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Reading Mendelian randomisation studies: a guide, glossary, 
and checklist for clinicians
Neil M Davies,1,2 Michael V Holmes,1,3,4,5 George Davey Smith1,2,6

Mendelian randomisation uses genetic 
variation as a natural experiment to 
investigate the causal relations 
between potentially modifiable risk 
factors and health outcomes in 
observational data. As with all 
epidemiological approaches, findings 
from Mendelian randomisation studies 
depend on specific assumptions. We 
provide explanations of the information 
typically reported in Mendelian 
randomisation studies that can be 
used to assess the plausibility of these 
assumptions and guidance on how to 
interpret findings from Mendelian 
randomisation studies in the context of 
other sources of evidence

Understanding whether a biomarker or behaviour 
causes ill health is central to evidence based 
medicine, drug development, and better informed 
clinical decision making. Ideally, evidence of causal 
effects comes from well conducted randomised 
trials. Clinicians are well versed in the strengths and 
limitations of such trials and have an increasingly 
sophisticated understanding of traditional analyses of 
observational studies. But they may be less aware of the 
strengths and limitations of a more recently developed 
approach to analysing observational data known 
as Mendelian randomisation. Although numerous 
guides exist for conducting1-3 and reporting Mendelian 
randomisation studies and related methods,4 5 here we 
focus on helping clinicians and practitioners read and 
interpret them. Our goal is to provide explanations of 

core concepts and recent developments in Mendelian 
randomisation methods.

A method to overcome confounding
Mendelian randomisation is an analytical method 
that uses genetic variants as instrumental variables 
for modifiable risk factors that affect population 
health.1 6-8 It is increasingly being used because it 
can overcome a major limitation of evidence from 
observational studies: unmeasured confounding.6 9 
Suppose, for example, we wanted to investigate the 
effects of alcohol consumption on blood pressure 
with a view to understanding the overall relationship 
of alcohol with risk of coronary heart disease. One 
source of evidence is the association between alcohol 
and blood pressure in observational studies. This 
association may be a poor indicator of the causal effects 
of alcohol if there are other factors—“confounders”—
that influence both alcohol intake and blood pressure. 
Many epidemiological methods attempt to correct 
for, or minimise, observed differences in confounders 
between study participants. These methods can give 
useful evidence about causal relations if we measure 
enough confounders so that, after adjustment or 
matching, study participants who consume different 
amounts of alcohol are otherwise comparable. But 
this assumption is unverifiable; if it does not hold, 
then findings from observational studies will be biased 
estimates of causal effects. 

People who consume more alcohol may also have 
other risk factors for cardiovascular disease, such as 
smoking more heavily than those with lower alcohol 
consumption. The confounding factor (smoking) 
induces a positive association between the risk factor 
(alcohol) and an outcome (blood pressure); interpreting 
this as causal would be misleading. Measuring a 
confounder does not perfectly characterise it, so 
measurement error leads to residual confounding, 
even after apparent statistical adjustment. Reverse 
causality is a form of confounding that is difficult 
to account for. It arises if the outcome or preclinical 
aspects of the disease that lead to the outcome affect 
the risk factor. People with symptoms of cardiovascular 
disease, for example, may consume less alcohol than 
those without symptoms. This would lead to a negative 
association between a risk factor (alcohol) and an 
outcome (cardiovascular disease); interpreting this as 
being because alcohol consumption decreases the risk 
of cardiovascular disease would be misleading.

Mendelian randomisation uses genetic variants, 
which are fixed at conception, to support causal 
inferences about the effects of modifiable risk factors, 
which can overcome some types of confounding. In 
the case of alcohol and blood pressure, a variant in 
the ALDH2 gene (specifically the minor A allele of 
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SummAry pointS
•   Mendelian randomisation is a research method that provides evidence about 
putative causal relations between modifiable risk factors and disease, using 
genetic variants as natural experiments

•   Mendelian randomisation is less likely to be affected by confounding or 
reverse causation than conventional observational studies

•   Like all analytical approaches, however, Mendelian randomisation depends on 
assumptions, and the plausibility of these assumptions must be assessed

•   Moreover, the relevance of the results for clinical decisions should be 
interpreted in light of other sources of evidence

•   We provide a critical appraisal checklist that can be used to assess and 
interpret Mendelian randomisation studies
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rs671, rather than the wild type or major allele G) 
found in east Asian populations slows the metabolism 
of acetaldehyde, which causes a flush response and 
other adverse responses to alcohol consumption. 
In a study of 4057 people selected from the general 
population, 170 of 1919 men carried two copies of 
the A allele and drank an average of 1.1 g of alcohol a 
day, whereas those with no copies drank 23.7 g.10 11 If 
men with one or more copies of the A allele have lower 
blood pressure, then this implies that lower alcohol 
consumption decreases blood pressure.11 But this 
inference relies on several assumptions. The two key 
challenges when reading Mendelian randomisation 
studies are evaluating the plausibility of the underlying 
assumptions and interpreting the results. We discuss 

these challenges below, using terms defined in the 
glossary (box 1).

