effect was homogeneous on the 
hazard ratio scale for lifestyle modification, but strongly heterogeneous for metformin (Pintervention <0.001). Nevertheless, similar HTE across risk strata was seen 
when the treatment effect was expressed on the risk difference scale. This analysis demonstrates the limited clinical value of null hypothesis testing for HTE on 
the proportional scale when the outcome rate differs so dramatically across risk groups. The clinical significance of HTE needs to be evaluated on the absolute 
scale, where the benefits of the strategies for preventing diabetes can be weighed against the treatment burdens. Stratification with an externally derived model 
yielded similar results, with strata specific point estimates of effects indicated by asterisks (*).87 HTE: heterogeneity of treatment effect.
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The importance of risk as a determinant of absolute 
benefit is widely accepted. The concept has entered 
guidelines, notably in the recommended approach to 
lipid lowering treatment for the prevention of coronary 
artery disease.88 The concept also underpins several alge-
braic approaches to “individualizing” evidence that are 
based on risk predictions and an assumption of consist-
ent relative effects.89-92 Risk based analyses of RCTs permit 
this assumption to be examined.

External versus internal models
Although an applicable externally derived model would 
enable translation into practice, especially if well vali-
dated and clinically accepted, many of the above exam-
ples used internally developed risk models. These were 
derived on trial data “blinded” to treatment assignment. 
As long as good modeling practice (such as a large number 
of events per independent variable and a priori selection 
of risk variables based on previous literature) has been 
adhered to, models derived directly from RCT data pro-
vide “honest” (internally valid) treatment effect estimates 
within risk strata.51 93 Although some researchers recom-
mend that the control arm be used to model risk only,94-96 
this approach can potentially induce differential model fit 
on the two trial arms, biasing treatment effect estimates 
across risk strata, and exaggerating HTE.97 Indeed, with 
this approach, overfitting on the control arm can make 
completely innocuous and ineffective treatments appear 
to be beneficial in high risk patients and harmful in low 
risk patients. Various cross validation techniques have 
been proposed to mitigate this bias.98 However, given the 
small scale of the ARD compared with the predicted out-
come risk, even very modest overfitting on the control arm 
can substantially bias estimates of the treatment effect.

Although internally derived (or endogenous) prognostic 
models can provide reliable estimates of treatment effects 
within trial risk strata,98 the implementation of an exter-
nally valid prognostic model is necessary for translation 
into practice. The finding of clinically important HTE 
across risk strata within a trial provides an important 
impetus for implementing an externally valid model. It 
should be noted that external validity is a general concern 
for RCT results and is not confined to results subgrouped 
using risk models.

Other dimensions of risk: heterogeneity of treatment 
related harm
It is also important to examine whether treatment related 
harms vary across risk strata because the treatment burden 
might not be constant across strata defined by outcome 
risk. When the two dimensions of risk are highly correlated 
(when high risk patients are also at greatest risk of treat-
ment related harms), it becomes more difficult to segregate 
treatment favorable patients from treatment unfavorable 
ones.99 100 Thus, to facilitate the interpretation of benefit-
harm trade-offs, important treatment related harms should 
be reported at the same level of disaggregation (that is, in 
each of the risk strata) as the primary outcome.

For treatments with serious treatment related harm, a 
better understanding of the variation in the risk of these 
adverse events may help to “deselect” patients with unfa-

vorable benefit-harm trade-offs.101 Figure 7 illustrates two 
recent analyses that showed clinically important varia-
tion in the benefit-harm trade-offs in patients who were 
stratified by internal risk models for the treatment related 
harm (fracture in the case of pioglitazone; bleeding in the 
case of long course versus short course dual antiplatelet 
therapy). Although these analyses can be highly informa-
tive, differential overfitting may occur when the adverse 
outcome is rare in the control group, underscoring the 
importance of model validation.

