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Handling time varying confounding in observational research
Mohammad Ali Mansournia,1 Mahyar Etminan,2 Goodarz Danaei,3 Jay S Kaufman,4 Gary Collins5

Many exposures of epidemiological 
interest are time varying, and the 
values of potential confounders may 
change over time leading to time 
varying confounding. The aim of many 
longitudinal studies is to estimate the 
causal effect of a time varying exposure 
on an outcome that requires adjusting 
for time varying confounding. Time 
varying confounding affected by 
previous exposure often occurs in 
practice, but it is usually adjusted for by 
using conventional analytical methods 
such as time dependent Cox 
regression, random effects models, or 
generalised estimating equations, 
which are known to provide biased 
effect estimates in this setting. This 
article explains time varying 
confounding affected by previous 
exposure and outlines three causal 
methods proposed to appropriately 
adjust for this potential bias: inverse-
probability-of-treatment weighting, the 
parametric G formula, and G 
estimation.

Imagine you are a clinician scientist who is interested 
in examining the effect of testosterone treatment on 
risk of acute myocardial infarction. Recent studies 
have alluded to a possible harmful effect, although 
results have been contradictory.1 One reason might 
be inadequate adjustment for the time varying 
confounding that may occur by the change in serum 

testosterone levels over time, which in turn could 
affect treatment patterns in the future. After talking 
to a colleague, you are convinced that adjusting for 
serum testosterone levels as a time varying confounder 
is necessary for a valid estimate of the causal effect of 
interest. Here we discuss the concept of time varying 
confounding in observational studies and introduce 
methods that must be used to appropriately adjust for 
time varying confounders that are affected by previous 
treatment.

Time varying confounding affected by past exposure
The goal of many observational studies is to estimate 
the valid causal effect of a treatment or exposure on 
a certain outcome. The value of exposure can depend 
on external factors (called confounders) that also 
affect the outcome. This may result in a “mixing” effect 
brought on by the confounders, commonly referred 
to as confounding.2-6 Careful control of confounding 
remains one of the most challenging but important 
steps in the conduct and analysis of these types of 
observational studies.

Time varying confounding occurs when confounders 
have values that change over time. It often occurs 
with time varying exposures. Many exposures 
of epidemiological interest are time varying—for 
example, treatment dose, body mass index, smoking 
status, blood pressure, depression, air pollution, 
socioeconomic status.

Many longitudinal studies aim to estimate the 
overall causal effect of a time varying exposure on the 
outcome, which requires adjustment for time varying 
confounding. However, in certain clinical scenarios one 
or more time varying confounders are affected by past 
exposure. In our clinical example, serum testosterone 
level is the time varying confounder because doctors 
are likely to use the value of testosterone to titrate 
treatment. The level of testosterone after baseline is, 
however, affected by baseline testosterone treatment. 
This pattern, for lack of a shorter term, is referred to as 
“time varying confounding affected by past exposure.”

The problem: controlling for time varying confounding 
affected by past exposure
Several methods can control confounding in 
observational studies at the design and analysis 
stages, including restriction, stratification, regression 
modelling, matching, and propensity scoring.2 
Nevertheless, these methods as well as more advanced 
conventional statistical methods such as time 
dependent Cox proportional hazard models, random 
effects models, or generalised estimating equations 
have been shown to be inadequate in controlling time 
varying confounding affected by past exposure.7 8 In 
fact, conventional statistical methods can introduce 
bias in the presence of time varying confounding 
affected by past exposure.8 9 This can happen for 
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Summary poinTS
•   Many exposures of epidemiological interest are time varying, and time varying 
confounding affected by past exposure often occurs in practice

•   Time varying confounding affected by past exposure is often adjusted for 
by using conventional analytical methods such as time dependent Cox 
regression, random effects models, or generalised estimating equations 
in clinical research, which are known to provide biased effect estimates in 
this setting

•   Three causal methods have been proposed to appropriately adjust for time 
varying confounders that are affected by past exposure: inverse-probability-of-
treatment weighting, parametric G formula, and G estimation
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one or two reasons. Firstly, over-adjustment bias,10 
which occurs as a result of blocking the effect of 
past exposure on outcome, mediated through later 
confounders, leading to a downward bias. This 
dilemma occurs because the time varying confounder 
is affected by past exposure and therefore has a dual 
role as both mediator and confounder. In our clinical 
example, serum testosterone levels may mediate the 
impact of past testosterone treatment on myocardial 
infarction. Secondly, selection (also known as collider 
stratification) bias,11 which occurs by inappropriately 
adjusting for a time varying confounder that may 
share a common cause with the outcome. In our 
example, restricting the study population to those 
who have lower serum testosterone levels post-
baseline will create a (negative) association between 
baseline testosterone treatment and other causes of 
acute myocardial infarction, and this will lead to a 
false association between baseline treatment and the 
outcome.