What assumptions does mendelian randomisation 
depend on?
Valid instrumental variables are defined by three key 
assumptions (table 1, fig 1): that they associate with 
the risk factor of interest (the relevance assumption); 
that they share no common cause with the outcome 
(the independence assumption); and that they do 
not affect the outcome except through the risk factor 
(the exclusion restriction assumption). A single genetic 
variant could plausibly meet these conditions if the 
biological process linking the variant with the risk 
factor is well understood. But in many cases Mendelian 

Box 1: Glossary of common terms used in Mendelian randomisation studies
Readers interested in more detailed discussions of these terms are encouraged to read the references.1 9 12 13

Concepts
•   Instrumental variables—variables that are associated with the risk factor of interest, that are not related to confounders, and that affect the 
outcome only through the risk factor.14 An instrumental variable can be any trait (not necessarily a genetic variant) that meets these criteria, but 
the nature of genetic inheritance means that genetic variants are often plausible instrumental variables

•   Mendelian randomisation—the use of genetic variants as instrumental variables to investigate the effects of modifiable risk factors for disease6 15

•   Multiple instruments—the use of more than one genetic variant in a Mendelian randomisation analysis
•   Allele score—the number of alleles associated with an increase in the risk factor of interest. These genetic variants are normally identified in 
large genome-wide association studies. The statistical efficiency (power) of allele scores can be increased by weighting each variant by the size 
of its association with the risk factor16

•   Weak instrument bias—can occur in Mendelian randomisation studies when using one or more genetic variants that only explain a small 
proportion of the variation in the risk factor, coupled with a small sample size

•   Pleiotropic effects—the effects of a genetic variant on multiple biological pathways. These can either affect the outcome through another trait or 
pathway to the one under investigation, known as horizontal pleiotropy, or affect other traits through the risk factor of interest, known as vertical 
pleiotropy.1 Horizontal pleiotropy is a violation of the instrumental variable assumptions because the effects of the genetic variant on the 
outcome are not exclusively through the risk factor; this is problematic for Mendelian randomisation studies. Vertical pleiotropy is in fact the 
essence of Mendelian randomisation—showing that one factor influences a downstream outcome—and is in general not problematic1

Statistical methods
•   Single sample Mendelian randomisation—using one dataset in the instrumental variable analysis to yield the causal estimate of the risk factor 
on the outcome

•   Two sample Mendelian randomisation—using two different study samples to estimate the instrument-risk factor and instrument-outcome 
associations to estimate a causal effect of the risk factor on the outcome. This can be useful when the risk factor or outcome, or both, are 
expensive to measure.17 18 It also provides an opportunity to substantially increase the statistical power, by incorporating data from multiple 
sources, including large consortia17

•   MR Egger regression—a statistical technique that allows one or more genetic variants to have pleiotropic effects, as long as the size of these 
pleiotropic effects is independent of the size of the genetic variants’ effects on the risk factor of interest19

Properties of the genetic instrument
•   Testing between observational and Mendelian randomisation estimate—tests include the Hausman test (for continuous outcomes in single 
sample Mendelian randomisation) and tests for difference in estimates (for binary outcomes in single sample and two sample Mendelian 
randomisation20 21

•   Tests of instrument strength—to evaluate the strength of the association between the instrument (the genetic variant) and the risk factor (for 
example, the partial F statistic and R2)22

Table 1 | Three key assumptions that must hold for a Mendelian randomisation study to be valid

Assumption Description
Tools to assess plausibility
Single sample Two sample

Relevance 
 assumption

The genetic variants associate with the 
risk factor of interest

The partial F statistic and partial r 
squared, or risk difference

Variants are associated with the risk factor in a large ge-
nome-wide study

Independence 
assumption

There are no unmeasured confounders 
of the associations between genetic 
variants and outcome

Covariate balance tests and bias 
 component plots. Adjusting for principal 
components of population stratification

Evidence from large genome-wide association  studies on the 
association of the genetic variants used as  instruments with 
other baseline covariates

Exclusion  
restriction

The genetic variants affect the outcome 
only through their effect on the risk factor 
of interest

Biological knowledge, tests of  association 
of the genetic variants and potential 
 alternative mediating pathways

Evidence from large genome-wide association studies that the 
genetic variants associate with alternative pathways. MR Egger 
test for pleiotropy, Cook’s distance evaluation of outliers
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randomisation studies include multiple genetic 
variants, which can be used in sensitivity analyses 
to evaluate the underlying assumptions. Generally, 
the three key assumptions must hold for each of the 
genetic variants. We describe common strategies for 
assessing the plausibility of these assumptions and 
give examples, where possible, from published studies.