Several trials have been stratified by combining models 
for outcome risk and for treatment related harm to make 
more comprehensive benefit-harm models.6 73 104 Although 
this is ultimately the goal of evidence personalization, the 
arithmetic combination of predictions from different mod-
els poses serious challenges related to the calibration of 
predictions that are beyond the scope of this discussion. 
Finally, because the primary outcome is sometimes a com-
posite of outcomes with treatment responsive causes and 
those with treatment unresponsive (or competing) causes, 
it may also be useful to stratify the trial population by an 
index that predicts the fraction of outcomes attribut-
able to the treatment responsive cause.105-107 For exam-
ple, implantable cardiac defibrillators may be of greater 
benefit in those who have a higher risk of sudden cardiac 
death compared with their risk of pump failure death108; 
PFO closure may be more beneficial in a subset of patients 
with stroke and PFO who are more likely to have a stroke 
that is caused by PFO rather than another occult mecha-
nism109 110; an anti-endotoxin specific therapy may be of 
greater benefit in patients with sepsis who are at higher 
risk of Gram negative rather than Gram positive causes of 
sepsis. Stratification of patients by prediction models that 
estimate risk of important competing events might also be 
informative in some circumstances.109 110

Treatment effect modeling
Although subgrouping on the basis of prognostic mode-
ling has advantages over conventional subgroup analyses, 
outcome risk may not represent the optimal classifica-
tion scheme. Prediction models developed on RCT data 
“unblinded” to treatment assignment have the potential 
to capture relative effect modification through the inclu-
sion of treatment-by-covariate interaction terms. This may 
be important for determining (both relative and absolute) 
treatment effects and highly important for optimizing 
treatment selection.111 Indeed, approaches to stratified 
and personalized medicine have often focused exclusively 
on the discovery of effect modifiers on the relative scale,112 
and some researchers reserve the term HTE to refer only 
to heterogeneity on the relative scale.113 When strong and 
well established effect modifiers exist—such as time from 
onset of symptoms to treatment for reperfusion therapies 
in myocardial infarction—treatment interaction effects 
can be included in the model, regardless of statistical sig-
nificance. For example, stratification by predicted benefit 
(predicted outcome risk with treatment minus predicted 
outcome risk without treatment) could then stratify some 
lower risk patients with acute myocardial infarction who 
present very early as being more treatment favorable than 
some higher risk patients who present later.
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Fig 7 |  Benefit-harm trade-offs change substantially when subgroups are stratified by their risk of treatment related harms. (A) In the IRIS study, pioglitazone 
was shown to reduce the risk of recurrent events (stroke or MI) (RR=0.76) in patients with ischemic stroke and insulin resistance, but with an increase in the 
risk of fracture. At five years, the incremental risk of fracture was 4.9% (13.6% v 8.8%; HR 1.53). When patients were stratified by their risk of fracture using a 
simple risk score with eight variables, for each 100 patients at low risk of fracture treated with pioglitazone for five years, two to three had a pioglitazone related 
fracture, compared with six to seven in each 100 patients at high risk.102 During this same interval, in both risk groups three to four fewer patients treated with 
pioglitazone had a recurrent stroke or MI. Thus, the number of ischemic events prevented per fracture caused was two in the group at low risk of fracture and 0.5 
in the high risk group. When only serious fractures were considered (those requiring hospital admission or surgery), pioglitazone prevented six ischemic events 
per serious fracture caused in those at low risk of fracture, but only about one event in those at high risk. These clinically important differences in benefit-harm 
trade-offs across strata emerged despite consistency of effects on the proportional scale for both the harm and benefit of treatment. (B) Similarly, when patients 
were stratified by their bleeding risk using a simple five variable risk score, prolonged DAPT (aspirin plus clopidogrel or ticagrelor) after percutaneous coronary 
intervention had a very favorable harm-benefit trade-off in patients at low risk of bleeding but not in those at high risk.103 DAPT: dual antiplatelet therapy; HR: 
hazard ratio; IRIS: Insulin Resistance In Stroke; MI: myocardial infarction; RR: relative risk.
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However, the incorporation of relative effect modifi-
ers (treatment interaction terms) that were selected on 
the basis of modeling on the trial itself into prediction 
models has special challenges. The selection of “statisti-
cally significant” relative effect modifiers for inclusion in 
a prediction model is identical in many respects to one-
variable-at-a-time subgroup analysis and has many of 
the same vulnerabilities—weak theory and noisy data—
that can lead to “false positives” and exaggerated effects 
(from testimation bias49 and other forms of overfitting). 
The number of events per interaction term needed for 
more accurate modeling of effect modification is many 
times greater than the number needed for main prog-
nostic effects and has not been well studied. “Treatment  
benefit” prediction models using naive regression to 
select “statistically significant” interactions should be 
expected to provide misleading estimates of within strata 
effects because of unreliable, exaggerated, and highly 
influential interaction terms.114 115 The vulnerability to 
overfitting leaves this approach prone to discovering false 
subgroup effects, even for treatments that are completely 
ineffective. 