The causal diagram in figure 1 represents our 
clinical scenario. Causal diagrams, represented as 
directed acyclic graphs, comprise variables and 
arrows.2 12-14 The absence of an arrow pointing from 
one variable to another indicates that the former does 
not have a direct causal effect on the latter. To avoid 
clutter, the causal diagram in figure 1 only shows the 
exposure testosterone treatment at baseline (E0) and 
the second visit (E1), the time varying confounder 
(serum testosterone level) at the second visit (C1), 
and the outcome (myocardial infarction) between the 
second and third visits (D2); for the sake of simplicity 
we have omitted confounder at baseline (C0) and 
outcome between first and second visits (D1) as well 
as some arrows (eg, from E0 to E1). Figure 1 represents 
time varying confounding affected by past exposure as 
the post-baseline value of serum testosterone level C1 is 
a common cause of E1 and D2 (as there are arrows from 
C1 to E1 and D2) and thus is a time varying confounder. 
Also, C1 is affected by the previous exposure E0 as there 
is an arrow from E0 to C1. Box 1 provides a graphical 
representation of over-adjustment and selection biases 
for the effect of testosterone treatment on risk of acute 
myocardial infarction.

occurrence of time varying confounding affected by 
past exposure
The issue of time varying confounding affected by 
past exposure is quite common and of concern in 
clinical epidemiology when drug indication can 
often depend on the value of a prognostic test, or a 

biomarker that is itself affected by past treatment. 
Some examples include CD4 lymphocyte count for the 
effect of zidovudine therapy on AIDS,8 asthma rescue 
drugs on pulmonary function measures,15 and serum 
cholesterol level for the effect of statin treatment on 
coronary heart disease.16

Time varying confounding affected by past exposure 
also exists when there is feedback between exposure 
and outcome. For example, in a study on the effect 
of physical activity on knee pain in patients with 
osteoarthritis, previous knee pain can act as a strong 
confounder for the effect of current physical activity as 
it can limit current physical activity and at the same 
time may be affected by a patient’s earlier physical 
activity.9

The solution: G methods and longitudinal data
The resolution for the dilemma of time varying 
confounding affected by past exposure requires 
the longitudinal data on both the exposure and the 
confounders affected by the previous exposure. It 
also requires use of a statistical method that adjusts 
for the confounding effect of the covariate, but not 
for the effect of exposure on the confounder. Three 
causal methods have been suggested for this purpose: 
inverse-probability-of-treatment weighting,2 7-9 17  18 
parametric G formula,2 19 20 and G estimation.2 21 
These methods are collectively known as G methods 
as they can be used for any generalised treatment, 
whether time fixed or time varying. The time varying 
treatment plan can be static (eg, always treat versus 
never treat) or dynamically dependent on the values 
of time varying confounders (eg, start treatment if CD4 
is <200 versus start treatment if CD4 is <500). These 
three G methods can properly estimate the effect of a 
time varying exposure in the presence of time varying 
confounding affected by past exposure if longitudinal 
data are available.

The success of G methods for appropriately 
adjusting time varying confounders affected by past 
exposure is because unlike conventional methods 
such as stratification or regression modelling, they 
do not fix the value of confounders to adjust for them 
so they do not introduce over-adjustment or selection 
bias. Inverse-probability-of-treatment weighting 
creates a “pseudo-cohort,” within which the time 
varying confounders are not associated with future 
exposure. Therefore, there is no confounding in the 
pseudo-cohort and so a crude (unadjusted) analysis 
in the pseudo-cohort (which is done using a weighted 
analysis in the original cohort) provides an unbiased 
effect of exposure, assuming there is no unmeasured 
confounding.