Sources of data in Mendelian randomisation
Historically, a typical Mendelian randomisation study 
required measures of genotypes (variants in ALDH2 
gene), risk factor (alcohol consumption), and outcome 
(blood pressure) from the same sample of people. 
This approach is known as single sample Mendelian 
randomisation. Two sample Mendelian randomisation 
involves two separate study populations; for example, 
data on the ALDH2 genotype and alcohol consumption 
are measured in one sample, and ALDH2 genotype 
and blood pressure in the other.17 23 This design has 
two advantages. Firstly, neither the risk factor nor the 
outcome needs to be measured in all studies, which is 
particularly useful if they are difficult or expensive to 
measure. Secondly, it allows the summary results from 
genome-wide association studies to be used, which 
can be very large (often >50 000) and thus highly 
precise (table 2 and table 3).

Statistical power is usually much higher in two 
sample studies. These advantages come with two 
additional assumptions: the two samples are assumed 
to represent the same underlying population, and 
overlap in participants between the two samples 
can cause bias towards the risk factor-outcome 
association.17 39

Single or multiple genetic variants
The simplest applications of Mendelian randomisation 
use a single genetic variant as an instrument for the 
risk factor. Some of the most persuasive published 
studies use a single genetic variant with a relatively 
well understood function, so the core assumptions 
can be supported by biological knowledge. One such 
example is the use of a missense variant in the PCSK9 
gene, which modifies the function of proprotein 
convertase subtilisin/kexin type 9, an enzyme that 
degrades the low density lipoprotein (LDL) receptor 
on hepatocytes. PCSK9 variants are associated with 

Existing disease or
social deprivation

ALDH2
variants

Blood
pressure

Alcohol
consumption

A

ALDH2
variants

Blood
pressure

Alcohol
consumption

B

ALDH2
variants

Blood
pressure

Alcohol
consumption

Tobacco
consumption

C

ALDH2
variants

Blood
pressure

Alcohol
consumption

D

Ancestry

Coronary
heart disease

Fig 1 | Examples of Mendelian randomisation and 
potential violations of assumptions. (A) A simplified 
causal diagram depicting confounding of the association 
of alcohol consumption and blood pressure by existing 
disease or social deprivation. The instrumental 
variable assumptions are that the genetic variants are 
associated with the risk factor, that they have no other 
influence on the outcome, except through alcohol, 
and that there are no confounders of the genetic 
variants-outcome association. (B) Confounding by 
ancestry could occur if variants associated with alcohol 
consumption had different frequencies in different 
ethnic groups in the population sampled and if cultural 
differences affected blood pressure between ethnic 
groups. This would violate the second instrumental 
variable assumption—the independence assumption. 
(C) An example of horizontal pleiotropy, in which the 
genetic variants associated with alcohol consumption 
also affect tobacco consumption (violating the third 
assumption—the exclusion restriction assumption). (D) 
An example of vertical pleiotropy, in which the effect of 
ALDH2 on coronary heart disease is mediated by blood 
pressure. This example does not violate the Mendelian 
randomisation assumptions and does not cause bias.

Table 2 | Publicly available data sources for two sample Mendelian randomisation studies
Consortium name Description Most recent sample size
BCAC24 Breast cancer 256 123
CARDIoGRAMplusC4D25 Coronary artery disease and myocardial infarction 184 305
CKDGen26 Chronic kidney disease 111 666
DIAGRAM27 Diabetes 159 208
EAGLE28 Antenatal and early life and childhood phenotypes 47 541
EGG29 Early growth 153 781
GIANT30 Height, BMI, and other adiposity traits 693 529
GLGC31 Global lipids genetics consortium 331 368
ISGC32 Stroke 84 961
MAGIC33 Glucose and insulin related traits 224 459
PGC34 35 Psychiatric genetics, alcohol and tobacco, and other related traits >500 000
SSGAC36 Educational attainment and wellbeing 293 723
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altered blood concentrations of LDL cholesterol 
and risk of heart disease.40 41 This provides further 
evidence that LDL cholesterol causes heart disease, 
and also indicates that drugs that inhibit PCSK9 may 
have cardiovascular benefits. This was confirmed in 
phase III clinical trials.42 43

In most circumstances, however, single genetic 
variants individually typically explain only a very 
small proportion of the variation in a phenotype; 
investigators may refer to these as “weak instruments,” 
particularly in modest sample sizes. Studies using 
variants with modest effects in small samples are likely 
to have very low statistical power and can be biased. To 
overcome this, investigators have developed methods 
that use multiple genetic variants that collectively 
explain more of the variation in a risk factor than a 
single variant and thus have more statistical power. 
One way of using multiple genetic variants is to use 
single nucleotide polymorphisms (SNPs, the most 
common form of DNA variation among people) as 
individual instruments in a statistical regression 
model in the setting of a single or two sample dataset 
(multiple instruments approach). The second way 
is to aggregate the variants into an allele score (also 
called a genetic risk score, gene score, or a multilocus 
allele score).16 The allele score is effectively a single 

instrumental variable that can be used to predict the 
risk factor in a Mendelian randomisation analysis.