Nevertheless, the further individualization of treatment 
selection often depends on the discovery of treatment 
effect modifiers that are not well established. One prom-
ising approach is to select a set of variables anticipated to 
be relative effect modifiers on the basis of a priori clinical 
reasoning, and to use an omnibus test for significance 
(with the appropriate degrees of freedom) across all the 
included putative interaction terms. If the result of this 
overall test is statistically significant, all interactions 
are included in the model; otherwise, none are. Because 
interaction terms are still prone to overfitting, this process 
should be combined with penalized regression methods 
(such as lasso regression,116 117 ridge regression,118 119 or 
elastic net regularization regression),120 121 which shrink 
model coefficients on the basis of model complexity to 
yield better predictions of the absolute treatment effect 
within new populations. Alternatively, when developing 
models “unblinded” to treatment assignment, a different 
set of data should be used for variable and model selec-
tion (that is, to define the reference class or subgrouping 
scheme) and for estimation of the treatment effect across 
strata. There is intense research interest in methods that 
combine effect modifier (biomarker) discovery with treat-
ment effect estimation, including both machine learning 
approaches and regression based methods122-131 (see 
supplemental table 1 for additional examples), although 
clinical application remains limited.121 These more com-
plex and aggressive prediction approaches require more 
rigorous validation.

The SYNTAX score II (fig 8) is an example of a model 
for predicting benefit; eight variables were used as both 
prognostic variables and effect modifiers (in treatment 
interaction terms), in a score that predicts outcomes for 
patients with non-acute coronary artery disease under two 
revascularization strategies—coronary artery bypass graft 
surgery (CABG) versus PCI.133 Although the overall trial 
showed substantial benefit for CABG (the primary outcome 
was reduced from 17.8% with PCI to 12.4% with CABG; 
P=0.002),132 stratification by predicted benefit according 

to the SYNTAX score II indicated that the benefits of popu-
lation-wide CABG may largely be achieved by targeting to 
the most treatment favorable quarter of patients, potentially 
avoiding the substantial trauma and morbidity associated 
with an open chest procedure in most patients.

Evaluating models that predict treatment benefit
The evaluation of a prediction model intended to estimate 
benefits using the usual metrics for outcome discrimina-
tion (eg, c-statistic) and calibration does not provide 
information on how well a model performs for predict-
ing benefit—that is, the difference between outcome risk 
with two alternative strategies. Efforts to develop meas-
ures to assess model accuracy for predicting benefit are 
hampered by the fundamental problem of causal infer-
ence.134 Unlike individual patient outcomes, individual 
patient treatment effects (that is, who benefits and who 
does not) are inherently unobservable because patients 
do not simultaneously receive both counterfactual treat-
ments to which they are randomized.135