The parametric G formula effectively simulates the 
values of confounders, exposure, and outcome that 
would have been observed in a hypothetical study 
where every participant received the exposure regimen 
of interest (eg, always exposed, never exposed). 
Therefore, the risk for the exposure regimen of 
interest (eg, always exposed) adjusted for time varying 
confounders can be calculated by standardising the 

E0

U

C1 E1 D2

Fig 1 | Causal diagram showing time varying confounding 
affected by past exposure
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risk to the joint distribution of confounders across the 
entire follow-up.

G estimation adjusts for time varying confounders 
by separately examining the association between 
exposure and the counterfactual outcome under no 
exposure during the follow-up (ie, the outcome that 
would have been observed under no exposure during 
the follow-up) at each visit and only adjusting for the 
values of time varying confounders in the previous 
visits. The counterfactual outcome under no exposure 
during the follow-up is a pre-exposure variable 
that contains information about the participant’s 
underlying predisposition for the outcome and is 
assumed to be independent of exposure given the 
measured confounders (no unmeasured confounding 

assumption). Box 2 provides a brief description of the 
technical details of G methods.

As an example of inverse-probability-of-treatment 
weighting, the Multicenter AIDS Cohort Study 
estimated the hazard ratio for always use compared 
with never use of zidovudine on mortality of men 
who were positive for antibodies to HIV as 0.7 (95% 
confidence interval 0.6 to 1.0) using a weighted Cox 
model, which included the exposure and baseline 
confounders with inverse-probability-of-treatment 
weighting to adjust for time varying confounders (eg, 
CD4 count).8 Under the assumption of no uncontrolled 
confounders, this inverse-probability-of-treatment 
weighted estimate represents the overall effect of 
zidovudine on mortality. The authors also reported 

Box 1: Graphical representation of bias of standard methods for time varying confounding
The bias introduced by conventional statistical models can be illustrated using the causal diagram in figure 1 and graphical rules. C1 is a common 
cause of E1 and D2, so it is a time varying confounder and should be adjusted for in the analysis. However, the conventional adjustment (through 
restriction, matching, or regression) for C1 may introduce two biases if a time varying confounder is affected by past exposure, as the arrow from E0 
to C1 in figure 1 suggests: (i) over-adjustment bias: it removes part of the effect of previous testosterone treatment (E0) on myocardial infarction that 
is mediated by serum testosterone level at the second visit (C1), as the causal path E0→C1→D2 will be blocked owing to adjusting for C1, and (ii) 
selection (also known as collider stratification) bias: C1 is a collider on the path E0→C1←U→D2, where unmeasured risk factor U represents stress 
as two arrowheads from E0 and U converge on it. This path is blocked as it contains a collider (C1) that is not controlled. However, conventional 
adjustment for C1 opens this path and makes previous testosterone treatment (E0) a non-causal risk factor for myocardial infarction (D2)