Genetic variants in these scores are often 
weighted by their associations with the risk factor to 
maximise statistical power. Many recent Mendelian 
randomisation investigations of complex traits (such 
as blood pressure, BMI, or blood lipids)44 have used 
multiple variants because they can help identify 
pleiotropy or other violations of the underlying 
assumptions.

Genetic pleiotropy
Genetic variants may affect the outcome through 
pathways other than through the risk factor of interest 
(so called horizontal pleiotropic effects, fig 1C). Genetic 
variants associated with alcohol consumption, for 
example, may affect other behaviours such as smoking, 
which would invalidate the exclusion restriction. When 
using single or multiple genetic variants, Mendelian 
randomisation estimates require that genetic variants 
do not have such horizontally pleiotropic effects.16 This 
means the results could be biased if a genetic variant or 
an allele score has pleiotropic effects on the outcome 
that are not mediated through the risk factor of interest 
(fig 2). Genetic variants can also affect the outcome 
through a pathway affected by the risk factor of interest 
(vertical pleiotropic effects, fig 1D). This does not 
invalidate the instrumental variable assumptions and 
does not result in bias.

Various methods have been developed that allow 
for genetic pleiotropy.19 46 47 These provide useful 
sensitivity analyses to explore whether a finding 
depends on the assumption that all the variants have 
no pleiotropic effects. One such approach, known as 
the median estimator, can provide reliable evidence 
as long as at least half the genetic variants have no 
pleiotropic effects.47 49 A second method, known 
as MR Egger regression, allows all variants to have 
pleiotropic effects, provided they are not proportional 
to the variants’ effects on the risk factor of interest.19 
A comprehensive analysis of cross trait genetic 
effects indicates that the magnitude of genome-wide 
associations are generally independent across traits 
that are not causally related, so the assumption may 
be plausible for many potential relationships.50 MR 
Egger regression yields less precise estimates than 
other methods, owing to a power penalty. Most of these 
methods assume that the risk factor has the same effect 
on everyone.

How to assess the key assumptions
Tests of instrument strength—the relevance assumption
The power of a Mendelian randomisation study 
is determined by sample size and strength of the 
association between the proposed instrument and risk 
factor. Weak instruments that poorly predict the risk 
factor cause three problems.12 Firstly, they provide very 
little statistical power to test hypotheses. Secondly, 
bias due to violations of the core instrumental variable 
assumptions, such as horizontally pleiotropic effects of 
variants, will be amplified. Thirdly, even when using 

Table 3 | Databases of genome-wide association study results

Data source Description
Number  
of traits

Integrated with 
 statistics package?

MR-Base A curated database of genome-wide 
association study results with 
 integrated R package for MR23

Over 1000 Yes

PhenoScanner A curated database of genome-wide 
association study results with 
 integrated R package for MR37

Over 500 Yes

GWAS catalog Searchable database of genome-wide 
association study results38

Over 24 000 No

HDL-C-CHD association from ERFC48

MR inverse variance weighted estimate from Bowden et al19

MR-Egger estimate from Bowden et al19

Weighted median estimate from Bowden et al19

Weighted mode estimate from Hartwig et al46

0.6 0.8 1.0 1.2 1.4

Odds ratio (95% CI) of coronary heart
disease per 1 SD increase in HDL cholesterol

Risk factor-outcome association
Mendelian randomisation results

Fig 2 | Example of genetic pleiotropy in Mendelian randomisation: HDL cholesterol 
and risk of heart disease. Variants associated with HDL cholesterol are likely to 
have pleiotropic effects on risk of heart disease because they also associate with 
LDL cholesterol and triglycerides.2 45 Thus the inverse variance weighted Mendelian 
randomisation estimate, which assumes no pleiotropy, provides (biased) evidence of a 
protective role for HDL cholesterol in coronary heart disease. But the estimates using 
MR Egger, weighted median, and weighted mode, which allow for genetic pleiotropy, 
are attenuated towards the null. The MR Egger estimator assumes that for the variants 
with pleiotropic effects on coronary heart disease the magnitude of these effects do not 
correlate with the magnitude of the variants' effects on HDL cholesterol. These results 
suggest that the inverse variance weighted estimate is driven by genetic pleiotropy19 

46-48 and that HDL cholesterol is unlikely to have a major causal role in the development 
of coronary heart disease. CHD=coronary heart disease; ERFC=Emerging Risk Factors 
Collaboration; HDL-C=high density lipoprotein cholesterol; SD=standard deviation
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very large samples, results using weak instruments are 
biased towards the outcome-risk factor association in 
the single sample setting and towards the null in the 
two sample setting. Precision (assessed with confidence 
intervals) is underestimated. Weak instruments can 
be detected using the F statistic for single sample 
settings.51 A rule of thumb is that the F statistic should 
be greater than 10. Exceeding this threshold indicates 
that a result based on a valid instrumental variable 
ought not to suffer substantially from weak instrument 
bias but does not guarantee sufficient statistical power 
to test a specific hypothesis.