Recently, the c-statistic, commonly used to meas-
ure discrimination in outcome risk models, has been 
adapted to evaluate the prediction of treatment effect.136 
To do this, two patients who are discordant on treatment 
assignment are matched according to their predicted ben-
efit (the absolute difference in their outcome risk with and 
without treatment). These matched pairs of patients with 
a similar “propensity for benefit” can then be classified 
into three categories according to their “observed benefit” 
by comparing outcomes in the control and experimental 
patient—benefit (1, 0); no effect (1, 1 or 0, 0); or harm (0, 
1)—where 1 represents a bad outcome and 0 represents 
a good outcome in each of the two study arms; the c-sta-
tistic assesses how well the model discriminates pairs of 
patients on the basis of this trinary “outcome.”136 This 
approach assumes no correlation in the distribution of 
outcomes under the two treatments, conditional on the 
variables in the prediction model; this strong assump-
tion leads to generally low values of the “c-for-benefit” 
statistic. Similarly, a model based ROC (receiver operating 
characteristic) measure has been proposed for treatment 
selection markers using a potential outcomes framework, 
but this approach relies on the assumption that model 
predictions are correct.137

Ultimately, the usefulness of a model depends not just 
on its ability to predict accurately and provide honest 
estimates of within strata treatment effects, but on its 
ability to improve decisions. This depends on model per-
formance relative to a specific decision threshold—that 
is, a risk distribution that perfectly balances the burdens, 
harms, and costs of treatment. Decision curve analysis138 
has been proposed to evaluate the clinical usefulness of 
prediction models and has been adapted to evaluate mod-
els that predict HTE in trials.139 These methods evaluate 
whether a particular prediction-decision strategy opti-
mizes net benefit for a population at a particular decision 
threshold, compared with the best overall strategy (that 
is, treat all or treat none).140 The ultimate test of a predic-
tive approach is to compare decisions (or outcomes) in 
settings that use such predictions with usual care in an 
experiment,141 such as a cluster randomized trial.
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Use of observational data for predictive HTE analysis
Observational data have tremendous appeal for predic-
tive HTE analyses. In particular, the growing availability 
of large databases that capture electronic health records 
and claims on millions of patients can provide statisti-
cal power far beyond that typically achieved by single or 

pooled RCTs.142 143 In addition, because these databases 
capture a broader, more heterogeneous population, rep-
resenting the full spectrum of patients seen in routine 
practice, they may be an excellent substrate for risk pre-
diction. Nevertheless, because randomization remains 
the gold standard for unbiased estimation of causal treat-
ment effects, RCTs are also the preferred substrate for HTE 
analysis. Although modern methods for de-confounding 
may produce unbiased average treatment effect estimates 
in observational data, it is not possible to know whether 
all model assumptions are met in any given analysis.144 
In addition, for HTE analyses, the assumptions necessary 
for deconfounding need to be met within each stratum, a 
more stringent requirement than for the estimation of an 
overall average treatment effect. Apart from confounding 
by indication, large observational data sources collected 
from routine care are often plagued by missing data and 
misclassification. A growing body of research is focused 
on improving the understanding of the necessary con-
ditions for trustworthy, unbiased observational results, 
including research on methods to achieve balance in 
covariates across subgroups.145-147 Nevertheless, the use 
of observational data potentially compounds and com-
plicates the well known problems with credibility that 
already undermine subgroup analyses even in RCTs.

Conclusion
Although a positive RCT result provides strong evidence 
that an intervention works for at least some patients 
included in the trial, clinicians still need to understand 

←
→

Fig 8 |  The SYNTAX score II stratifies patients with non-acute 
coronary artery disease on the basis of their risk of mortality 
with CABG versus PCI and is a useful guide to decision 
making. In the SYNTAX trial, rates of major adverse cardiac 
or cerebrovascular events at 12 months were significantly 
higher in the PCI group (17.8%) than in the CABG group (12.4%; 
P=0.002), confirming that CABG should be the preferred 
approach for patients with untreated three vessel or left main 
coronary artery disease.132 The SYNTAX score II was developed 
by applying a Cox proportional hazards model to the SYNTAX 
(Synergy Between Percutaneous Coronary Intervention With 
Taxus and Cardiac Surgery) trial (N=1800). It contains eight 
predictors: a previously developed anatomical SYNTAX score, 
age, creatinine clearance, left ventricular ejection fraction, 
presence of unprotected left main coronary artery disease, 
peripheral vascular disease, female sex, and COPD, plus 
treatment interaction terms with each of these variables. 
The graphs show (A) event rates, (B) hazard ratios, and (C) 
absolute risk reductions for CABG versus PCI. Unlike the 
examples shown in other figures, event rates do not increase 
monotonically across quarters because patients are stratified 
not by predicted risk but by predicted benefit (outcome risk 
with PCI minus outcome risk with CABG). Overall results, 
depicted by the horizontal dashed line, show a trend that 
favors CABG. However, when patients are stratified by their 
expected benefit, a quarter of patients who are treatment 
unfavorable is identified (Pinteraction=0.0037 for eight interaction 
terms), and benefit is largely confined to the quarter of 
patients at highest benefit. Although the SYNTAX score II has 
been validated for prediction of outcomes, it has not yet been 
validated for the prediction of benefit. CABG: coronary artery 
bypass graft surgery; COPD: chronic obstructive pulmonary 
disease; PCI: percutaneous coronary intervention.