Box 2: G methods
G methods are causal methods for the estimation of the causal effect of a time varying exposure that can appropriately adjust for time varying 
confounders that are affected by past exposure: inverse-probability-of-treatment weighting, parametric G formula, and G estimation
In inverse-probability-of-treatment weighting, confounding is adjusted by weighting with weights equal to the inverse of the participant’s 
probability of receiving their exposure history at each visit, given the value of previous confounders. The weights can be estimated from a logistic 
regression model for predicting exposure at each visit based on the previous exposure and covariate histories. Inverse-probability-of-treatment 
weighting in a cohort creates a “pseudo-cohort” with two important properties: (i) the measured confounders are not confounders in the pseudo-
cohort because they do not predict the future exposure—that is, there is no arrow from C1 to E1 in figure 1 in the pseudo-cohort, and (ii) the causal 
effect of the exposure in the pseudo-cohort is the same as in the cohort. Therefore, the causal effect of the exposure can be unbiasedly estimated 
by a crude analysis in the pseudo-cohort, which is the same as a weighted analysis in the original cohort
To improve the efficiency of the causal effect estimate, it is usually only the post-baseline values of time varying confounders that are adjusted by 
inverse-probability-of-treatment weighting, while their baseline values along with the time fixed confounders (eg, sex) are adjusted traditionally 
using conventional statistical models. In other words, the standard outcome regression model includes the exposure and baseline confounders 
and is weighted by the inverse-probability-of-treatment. The ordinary 95% confidence interval for inverse-probability-of-treatment weighted 
estimates will generally not provide at least 95% coverage and thus should be avoided. Instead, robust or sandwich variance estimators or 
non-parametric bootstrapping (with resampling of participants) should be used to provide valid confidence intervals
The parametric G formula is a time dependent and model based generalisation of standardisation: a method, based on weighted averaging and a 
standard population, used to remove the effects of differences in age or other confounding variables (which yields the standardised mean 
outcome, eg, risk) under exposure regimens of interest (eg, always treat and never treat) by averaging the confounder specific mean outcomes 
under that regimen over the joint distribution of confounders across the entire follow-up. It effectively simulates the distribution of the exposure, 
outcome, and confounders that would have been observed in a hypothetical study where every participant received the exposure regimen of 
interest. Using the parametric G formula, two sets of regression models are constructed: (i) classic outcome regression with exposure and 
confounder histories as predictors, and (ii) confounder regressions with previous exposure and confounder histories as predictors. Then the 
standardised risk resulting from the exposure regimen of interest can be derived using Monte Carlo draws of confounders from the confounder 
regression model and substituting them in the outcome regression model along with the exposure regimen of interest. In many real applications, 
the exposure regimen is dynamic and therefore an exposure model is also needed. Confidence intervals can be constructed using non-parametric 
bootstrapping
G estimation is a two step procedure that uses two models to estimate the causal effect. The first is a causal model that includes the causal 
variable of interest and links the counterfactual outcome under no exposure during the follow-up (ie, the outcome that would have been observed 
under no exposure during the follow-up) to the weighted sum of time spent in a given exposure status. The second is a logistic regression for 
predicting exposure at each visit based on the previous exposure and covariate histories and the counterfactual outcome. Then G estimation 
iteratively searches for a causal variable value in the first (causal) model, which when used in the second (treatment) model, makes the exposure 
independent of the estimated counterfactual outcome given previous treatment and confounder history. G estimation succeeds in adjusting for 
time varying confounders that are affected by previous exposure by separately examining the association between exposure and counterfactual 
outcome at each visit and adjusting only for the time varying confounder values in past visits. Confidence intervals can be constructed using either 
a test based procedure or non-parametric bootstrapping
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the biased hazard ratio of 0.4 (95% confidence 
interval 0.3 to 0.5) from the standard time dependent 
Cox regression model, which included time varying 
confounders in the model; this was considerably 
less than inverse-probability-of-treatment weighted 
estimate of 0.7. As time varying confounders such as 
CD4 is affected by earlier zidovudine treatment, this 
estimate from a conventional model cannot be causally 
interpreted as either the overall zidovudine effect or 
the direct effect of zidovudine mediated by pathways 
not through time varying confounders.

As an example of G estimation, a recent study 
aimed to quantify the causal relation between 
obesity and coronary heart disease by appropriately 
adjusting for time varying confounders, including 
hypertension, diabetes mellitus, cholesterol, 
high density lipoprotein cholesterol, triglyceride, 
smoking, drinking status, and occurrence of stroke. 
The hazard ratios for abdominal obesity estimated 
by G estimation were 1.65 (95% confidence interval 
1.35 to 1.92) based on waist circumference and 1.38 
(1.13 to 1.99) based on waist-to-hip ratio, suggesting 
that abdominal obesity increased the risk of coronary 
heart disease. However, the standard time dependent 
Cox model adjusting for baseline time varying 
confounders yielded hazard ratios for abdominal 
obesity of 0.93 (95% confidence interval 0.77 to 1.12) 
based on waist circumference and 0.89 (0.69 to 1.15) 
based on waist-to-hip ratio.