Independence and exclusion restriction 
assumptions
Confounding by violations of the independence 
assumption (no confounders) and exclusion 
restriction (genetic instruments work only through 
the risk factor) can be investigated by estimating the 
relation between the genetic instrument and a wide 
range of characteristics, analogous to the balance of 
baseline characteristics between treatment arms in 
a randomised trial.52-54 Although these assessments 
cannot prove that the independence and exclusion 
restriction assumptions hold, they can provide 
evidence regarding their (lack of) plausibility.

One promising way to evaluate the plausibility of the 
assumptions is using “negative control” populations. 
Genetic variants that are known to affect alcohol 
consumption, for example, should not be associated 
with outcomes in populations that rarely or never 
drink, such as children or women in some societies.11 
This tests the exclusion restriction and independence 
assumptions. If investigators found an association 
between ALDH2 variants and blood pressure in a 
non-drinking population, the instrumental variable 
assumptions may not hold in the original population 
either. The usefulness of negative controls depends on 
them being well reasoned and, of course, available.

How are mendelian randomisation studies analysed?
The simplest approach is to report the association 
of the genetic variants and the outcome. This test is 
relatively robust and should be reported in all studies. 
It provides evidence as to whether the risk factor 
causes the outcome, but it is not informative about 
the size of the effect. The magnitude of the causal 
effect can be estimated by dividing the genetic variant-
outcome association by the genetic variant-risk factor 
association. This ratio is known as the instrumental 
variable or Wald estimate.55

Inclusion of, or stratifying by, the risk factor 
of interest
To assess whether a genetic variant (or several in 
combination) mediates its effect on an outcome 
through the primary risk factor (and thus to test for 
exclusion restriction), some studies adjust or stratify 
for the primary risk factor of interest.56 But this is 
problematic for several reasons. Firstly, a residual 
association of the genetic instrument with the disease 

after adjustment for the risk factor does not imply that 
the variant affects the disease through other pathways. 
The measured risk factor almost certainly does not 
completely account for the lifetime variation in the trait 
instrumented by the gene. A residual effect of the gene 
(on the outcome after adjusting for the measured risk 
factor) might therefore not indicate a violation of the 
exclusion restriction assumption. Secondly, adjusting 
or stratifying for the risk factor can lead to collider bias 
(see supplementary figure 1), in the same way that 
conducting a subgroup analysis by “on-treatment” 
response breaks the randomisation in a trial.57 To 
see why, consider a study investigating the effect of 
statins on coronary heart disease.58 The on-treatment 
(or “achieved”) LDL cholesterol concentration will 
break the randomisation and is likely to be biased by 
other characteristics that influence lipid levels (such as 
age, sex, diet, physical activity, and so on). Although 
this is a seemingly common retrospective approach 
to try and elucidate dose-response relatonships in a 
randomised trial, such analyses can be as vulnerable 
to confounding as observational analyses. Similarly, 
adjusting (or stratifying) a Mendelian randomisation 
analysis for the risk factor can induce spurious 
correlations between the genetic variants and the 
outcome.

Why do some Mendelian randomisation studies 
adjust for other traits?
If a genetic variant is a valid instrument, inclusion 
of other covariates is not necessary, but they can 
increase statistical efficiency. Some Mendelian 
randomisation studies adjust for other characteristics, 
including directly measured traits (such as age, sex, 
or smoking) or associations between the genetic 
instrument and traits other than the risk factor of 
interest. The genetic variant-risk factor and genetic 
variant-outcome associations should be adjusted for 
the same covariates. If not, the instrumental variable 
estimate may be biased. For example, if a two sample 
Mendelian randomisation study of the effect of BMI 
on blood pressure used a blood pressure genome-
wide association study that adjusted for BMI, then the 
estimate would be unreliable and the direction of effect 
could even be reversed. These problems are an area of 
active methodological research.