 on 19 A
pril 2024 by guest. P

rotected by copyright.
http://w

w
w

.bm
j.com

/
B

M
J: first published as 10.1136/bm

j.k4245 on 10 D
ecem

ber 2018. D
ow

nloaded from
 

http://www.bmj.com/


S TAT E  O F  T H E  A R T  R E V I E W

For personal use only  14 of 18

how a patient’s multiple characteristics combine to influ-
ence his or her potential treatment benefit—that is, the 
difference between outcome risk with and without the 
treatment. Disaggregation of the overall results according 
to absolute risk can yield more informative, narrower ref-
erence classes for more patient specific effect estimates of 

benefit and support more patient specific decision mak-
ing. Routine use of absolute risk modeling is usually feasi-
ble for large phase III trials; journal editors, funders, and 
the research community should insist on these analyses. 
New statistical approaches, devised to model treatment 
effect directly, may offer additional advantages (increas-
ing “benefit discrimination”), although with greater 
potential for statistical overfitting, false discovery, and 
biased predictions in new patient populations. These 
approaches merit more research.

Nonetheless, substantial barriers still need to be to 
overcome.148 We list a few of the outstanding research 
questions related to the problems covered in this article 
in the Questions for future research box. In addition, we 
need research aimed at:
•   Improving the integration of clinical prediction into 

practice149

•   Improving our understanding of how to individualize 
clinical practice guidelines

•   Establishing or extending reporting guidelines150

•   Establishing new models of data ownership to 
facilitate data pooling151

•   Re-engineering the clinical research infrastructure 
to support substantially larger clinically integrated 
trials sufficiently powered to determine thee HTE, or 
to develop our ability to predict when observational 
data will probably be sufficiently de-biased for 
reliable HTE determination, or both.146 152

Many recent and ongoing organizational and technical 
advances should enable this evolution.

As Hill pointed out, at the level of the individual the 
right decision is fundamentally under-determined by the 
results of a trial. Even in retrospect, it is usually impos-
sible to tell whether the right decision was made for any 
individual patient. Thus, although the goal of prediction 

