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Much statistical analysis seeks to identify associations between
exposures and outcomes. The population attributable fraction
(PAF) is an epidemiologic measure widely used to assess the
public health impact of exposures in populations. PAF is defined
as the fraction of all cases of a particular disease or other adverse
condition in a population that is attributable to a specific
exposure; PAF equals (O − E)/O, where O and E refer to the
observed number of cases and the expected number of cases
under no exposure, respectively. The term “attributable” has a
causal interpretation: PAF is the estimated fraction of all cases
that would not have occurred if there had been no exposure.1

As an example, in early 1950,2 Doll derived O = 11189 and E
= 1875 using the Doll and Hill case-control study of smoking
and lung cancer deaths throughout England and Wales,3 so the
smoking PAF for lung cancer deaths was (11189 − 1875)/11189
= 83%.
Using a cohort study, following Miettinen, we can estimate the
PAF from the estimated relative risk (RR) for the exposure and
the prevalence of exposure among cases (pc), as PAF = pc(1 −
1/RR).4 Suppose that a particular exposure doubles the risk of
a certain outcome (that is, RR = 2). If the prevalence of exposure
among cases is 0.6, then PAF = 0.6(1 − 0.5) = 0.3 (that is, 30%).
PAF depends not only on the increased risk associated with the
exposure but is also directly related to the prevalence of
exposure. PAF is usually expressed as a percentage.
Cohort studies are observational and thus liable to
confounding,5 6 so crude (unadjusted) RR should not be used.
An adjusted RR can be used in the Miettinen formula to estimate
a valid PAF. Alternatively, one can directly estimate the PAF
original formula “(O − E)/O” using results from a multivariable
logistic regression model.7

As an example of the latter approach, the authors of a recent
BMJ paper8 calculated the population attributable fraction (PAF)
of concurrent benzodiazepine/opioid use for the risk of opioid
overdose in a retrospective analysis of claim data. This fraction
represents opioid overdose case reduction in the population that
would occur if concurrent benzodiazepine/opioid use could be

eliminated entirely. The PAF estimate was 15% (95%
confidence interval 14 to 16%).8 Valid 95% confidence intervals
for PAF should take into account the uncertainty in both the
observed and expected number of cases.7

The PAF formula with adjusted RR is easily generalised to
exposures with more than two levels.9 In a cohort study the PAF
for the effect of maternal overweight and obesity on infant
mortality in relation to normal weight was estimated as 11%.10

Similarly, we can calculate PAF for the joint effects of two or
more exposures. Such a PAF is expected to be less than the sum
of the PAF for each exposure because people exposed to both
exposures should not be counted twice. Finally, for preventive
exposures one can reverse the coding: RR is now the adjusted
risk ratio for no exposure and pc is the prevalence of no exposure
among cases. The result is known as preventable fraction: the
fraction of all cases that would be prevented if the whole
population were exposed.
We can use valid estimates of hazard ratio (or rate ratio) from
cohort studies or odds ratio from case-control studies instead
of RR in the Miettinen PAF formula if the outcome is
uncommon. Here we assume that removing an exposure does
not affect the person-time at risk, which may not be true. For
example, omitting smoking expands person-year at risk of
coronary deaths by removing other competing risks for deaths
such as lung cancer.11

Other important assumptions underlie the PAF. As usual, we
make the strong assumptions that there is no bias in the study
design and data analysis; in particular, that the estimated effect
is adjusted for all confounders. In addition, we assume that
removing the exposure does not affect other risk factors. This
assumption may not be true in practice; for example, removing
smoking may decrease alcohol consumption, making
interpretation of smoking PAF for coronary deaths difficult.
Also, PAF assumes that there is a perfect intervention which
eradicates the exposure. However, complete removal of an
exposure is often unrealistic; even with legal restrictions and
cessation programmes, many people will continue to smoke. A
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measure that allows for these realities is the generalised impact
fraction, which is the fractional reduction of cases that would
result from changing the current level of exposure in the
population to some modified (partially removed) level.12 More
technical issues about PAF, including its difference from
aetiologic fraction, can be found elsewhere.13
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