In some samples, the association between a 
genetic variant and outcome may be confounded 
by hidden population structure. This can be tackled 
by adjusting for genetic ancestry or restricting to 
ethnically homogenous samples. Suppose a study 
sampled data from an ethnically mixed east Asian 
and European population. The minor allele of the 
alcohol variant rs671 is extremely rare in European 
populations, so an association between this variant 
and an outcome in this sample could be due to 
differences in ethnicity (fig 1B). This problem could be 
mitigated by stratifying by ethnicity or adjusting for 
genetic principal components (which are calculated in 
datasets with genome-wide arrays and provide proxy 
measures of genetic ancestry). The UK Biobank, for 
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example, provides up to 40 principal components for 
adjusting genetic analyses for differences in ethnicity. 
This improves reliability, as has been done in a recent 
Mendelian randomisation study of adiposity and risk 
of heart disease and diabetes.59 If a study depends on 
these adjustments—that is, there are major differences 
between the unadjusted and adjusted findings—the 
results should be treated with caution. At the very 
least the source of potential bias must be investigated 
and justified, just as for residual confounding in a 
conventional epidemiology study.

Why do some Mendelian randomisation studies 
remove variants from the genetic instrument?
Some studies manually remove (or “prune”) genetic 
variants thought to be pleiotropic from a genetic 
instrument to provide a more reliable estimate of 
the association. Voight and colleagues used genetic 
variants that were exclusively associated with HDL 
cholesterol (not LDL cholesterol or triglycerides) to 
investigate the relationship between HDL cholesterol 
and heart disease.60 Including or excluding a genetic 
variant in this way can be arbitrary and limited 
by available data; such pruning should be done 
with caution (if at all) and for well justified and 
transparent reasons. Furthermore, as the sample 
size increases, genetic variants will be identified as 
showing associations with multiple traits owing to 
vertical or horizontal pleiotropy.61 Excluding variants 
on the basis of vertical pleiotropic effects will bias 
findings, since these effects would be ones seen when 
manipulating the risk factor of interest.62 One or more 
variants might be excluded from sensitivity analyses if 
they are obvious outliers based on visual assessment 
of the data or using more formal approaches such as 
Cook’s distance.63

How are mendelian randomisation studies reported?
Having checked whether the assumptions 
underpinning a Mendelian randomisation analysis 
are valid (table 1), readers should be familiar with 
how such studies are reported (box 2). They may 
report the association of one or more genetic variants 
with the outcome or provide an estimate of the causal 
(instrumental variable) effects of the risk factor on the 
outcome, or both. Ference and colleagues report the 
association between SNPs that alter LDL cholesterol 
and risk of heart disease, showing compelling genetic 
evidence of a dose-response association across 
multiple independent genetic loci. These SNPs can 
also be used to provide an “overall” causal effect of 
LDL cholesterol on the risk of coronary heart disease 
(odds ratio 0.46, 95% confidence ratio 0.41 to 0.51 per 
1mmol/L lower LDL cholesterol).64 These associations 
leverage genetic differences that occur at conception 
and can detect whether differences in the risk factor 
at any point over the life course affect the outcome. 
As a guide to future research and drug development, 
it is important to remember that findings of Mendelian 
randomisation potentially reflect lifetime differences 
in risk factors.65 66

Special cases of reporting findings
Testing for differences between Mendelian 
randomisation estimates from different SNPs
If multiple genetic variants and biological pathways 
influence the risk factor, we can test whether the effect 
of the risk factor on the outcome is similar when using 
different variants using Hansen tests or Cochrane’s 
Q test for individual level data and summary data, 
respectively.67 68 If these test statistics are large (yielding 
correspondingly small P values), the estimated causal 
effects of the risk factor may vary across the population 
or between variants. This might be due to multiple 
pathways causing the outcome. If these tests cannot 
be rejected, sample size and statistical power may be 
insufficient to detect differences that do exist and, 
therefore, may be falsely reassuring.

Comparing findings from observational and 
Mendelian randomisation analyses in the same 
dataset
For continuous outcomes in single sample analyses, 
the Hausman test can be used to assess whether the 
Mendelian randomisation and linear regression results 
(obtained from the same dataset) are systematically 
different.20 Differences could occur because the linear 
regression results are biased by residual confounding, 
the independence or exclusion restriction assumptions 
underlying the instrumental variable regression 
approach are invalid, or both. Finally, the effects 
being estimated by the two methods may not be the 
same—the Mendelian randomisation estimate reflects 
the effects of lifelong perturbations in the risk factor, 
whereas linear regression results may reflect more 
acute effects. Mendelian randomisation estimates are 
almost always less precise and have wider confidence 
intervals than linear regression (fig 3), so tests for 
difference often have low statistical power.74

How should findings from mendelian randomisation be 
interpreted?
The findings from Mendelian randomisation studies, 
which are less susceptible to confounding and reverse 
causality bias, sit at the interface between traditional 
observational epidemiology and interventional trials 
(fig 4). A well conducted Mendelian randomisation 
study that reasonably satisfies the above assumptions 
often provides more reliable evidence than a 
conventional observational study. But the findings 
should be interpreted in the context of existing evidence 
from other sources, using different study designs,75 
and clinical guidelines should not be rewritten solely 
on the basis of Mendelian randomisation results.