GLOSSARY
Effect modification: This occurs when the size of the effect of a treatment or exposure on 
an outcome depends on the level of a third variable (eg, patient characteristics). In the 
presence of effect modification, the use of an overall effect estimate is inappropriate.
Heterogeneity of treatment effect (HTE): Non-random variability in the direction or size 
of a treatment effect, measured using clinical outcomes. HTE is fundamentally a scale 
dependent concept and therefore, for clarity, the scale should generally be specified. (It 
should be noted that some people reserve the term to describe variability on a relative scale 
only, such as changes in the odds ratio or relative risk.)
Clinically important HTE: This occurs when variation in the risk difference across patient 
subgroups spans a decisionally important threshold, which depends on treatment burden 
(including treatment related harms and costs). It is generally assessed on the absolute scale.
Predictive HTE analysis: The main goal of predictive HTE analysis is to develop models that 
can be used to predict which of two or more treatments will be better for an individual by 
taking into account multiple relevant variables.
Risk modeling approach: An approach to predictive HTE analysis in which a multivariable 
model that predicts the risk of an outcome (usually the primary study outcome) is applied to 
disaggregate patients in trials and examine risk based variation in treatment effects.
External risk models versus endogenous/internal risk models: External risk models have 
been developed from an external trial or cohort but can be used for HTE analysis of other 
trials. Internal risk models are developed directly from the trial population.
Treatment effect modeling approach: An approach to predictive HTE analysis that develops 
a model directly on randomized trial data to predict treatment effects (the difference in 
outcome risks under two alternative treatment conditions). Unlike risk modeling, the model 
incorporates a term for treatment assignment and permits the inclusion of treatment by 
covariate interaction terms.
Net benefit: A decision analytic measure that puts benefits and harms on the same scale. 
This is achieved by specifying an exchange rate on the basis of the relative value of benefits 
and harms associated with interventions. The exchange rate is related to the probability 
threshold determining whether a patient is classified as being positive or negative for a 
model outcome, or (when applied to trial analysis) as being treatment favorable versus 
treatment unfavorable.
Overfitting: A situation where predictions do not generalize to new subjects outside 
the sample under study. Overfitting occurs when a model conforms too closely to the 
idiosyncrasies or “noise” of the limited data sample from which it is derived and is a threat 
to the validity of a model.
Penalized regression: A set of regression methods, developed to prevent overfitting, in 
which the coefficients assigned to covariates are penalized for model complexity. Penalized 
regression is sometimes referred to as shrinkage or regularization. Examples of penalized 
regression include lasso, ridge, and elastic net regularization.
Predictive factors: Patient characteristics that result in modification of the treatment effect 
and are often assessed using statistical interaction terms on the relative scale. Generally, 
predictive factors are substantially harder to identify than prognostic factors, given the 
more limited a priori information on their effects and the greater statistical power needed to 
test interactions.
Prognostic factors: Patient characteristics that influence the risk of the outcome of interest. 
These factors may also help discriminate patient groups with different degrees of absolute 
benefit. A single characteristic may be both predictive and prognostic.
Reference class: A group of similar cases that is used to make predictions for an individual 
patient of interest. The “reference class problem” refers to the fact that similarity can be 
defined in an indefinite number of different ways because individuals have many different 
potentially relevant attributes.
Testimation bias: Refers to the fact that, on average, the effect sizes of newly discovered 
true (non-null) associations are inherently inflated. Testimation bias arises from the use of 
statistical thresholds in the process of discovering associations or of selecting variables 
for a model. Inflation is expected when an association has to pass a certain threshold of 
statistical significance to be deemed positive (or included in a model) and the study has 
suboptimal power. The problem is also referred to as the “winner’s curse.”

HOW PATIENTS WERE INVOLVED IN THE CREATION OF THIS 
ARTICLE
To gain insight into the importance of heterogeneity of 
treatment effects from the patient’s perspective, we held 
three 90 minute webinar enabled group discussions 
with patient stakeholder representatives of three patient 
powered research networks (PPRNs): ARthritis Partnership 
with Comparative Effectiveness Researchers (AR-PoWER), 
the Health eHeart Alliance, and iConquerMS. 

QUESTIONS FOR FUTURE RESEARCH 
• How can we jointly predict multiple important outcomes or 

risk dimensions (eg, risk of the primary outcome versus risk 
of treatment related harm)?

• How can we determine when relative effect modifiers 
are sufficiently reliable for inclusion in treatment effect 
models?

• Do machine learning techniques have distinct advantages 
over traditional statistical approaches for predicting 
treatment effect? If so, under what conditions?

• How can models be updated and recalibrated in the 
absence of new randomized trials?

• Under what conditions can observational big data sources 
provide a substrate for reliable predictive heterogeneity of 
treatment effect analysis?
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is to improve decisions in each patient, paradoxically, 
like any other intervention, this can be assessed only by 
examining whether more precise prediction improves out-
comes at the population level. As experience with these 
approaches grows, in addition to stronger methodological 
and evidentiary standards, we will need empirical stud-
ies to ensure that these more flexible (and manipulable) 
methods realize in practice their potential to improve 
population outcomes.
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