Table 1 summarises the advantages and 
disadvantages of the three G methods. The important 
point is that while inverse-probability-of-treatment 
weighting and G estimation rely on correct exposure 
modelling (ie, regression modelling with exposure as 
the response variable and confounders as predictors), 
the parametric G formula is based on correct 
outcome and confounder modelling. In the case of 
time varying confounding affected by past exposure 
in pharmacoepidemiology, it can be argued that 
exposure models are more easily constructed based 
on the treatment indications and therefore inverse-
probability-of-treatment weighting and G estimation 
may be preferred to the parametric G formula. Also 
inverse-probability-of-treatment weighting and G 
estimation can be more accurate (less subject to 
sparse data bias) than the parametric G formula in 
cohort studies if the exposure or treatment is common 

but the outcome is rare.23 The parametric G formula 
is the method of choice for estimating the effects of 
multiple risk factors (joint interventions) and dynamic 
interventions. For example, the Nurses’ Health Study 
in 1982–2002 estimated the 20 year risk of coronary 
heart disease under a joint intervention of no smoking, 
increased exercise, improved diet, moderate alcohol 
consumption, and reduced body mass index using 
a parametric G formula as 1.9% (95% confidence 
interval 1.5% to 2.4%), whereas the observed risk 
was 3.5%.17

Inverse-probability-of-treatment weighting is the 
simplest method to apply and does not require special 
software, but it is sensitive to large weights and unlike 
the two other methods cannot be easily used to study 
the interaction between exposure and time varying 
confounders (ie, time varying effect modification).

Conclusion
Time varying confounding affected by past exposure 
often occurs in longitudinal studies, but in practice 
it is usually either ignored or adjusted for by using 
conventional methods that are known to provide 
biased effect estimates in this setting. G methods are 
the methods of choice for adjustment of time varying 
confounders affected by the past exposure when 
cohort data with repeated measurements on the 
exposure and confounders are available. The cohort 
either can be clinical with a dynamic observation 
plan in which the interval between visits depends on 
the clinical evolution of the patients or can arise from 
a study with prespecified regular intervals between 
visits. In principle, G methods can also be used with 
case-control studies nested in longitudinal data 
using inverse probability weighting, with weights 
inversely proportional to sampling factions in cases 
and controls required to properly account for the 
oversampling of cases, although further research is 
needed in this area.

Hybrid causal methods also enjoy the benefits of 
different G methods simultaneously. For example, 
the so-called double robust methods24 are a group 
of causal methods that combine inverse-probability-
of-treatment weighting and parametric G formula 
procedures and give valid causal effect estimate if 
either inverse-probability-of-treatment weighting or 
parametric G formula estimation is valid.

Box 3: Glossary
•   Time fixed exposure: any exposure that only occurs at the start of follow-up (eg, a one dose vaccine) or does not change over time (eg, genotype)
•   Time varying exposure: any exposure that is not fixed. Many exposures of epidemiological interest are time varying
•   Time varying confounding: confounding by confounders the values of which change over time. It often occurs with time varying exposures
•   Time varying confounding affected by past exposure: time varying confounding in which one or more time varying confounders are affected by 
past exposure

•   Conventional methods for analysis of longitudinal data: statistical methods such as time dependent Cox proportional hazard models, random 
effects models, or generalised estimating equations, which accounts for time varying confounders but at the expense of introducing bias in the 
presence of time varying confounding affected by past exposure

•   G methods: causal methods proposed to appropriately adjust for time varying confounders that are affected by past exposure including 
inverse-probability-of-treatment weighting, parametric G formula, and G estimation. Unlike conventional methods, they do not fix the value of 
time varying confounders to adjust for them
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G methods rely on some assumptions for unbiased 
estimation of causal effects. In particular, the model 
represented in the causal diagram should be correct 
as we identify confounders based on causal diagrams. 
Other assumptions include well defined exposure, no 
measurement error, and correct specification of the 
statistical models. Inverse-probability-of-treatment 
weighting also needs positivity assumption (ie, 
all exposure levels are observed within each joint 
stratum of confounders), and violations of positivity 
will lead to huge or infinite weights and subsequently 
biased effect estimates. We note that standard 
statistical methods such as time dependent Cox 
regression also require these assumptions (except 
positivity), but still result in estimates of effect that 
may fail to have a causal interpretation even if all 
assumptions mentioned previously are met but 
there is a time varying confounder affected by past 
exposure.

We hope that this introduction to time varying 
confounding and appropriate handling of time 
varying confounding affected by past exposure will 
encourage researchers to use G methods for the 
analysis of longitudinal data in practice. As box 2 and 
table 1 suggest, however, application of G methods 
(especially parametric G formula and G estimation) 
involves many technicalities, so expert statistical 
advice is strongly recommended. Interested readers 
looking for the next step in understanding G methods 
are encouraged to read a recent tutorial written for 
epidemiologists.25
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