triangulating the evidence
Some studies report the Mendelian randomisation 
estimate in the context of traditional observational 
epidemiology (fig 3; supplementary table 1). When 
there is clear evidence that the associations differ, the 
Mendelian randomisation estimate can provide strong 
evidence that the traditional observational estimate 
arises from confounding and/or reverse causality. 
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In the case of C-reactive protein and coronary heart 
disease, the Mendelian randomisation estimates 
suggest that targeting CRP is unlikely to be a viable 
therapeutic target for the prevention of coronary 
heart disease.72 In contrast, when the Mendelian 
randomisation estimate has very wide confidence 
intervals that overlap the observational estimate and 
include the null (as in the case of dairy consumption 
and blood pressure),69 very little can be inferred from 
the Mendelian randomisation results.

Summary estimates from observational and 
Mendelian randomisation studies can be compared 
formally using tests for heterogeneity, such as 
Cochrane’s Q test and tests for differences in 
estimates.21 This can provide statistical evidence of a 
difference, but whether this should be interpreted as 
clinically meaningful is further outlined below.

Clinical and public health implications
Clinical and public health decisions about potential 
interventions ideally require evidence about the size 
and direction of an effect for a specific population. 
We might want to know, for example, how reducing 
alcohol consumption by an average of one serving a day 
beginning at age 45 affects blood pressure five years 
later. But this must be approached with care because 
genetic variants generally relate to lifelong differences 
in a risk factor, not the effects at a specific time. ALDH2 is 
associated with alcohol consumption from adolescence 
through middle age,76 so the Mendelian randomisation 
results (coupled with biological knowledge) indicate 
that consuming less alcohol would lead to lower blood 
pressure on average, but do not necessarily inform the 
effect size of an intervention at a specific time in life 
for a specific duration. Another example is the relation 

Box 2: Critical appraisal checklist for evaluating Mendelian randomisation studies
Some key questions readers can ask below.

Core Mendelian randomisation assumptions
•   Is there sufficient evidence that the genetic variants are robustly associated with the risk factor of interest?
•   Are the genetic variants associated with potential confounders? Do the authors present this relationship?
•   Is there any way for the genetic variants to affect the outcome through alternative pathways (horizontal pleiotropy)? Do the authors present 
alternative Mendelian randomisation approaches (such as MR Egger, median, and mode estimators, or use of “negative control” populations) to 
investigate this more fully?

Methods reporting
All studies
•   Are the effect and other alleles coded in the same direction for the exposure and outcome?

Two sample studies
•   Were the two samples drawn from the same population?
•   Were the two samples independent?
•   Was the analysis restricted to independent variants (that is, pruned of SNPs in linkage disequilibrium) or did the analysis allow for the 
correlation between variants?

Data presentation
•   Do the authors present the results as a genetic association, an instrumental variable estimate, or both?
•   If they provide an instrumental variable estimate, do they compare it with the conventional observational estimate?
•   Do the authors provide sensitivity analyses such as MR Egger, weighted median, and mode Mendelian randomisation, or use negative control 
populations?

•   Do the authors manually pick and choose which SNPs go into the instrument to tackle pleiotropy? If so, is the approach and justification clear?
•   Do the authors provide the data that they used (especially for Mendelian randomisation analyses conducted at the summary level) in a 
supplement to allow researchers to reproduce their findings?

Interpretation
•   If the Mendelian randomisation estimate is similar to the observational estimate and provides evidence in support of a causal effect, could it be 
due to weak instrument bias in a single study or confounding through, for example, horizontal pleiotropy?

•   If the Mendelian randomisation estimate differs from the observational estimate and provides little evidence of a causal effect, could this be due 
to weak instrument bias when using two different samples or negative confounding due to pleiotropy?

•   Mendelian randomisation provides estimates of the effects of the risk factor over a lifetime, and the numerical effect estimates may not be 
clinically meaningful. Will interventions at a specific age have the same sized effects?

•   Are the 95% confidence intervals of the Mendelian randomisation estimate sufficiently precise to identify the observational estimate and a 
clinically meaningful difference?

Clinical implications
•   Do the results triangulate with other forms of evidence? Could a clinical trial be conducted to provide definitive evidence, as in the case of PCSK9 
inhibitors?

•   If a randomised clinical trial is not feasible (such as in the case of alcohol consumption and risk of heart disease) or unlikely to be conducted in 
the short term (such as the case of lifestyle interventions to lower BMI and risk of heart disease), and there is existing evidence from multiple 
Mendelian randomisation studies and other robust study designs that converge on a similar result and show consistency of association, this 
information can be used to guide patient care; for example, advising weight loss to prevent heart disease or advising against moderate alcohol 
consumption to prevent cardiovascular disease
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between vitamin D and multiple sclerosis, where data 
from Mendelian randomisation studies indicate a 
protective effect, but such protection may be limited to 
childhood and adolescence and not later adult life.66 77 
Biological and methodological knowledge about the 
relations between risk factors and outcomes is critical 
to interpreting Mendelian randomisation studies. Does 
risk accumulate over time? Does the risk factor have an 
acute effect? Is there a particular time in life where this 
risk factor has an effect on this disease?6 66 78 79 This 
is why some studies focus on the association of the 
genetic variants and outcome,56 rather than providing 

a direct quantification of the causal effect scaled to a 
difference in the exposure of interest.

Consider another example, where the biology and 
context are important for the appraisal of Mendelian 
randomisation findings. Variants in the CHRNA5 gene 
that associate with increased heaviness of smoking 
are (through smoking behaviour) associated with 
increased risk of lung cancer.80 People with these 
variants are also likely to find it more difficult to reduce 
smoking after diagnosis of lung cancer. But variants in 
this gene cannot be used to assess the effect of quitting 
or reducing smoking on mortality after diagnosis with 

Continuous outcomes
  Dairy consumption on systolic blood pressure (serving/day)69

  Uric acid on blood pressure (SD)70

Binary outcomes
  Uric acid on heart disease (SD)70

  Vitamin D on mortality (20 nmol/L)71

  CRP on heart disease (SD)72

  LDL-C on myocardial infarction (SD)60

  HDL-C on myocardial infarction (SD)60

  BMI on coronary heart disease (SD)73

-1.0 -0.5 0 0.5 1.0 1.5 2.5 3.02.0

Mean di�erence (95% CI)

0.4 0.7 1.0 1.3 1.6 1.9 2.5 2.82.2

Odds or hazard ratio (95% CI)

Risk factor-outcome association
Mendelian randomisation results

Fig 3 | Example associations between risk factors and outcomes from traditional observational epidemiology and 
Mendelian randomisation instrumental variable estimates.60, 69-73 For some associations—such as vitamin D and 
mortality—the Mendelian randomisation results potentially confirm some causal relation. For other associations—CRP 
and heart disease—the Mendelian randomisation results are consistent with there being no causal effect. BMI=body 
mass index; CRP=C reactive protein; HDL-C=high density lipoprotein cholesterol; LDL-C=low density lipoprotein 
cholesterol

Systematic
review of RCTs

Cohort
Case control

Ecological

RCT

Strong evidence
of causation

Very weak evidence
of causation

Mendelian randomisation

Interventional

Observational

Interface

Fig 4 | A hierarchy of observational and experimental data. Mendelian randomisation studies sit at the interface 
of experimental and observational studies. Their findings can be used to provide more reliable evidence to guide 
interventional research and provide information about potential public health interventions when a randomised 
controlled trial may not be feasible. Although we adapt the conventional pyramid of evidence for presentation 
purposes, we consider that triangulation of findings from different study designs should be used.75
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lung cancer, because people with the risk variants 
will have smoked more heavily before diagnosis. 
The association between CHRNA5 risk variants and 
mortality in people with lung cancer reflects an 
individual’s lifetime exposure to tobacco smoke, 
and we would not expect an instrumental variable 
estimate using CHRNA5 to reflect the effect of current 
smoking on prognosis. Most importantly, the triggers 
of disease onset may be entirely different to the factors 
leading to progression.81 This means that Mendelian 
randomisation studies need to be performed 
using data from studies of disease progression 
and prognosis, rather than disease occurrence, to 
generate findings of direct relevance to treating 
disease.81 Finally, when an exposure is seemingly 
non-modifiable (such as height82 83), a causal relation 
can point towards potential mechanisms or pathways 
that lead to disease (even if the actual risk factor under 
investigation is non-modifiable); such pathways are 
likely to be modifiable, providing new insights in 
disease aetiology.

Summary
Mendelian randomisation studies can provide reliable 
evidence on the effect of modifiable risk factors for 
disease or ill health and can overcome some limitations 
of traditional observational epidemiology. In settings 
for which the instrumental variable assumptions 
are well justified (assessed as described above and 
using biological knowledge), the findings could help 
prioritise clinical trials or drug development and 
inform clinical or public health decision making.84-86

The conversation on how to conduct, report, and 
interpret Mendelian randomisation studies is still 
ongoing. Other areas of medical research, such as 
randomised controlled trials, have been greatly 
strengthened by close collaborations between 
methodologists, empirical researchers, and clinicians. 
Similar collaborations are needed to ensure the 
strengths and limitations of Mendelian randomisation 
are fully appreciated and realised.
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